Andriani G, Amata E, Beatty J, Clements Z, Coffey BJ, Courtemanche G, Devine W, Erath J, Juda CE, Wawrzak Z, Wood JT, Lepesheva GI, Rodriguez A, Pollastri MP: Antitrypanosomal lead discovery: identification of a ligand-efficient inhibitor of Trypanosoma cruzi CYP51 and parasite growth. J Med Chem 2013, 56: 2556-2567. 10.1021/jm400012e
Article
Google Scholar
Aoyama Y: Recent progress in the CYP51 research focusing on its unique evolutionary and functional characteristics as a diversozyme P450. Front Biosci 2005, 10: 1546-1557. 10.2741/1639
Article
Google Scholar
Barreiros ML, David JM, Pereira PAP, Guedes MLS, David JP: Fatty acid esters of triterpenes from Erythroxylum passerinum . J Braz Chem Soc 2002, 13: 669-673. 10.1590/S0103-50532002000500021
Article
Google Scholar
Buckner FS, Bahia MT, Suryadevara PK, White KL, Shackleford DM, Chennamaneni NK, Hulverson MA, Laydbak JU, Chatelain E, Scandale I, Verlinde CL, Charman SA, Lepesheva GI, Gelb MH: Pharmacological characterization, structural studies, and in vivo activities of anti-Chagas disease lead compounds derived from tipifarnib. Antimicrob Agents Chemother 2012, 56: 4914-4921. 10.1128/AAC.06244-11
Article
Google Scholar
Chen CK, Doyle PS, Yermalitskaya LV, Mackey ZB, Ang KK, McKerrow JH, Podust LM: Trypanosoma cruzi CYP51 inhibitor derived from a Mycobacterium tuberculosis screen hit. PLoS Negl Trop Dis 2009, 3: e372. 10.1371/journal.pntd.0000372
Article
Google Scholar
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393: 537-544. 10.1038/31159
Article
Google Scholar
Doyle PS, Chen CK, Johnston JB, Hopkins SD, Leung SS, Jacobson MP, Engel JC, McKerrow JH, Podust LM: A nonazole CYP51 inhibitor cures Chagas’ disease in a mouse model of acute infection. Antimicrob Agents Chemother 2010, 54: 2480-2488. 10.1128/AAC.00281-10
Article
Google Scholar
Gachet MS, Kunert O, Kaiser M, Brun R, Zehl M, Keller W, Muñoz RA, Bauer R, Schuehly W: Antiparasitic compounds from Cupania cinerea with activities against Plasmodium falciparum and Trypanosoma brucei rhodesiense . J Nat Prod 2011, 74: 559-566. 10.1021/np100415m
Article
Google Scholar
Geisler K, Hughes RK, Sainsbury F, Lomonossoff GP, Rejzek M, Fairhurst S, Olsen CE, Motawia MS, Melton RE, Hemmings AM, Bak S, Osbourn A: Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc Natl Acad Sci USA 2013, 110: E3360-3367. 10.1073/pnas.1309157110
Article
Google Scholar
GraphPad Prism version 6.00 for Windows: GraphPad Software. La Jolla California USA; 2013. http://www.graphpad.com
Google Scholar
Gunatilleke SS, Calvet CM, Johnston JB, Chen CK, Erenburg G, Gut J, Engel JC, Ang KK, Mulvaney J, Chen S, Arkin MR, McKerrow JH, Podust LM: Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. PLoS Negl Trop Dis 2012, 6: e1736. 10.1371/journal.pntd.0001736
Article
Google Scholar
Hargrove TY, Wawrzak Z, Liu J, Nes WD, Waterman MR, Lepesheva GI: Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum . J Biol Chem 2011, 286: 26838-26848. 10.1074/jbc.M111.237099
Article
Google Scholar
Hargrove TY, Wawrzak Z, Alexander PW, Chaplin JH, Keenan M, Charman SA, Perez CJ, Waterman MR, Chatelain E, Lepesheva GI: Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity. J Biol Chem 2013, 288: 31602-31615. 10.1074/jbc.M113.497990
Article
Google Scholar
Hargrove TY, Wawrzak Z, Waterman MR: CYP51 structure-based VNI scaffold development. doi:10.2210/pdb4g3j/pdb
Hoet S, Pieters L, Muccioli GG, Habib-Jiwan JL, Opperdoes FR, Quetin-Leclercq J: Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. J Nat Prod 2007, 70: 1360-1363. 10.1021/np070038q
Article
Google Scholar
Ibrahim SA, Ali MS: Constituents of Nepeta crassifolia (Lamiaceae). Turk J Chem 2007, 31: 463-470.
Google Scholar
Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, Stojan J, Podobnik B, Berne S, Zupanec N, Bunc M, Gobec S, Komel R: Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J Appl Microbiol 2014, 116: 955-966. 10.1111/jam.12417
Article
Google Scholar
Lepesheva GI, Hargrove TY, Anderson S, Kleshchenko Y, Furtak V, Wawrzak Z, Villalta F, Waterman MR: Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi . J Biol Chem 2010, 285: 25582-25590. 10.1074/jbc.M110.133215
Article
Google Scholar
Lorente SO, Rodrigues JC, Jiménez Jiménez C, Joyce-Menekse M, Rodrigues C, Croft SL, Yardley V, de Luca-Fradley K, Ruiz-Pérez LM, Urbina J, de Souza W, González Pacanowska D, Gilbert IH: Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 2004, 48: 2937-2950. 10.1128/AAC.48.8.2937-2950.2004
Article
Google Scholar
McLean KJ, Marshall KR, Richmond A, Hunter IS, Fowler K, Kieser T, Gurcha SS, Besra GS, Munro AW: Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology 2002, 148: 2937-2949.
Article
Google Scholar
Mwangi ESK, Keriko JM, Machocho AK, Wanyonyi AW, Malebo HM, Chhabra SC, Tarus PK: Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa . J Med Plants Res 2010, 4: 726-731.
Google Scholar
Ogungbe IV, Setzer WN: In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules 2013, 18: 7761-7847. 10.3390/molecules18077761
Article
Google Scholar
Peng XM, Cai GX, Zhou CH: Recent developments in azole compounds as antibacterial and antifungal agents. Curr Top Med Chem 2013, 13: 1963-2010. 10.2174/15680266113139990125
Article
Google Scholar
Podust LM, von Kries JP, Eddine AN, Kim Y, Yermalitskaya LV, Kuehne R, Ouellet H, Warrier T, Alteköster M, Lee JS, Rademann J, Oschkinat H, Kaufmann SH, Waterman MR: Small-molecule scaffolds for CYP51 inhibitors identified by high-throughput screening and defined by X-ray crystallography. Antimicrob Agents Chemother 2007, 51: 3915-3923. 10.1128/AAC.00311-07
Article
Google Scholar
Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, Eagles J, Werck-Reichhart D, Schaller H, Lesot A, Melton R, Osbourn A: A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense. Proc Natl Acad Sci USA 2006, 103: 18848-18853. 10.1073/pnas.0607849103
Article
Google Scholar
Rozhon W, Husar S, Kalaivanan F, Khan M, Idlhammer M, Shumilina D, Lange T, Hoffmann T, Schwab W, Fujioka S, Poppenberger B: Genetic variation in plant CYP51s confers resistance against voriconazole, a novel inhibitor of brassinosteroid-dependent sterol biosynthesis. PLoS One 2013, 8: e53650. 10.1371/journal.pone.0053650
Article
Google Scholar
Schinor EC, Salvador MJ, Pral EMF, Alfieri SC, Albuquerque S, Dias DA: Biological activities and chemical composition of crude extracts from Chresta exsucca . Braz J Pharmaceut Sc 2007, 43: 295-300.
Google Scholar
Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, NC Soeiro M, Steindel M, Tempone AG: The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part I. Curr Med Chem 2012, 19: 2128-2175.
Google Scholar
Setzer WN, Ogungbe IV: In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl Trop Dis 2012, 6: e1727. 10.1371/journal.pntd.0001727
Article
Google Scholar
Spartan’10 for Windows, v 1.1: Wavefunction, Inc.. Wavefunction, Inc, Irvine, CA, USA; 2011.
Google Scholar
Strushkevich N, Usanov SA: Crystal structure of human lanosterol 14alpha-demethylase (CYP51) in complex with econazole. doi:10.2210/pdb3jus/pdb
Strushkevich N, Usanov SA, Park HW: Structural basis of human CYP51 inhibition by antifungal azoles. J Mol Biol 2010, 397: 1067-1078. 10.1016/j.jmb.2010.01.075
Article
Google Scholar
The Dictionary of Natural Products: DVD-ROM. Taylor and Francis, Boca Raton, FL, USA; 2013.
Google Scholar
Thomsen R, Christensen MH: MolDock: a new technique for high-accuracy molecular docking. J Med Chem 2006, 49: 3315-3321. 10.1021/jm051197e
Article
Google Scholar
Urbina JA, Payares G, Molina J, Sanoja C, Liendo A, Lazardi K, Piras MM, Piras R, Perez N, Wincker P, Ryley JF: Cure of short- and long-term experimental Chagas’ disease using D0870. Science 1996, 273: 969-971. 10.1126/science.273.5277.969
Article
Google Scholar
Molegro Virtual Docker v 5.0. Molegro ApS, Aarhus, Denmark; 2011.