Anand S, Penrhyn-Lowe S, Venkitaraman AR: AURORA-a amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 2003, 3(1):51-62. 10.1016/S1535-6108(02)00235-0
Article
Google Scholar
Brass N, Ukena I, Remberger K, Mack U, Sybrecht G, Meese E: DNA amplification on chromosome 3q26.1-q26.3 in squamous cell carcinoma of the lung detected by reverse chromosome painting. Eur J Cancer 1996, 32A(7):1205-1208.
Article
Google Scholar
Burds AA, Lutum AS, Sorger PK: Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci USA 2005, 102(32):11296-11301. 10.1073/pnas.0505053102
Article
Google Scholar
Chan Y, Ma H, Wong W, Ho C, On K, Poon R: CDK1 inhibitors antagonize the immediate apoptosis triggered by spindle disruption but promote apoptosis following the subsequent rereplication and abnormal mitosis. Cell Cycle 2008, 7(10):1449-1461. 10.4161/cc.7.10.5880
Article
Google Scholar
Cheung HW, Jin DY, Ling MT, Wong YC, Wang Q, Tsao SW, Wang X: Mitotic arrest deficient 2 expression induces chemosensitization to a DNA-damaging agent, cisplatin, in nasopharyngeal carcinoma cells. Cancer Res 2005, 65(4):1450-1458. 10.1158/0008-5472.CAN-04-0567
Article
Google Scholar
Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK: Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000, 101(6):635-645. 10.1016/S0092-8674(00)80875-2
Article
Google Scholar
Elledge SJ: Mitotic arrest: Mad2 prevents sleepy from waking up the APC. Science 1998, 279(5353):999-1000. 10.1126/science.279.5353.999
Article
Google Scholar
Fang G, Yu H, Kirschner MW: The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 1998, 12(12):1871-1883. 10.1101/gad.12.12.1871
Article
Google Scholar
Farruggio DC, Townsley FM, Ruderman JV: Cdc20 associates with the kinase aurora2/Aik. Proc Natl Acad Sci USA 1999, 96(13):7306-7311. 10.1073/pnas.96.13.7306
Article
Google Scholar
Giet R, Uzbekov R, Cubizolles F, Le Guellec K, Prigent C: The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 1999, 274(21):15005-15013. 10.1074/jbc.274.21.15005
Article
Google Scholar
Habu T, Kim SH, Weinstein J, Matsumoto T: Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J 2002, 21(23):6419-6428. 10.1093/emboj/cdf659
Article
Google Scholar
Hagan R, Manak M, Hk B, Meier M, Meraldi P, Shah J, Sorger P: p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol Biol Cell 2011, 22(22):4236-4246. 10.1091/mbc.E11-03-0216
Article
Google Scholar
Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Mehes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Irrthum A, Douglas J, Rahman N: Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 2004, 36(11):1159-1161. 10.1038/ng1449
Article
Google Scholar
Hwang LH, Lau LF, Smith DL, Mistrot CA, Hardwick KG, Hwang ES, Amon A, Murray AW: Budding yeast Cdc20: a target of the spindle checkpoint. Science 1998, 279(5353):1041-1044. 10.1126/science.279.5353.1041
Article
Google Scholar
Jia L, Li B, Warrington R, Hao X, Wang S, Yu H: Defining pathways of spindle checkpoint silencing: functional redundancy between Cdc20 ubiquitination and p31(comet). Mol Biol Cell 2011, 22(22):4227-4235. 10.1091/mbc.E11-05-0389
Article
Google Scholar
Jiang Y, Zhang Y, Lees E, Seghezzi W: AuroraA overexpression overrides the mitotic spindle checkpoint triggered by nocodazole, a microtubule destabilizer. Oncogene 2003, 22(51):8293-8301. 10.1038/sj.onc.1206873
Article
Google Scholar
Jin G, Ma H, Wu C, Dai J, Zhang R, Shi Y, Lu J, Miao X, Wang M, Zhou Y, Chen J, Li H, Pan S, Chu M, Lu F, Yu D, Jiang Y, Dong J, Hu L, Chen Y, Xu L, Shu Y, Pan S, Tan W, Zhou B, Lu D, Wu T, Zhang Z, Chen F, Wang X, Hu Z, Lin D, Shen H: Genetic variants at 6p21.1 and 7p15.3 are associated with risk of multiple cancers in Han Chinese. Am J Hum Gen 2012, 91(5):928-934. 10.1016/j.ajhg.2012.09.009
Article
Google Scholar
Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ: Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 2000, 150(5):975-988. 10.1083/jcb.150.5.975
Article
Google Scholar
Kienitz A, Vogel C, Morales I, Muller R, Bastians H: Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol. Oncogene 2005, 24(26):4301-4310. 10.1038/sj.onc.1208589
Article
Google Scholar
Kim SH, Lin DP, Matsumoto S, Kitazono A, Matsumoto T: Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 1998, 279(5353):1045-1047. 10.1126/science.279.5353.1045
Article
Google Scholar
Kim HS, Park KH, Kim SA, Wen J, Park SW, Park B, Gham CW, Hyung WJ, Noh SH, Kim HK, Song SY: Frequent mutations of human Mad2, but not Bub1, in gastric cancers cause defective mitotic spindle checkpoint. Mutat Res 2005, 578: 187-201. 10.1016/j.mrfmmm.2005.05.020
Article
Google Scholar
Kops GJ, Weaver BA, Cleveland DW: On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 2005, 5(10):773-785. 10.1038/nrc1714
Article
Google Scholar
Luo X, Tang Z, Xia G, Wassmann K, Matsumoto T, Rizo J, Yu H: The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol 2004, 11(4):338-345. 10.1038/nsmb748
Article
Google Scholar
Ma H, Chan Y, Chen X, On K, Poon R: Depletion of p31comet protein promotes sensitivity to antimitotic drugs. J Biol Chem 2012, 287(25):21561-21569. 10.1074/jbc.M112.364356
Article
Google Scholar
Mapelli M, Filipp F, Rancati G, Massimiliano L, Nezi L, Stier G, Hagan R, Confalonieri S, Piatti S, Sattler M, Musacchio A: Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J 2006, 25(6):1273-1284. 10.1038/sj.emboj.7601033
Article
Google Scholar
Mapelli M, Massimiliano L, Santaguida S, Musacchio A: The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 2007, 131(4):730-743. 10.1016/j.cell.2007.08.049
Article
Google Scholar
Martin-Lluesma S, Stucke VM, Nigg EA: Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 2002, 297(5590):2267-2270. 10.1126/science.1075596
Article
Google Scholar
Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ: Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999, 286(5441):971-974. 10.1126/science.286.5441.971
Article
Google Scholar
Mazurenko N, Attaleb M, Gritsko T, Semjonova L, Pavlova L, Sakharova O, Kisseljov F: High resolution mapping of chromosome 6 deletions in cervical cancer. Oncol Rep 1999, 6(4):859-863.
Google Scholar
Meraldi P, Draviam VM, Sorger PK: Timing and checkpoints in the regulation of mitotic progression. Dev Cell 2004, 7(1):45-60. 10.1016/j.devcel.2004.06.006
Article
Google Scholar
Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R: MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 2001, 409(6818):355-359. 10.1038/35053094
Article
Google Scholar
Miniowitz-Shemtov S, Eytan E, Ganoth D, Sitry-Shevah D, Dumin E, Hershko A: A Role of phosphorylation of Cdc20 in p31(comet)-stimulated disassembly of the mitotic checkpoint complex. Proc Natl Acad Sci USA 2012, 109(21):8056-8060. 10.1073/pnas.1204081109
Article
Google Scholar
Musacchio A, Salmon E: The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 2007, 8(5):379-393. 10.1038/nrm2163
Article
Google Scholar
Nasmyth K: How do so few control so many? Cell 2005, 120(6):739-746. 10.1016/j.cell.2005.03.006
Article
Google Scholar
Shah JV, Cleveland DW: Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 2000, 103(7):997-1000. 10.1016/S0092-8674(00)00202-6
Article
Google Scholar
Shi J, Orth JD, Mitchison T: Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res 2008, 68(9):3269-3276. 10.1158/0008-5472.CAN-07-6699
Article
Google Scholar
Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis RL: Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci U S A 2001, 98(8):4492-4497. 10.1073/pnas.081076898
Article
Google Scholar
Sonoki T, Harder L, Horsman D, Karran L, Taniguchi I, Willis T, Gesk S, Steinemann D, Zucca E, Schlegelberger B, Sole F, Mungall A, Gascoyne R, Siebert R, Dyer M: Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood 2001, 98(9):2837-2844. 10.1182/blood.V98.9.2837
Article
Google Scholar
Sudakin V, Chan GK, Yen TJ: Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 2001, 154(5):925-936. 10.1083/jcb.200102093
Article
Google Scholar
Sudo T, Nitta M, Saya H, Ueno NT: Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res 2004, 64(7):2502-2508. 10.1158/0008-5472.CAN-03-2013
Article
Google Scholar
Tao W, South VJ, Zhang Y, Davide JP, Farrell L, Kohl NE, Sepp-Lorenzino L, Lobell RB: Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell 2005, 8(1):49-59. 10.1016/j.ccr.2005.06.003
Article
Google Scholar
Teichner A, Eytan E, Sitry-Shevah D, Miniowitz-Shemtov S, Dumin E, Gromis J, Hershko A: A p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proc Natl Acad Sci USA 2011, 108(8):3187-3192. 10.1073/pnas.1100023108
Article
Google Scholar
Tugendreich S, Tomkiel J, Earnshaw W, Hieter P: CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 1995, 81(2):261-268. 10.1016/0092-8674(95)90336-4
Article
Google Scholar
Varetti G, Guida C, Santaguida S, Chiroli E, Musacchio A: Homeostatic control of mitotic arrest. Mol cell 2011, 44(5):710-720. 10.1016/j.molcel.2011.11.014
Article
Google Scholar
Wang TH, Wang HS, Soong YK: Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 2000, 88(11):2619-2628. 10.1002/1097-0142(20000601)88:11<2619::AID-CNCR26>3.0.CO;2-J
Article
Google Scholar
Wang X, Jin DY, Wong HL, Feng H, Wong YC, Tsao SW: MAD2-induced sensitization to vincristine is associated with mitotic arrest and Raf/Bcl-2 phosphorylation in nasopharyngeal carcinoma cells. Oncogene 2003, 22(1):109-116. 10.1038/sj.onc.1206069
Article
Google Scholar
Weaver BA, Cleveland DW: Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell 2005, 8(1):7-12. 10.1016/j.ccr.2005.06.011
Article
Google Scholar
Westhorpe F, Tighe A, Lara-Gonzalez P, Taylor S: p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 2011, 124(Pt 22):3905-3916.
Article
Google Scholar
Xia G, Luo X, Habu T, Rizo J, Matsumoto T, Yu H: Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J 2004, 23(15):3133-3143. 10.1038/sj.emboj.7600322
Article
Google Scholar
Yang M, Li B, Tomchick DR, Machius M, Rizo J, Yu H, Luo X: p31comet blocks Mad2 activation through structural mimicry. Cell 2007, 131(4):744-755. 10.1016/j.cell.2007.08.048
Article
Google Scholar
Zou H, McGarry TJ, Bernal T, Kirschner MW: Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999, 285(5426):418-422. 10.1126/science.285.5426.418
Article
Google Scholar