Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003, 100: 3983-3988.
Google Scholar
Annaloro C, Onida F, Saporiti G, Lambertenghi Deliliers G: Cancer stem cells in hematological disorders: current and possible new therapeutic approaches. Curr Pharm Biotechnol 2011, 12: 217-225.
Google Scholar
Augello A, Kurth TB, De Bari C: Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cells Mat 2010, 20: 121-133.
Google Scholar
Baba M, Ma BY, Nonaka M, Matsuishi Y, Hirano M, Nakamura N, Kawasaki N, Kawasaki N, Kawasaki T: Glycosylation-dependent interaction of Jacalin with CD45 induces T lymphocyte activation and Th1/Th2 cytokine secretion. J Leukoc Biol 2007, 81: 1002-1011.
Google Scholar
Badcock G, Pigott C, Goepel J, Andrews PW: The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratin sulfate proteoglycan. Cancer Res 1999, 59: 4715-4719.
Google Scholar
Baldus SE, Zirbes TK, Hanisch FG, Kunze D, Shafizadeh ST, Nolden S, Mönig SP, Schneider PM, Karsten U, Thiele J, Hölscher AH, Dienes HP: Thomsen-Friedenreich (TF) antigen presents as a prognostic factor in colorectal carcinoma: a clinico-pathological study including 264 patients. Cancer 2000, 88: 1536-1543.
Google Scholar
Barrow H, Tam B, Duckworth CA, Rhodes JM, Yu L-G: Suppression of core-1 Gal-transferase is associated with reduction of TF and reciprocal increase of Tn, sialyl-Tn and core-3 glycans in human colon cancer cells. PLoS One 2013, 8: e59792. 10.1371/journal.pone.0059792
Google Scholar
Basso G, Timeus F: Cytofluorimetric analysis of CD34 cells. Bone Marrow Transplant Suppl 1998, 5: S17-S20.
Google Scholar
Battula VL, Shi Y, Evans KW, Wang R-Y, Spaeth EL, Jacamo RO, Guerra R, Sahin AA, Marini FC, Hortobagyi G, Mani SA, Andreeff M: Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 2012, 122: 2066-2078.
Google Scholar
Beuth J, Ko HL, Schirrmacher V, Uhlenbruck G, Pulverer G: Inhibition of liver tumor cell colonization in two animal tumor models by lectin blocking with D-galactose or arabinogalactan. Clin Exp Metastasis 1988, 6: 115-120.
Google Scholar
Blanpain C, Fuchs E: Epidermal stem cells of the skin. Annu Rev Cell Dev 2006, 22: 339-373.
Google Scholar
Brockhausen I: Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 1999, 1473: 67-95.
Google Scholar
Bunting KD: ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 2002, 20: 11-20.
Google Scholar
Cao Y, Karsten U, Liebrich W, Haensch W, Springer GF, Schlag PM: Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas: a reevaluation. Cancer 1995, 76: 1700-1708.
Google Scholar
Cao Y, Stosiek P, Springer GF, Karsten U: Thomsen-Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study. Histochem Cell Biol 1996, 106: 197-207.
Google Scholar
Cao Y, Blohm D, Ghadimi BM, Stosiek P, Xing P-X, Karsten U: Mucins (MUC1 and MUC3) of gastrointestinal and breast epithelia reveal different and heterogeneous tumor-associated aberrations in glycosylation. J Histochem Cytochem 1997, 45: 1547-1557.
Google Scholar
Cao Y, Karsten U, Otto G, Bannasch P: Expression of MUC1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and α2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch 1999, 434: 503-509.
Google Scholar
Cao Y, Karsten U, Zerban H, Bannasch P: Expression of MUC1, Thomsen-Friedenreich-related antigens, and cytokeratin 19 in human renal cell carcinomas and tubular clear cell lesions. Virchows Arch 2000, 436: 119-126.
Google Scholar
Cao Y, Merling A, Karsten U, Schwartz-Albiez R: The fucosylated histo-blood group antigens H type 2 (blood group O, CD173) and Lewis Y (CD174) are expressed on CD34+ hematopoietic progenitors but absent on mature lymphocytes. Glycobiology 2001, 11: 677-683.
Google Scholar
Cao Y, Merling A, Karsten U, Goletz S, Punzel M, Kraft R, Butschak G, Schwartz-Albiez R: Expression of CD175 (Tn), CD175s (sialosyl-Tn) and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells. Int J Cancer 2008, 123: 89-99.
Google Scholar
Carpenter MK, Rosler E, Rao MS: Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 2003, 5: 79-88.
Google Scholar
Chang W-W, Lee CH, Lee P, Lin J, Hsu C-W, Hung J-T, Lin J-J, Yu J-C, Shao L, Yu J, Wong C-H, Yu AL: Expression of globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in globo H synthesis. Proc Natl Acad Sci USA 2008, 105: 11667-11672.
Google Scholar
Clausen H, Stroud M, Parker J, Springer G, Hakomori S-I: Monoclonal antibodies directed to the blood group A associated structure, glactosyl-A: specificity and relation to the Thomsen-Friedenreich antigen. Mol Immunol 1988, 25: 199-204.
Google Scholar
Cloosen S, Gratama JW, van Leeuwen EBM, Senden-Gijsbers BLMG, Oving EBH, von Mensdorff-Pouilly S, Tarp MA, Mandel U, Clausen H, Germeraad WTV, Bos GMJ: Cancer specific Mucin-1 glycoforms are expressed on multiple myeloma. Brit J Haematol 2006, 135: 513-516.
Google Scholar
Dabelsteen E: Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol 1996, 179: 358-369.
Google Scholar
Dalerba P, Cho RW, Clarke MF: Cancer stem cells: models and concepts. Annu Rev Med 2007, 58: 267-284.
Google Scholar
Dell’Albani P: Stem cell markers in gliomas. Neurochem Res 2008, 33: 2407-2415.
Google Scholar
Ding Y, Gelfenbeyn K, Freire-de-Lima L, Handa K, Hakomori S-I: Induction of epithelial-esenchymal transition with O-glycosylated oncofetal fibronectin. FEBS Lett 2012, 585: 1813-1820.
Google Scholar
Engelmann K, Shen H, Finn OJ: MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res 2008, 68: 2419-2426.
Google Scholar
Fatrai S, Schepers H, Tadema H, Vellenga E, Daenen SMGJ, Schuringa JJ: Mucin 1 expression is enriched in the human stem cell fraction of cord blood and is upregulated in majority of the AML cases. Exp Hematol 2008, 36: 1254-1265.
Google Scholar
Fenderson BA, Andrews PW: Carbohydrate antigens of embryonal carcinoma cells: changes upon differentiation. APMIS 1992, 100(Suppl 27):109-118.
Google Scholar
Furness SGB, McNagny K: Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res 2006, 34: 13-32.
Google Scholar
Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RCR: SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 2007, 109: 1743-1751.
Google Scholar
Gibson MA, Leavesley DI, Ashman LK: Microfibril-associated glycoprotein-2 specifically interacts with a range of bovine and human cell types via αvβ3 integrin. J Biol Chem 1999, 274: 13060-13065.
Google Scholar
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer C, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007, 1: 555-567.
Google Scholar
Goletz S, Cao Y, Danielczyk A, Ravn P, Schöber U, Karsten U: Thomsen-Friedenreich antigen: the “hidden”tumour antigen. Adv Exp Med Biol 2003, 535: 147-162.
Google Scholar
Guha P, Kaptan E, Bandyopadhyaya G, Kaczanowska S, Davila E, Thompson K, Martin SS, Kalvakolanu DV, Vasta GR, Ahmed H: Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc Natl Acad Sci USA 2013, 110: 5052-5057.
Google Scholar
Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P: A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991, 65: 13-24.
Google Scholar
Guo W, Lasky JL, Chang C-J, Mosessian S, Lewis X, Xiao Y, Yeh JE, Chen JY, Iruela-Arispe ML, Varella-Garcia M, Wu H: Multi-genetic events collaboratively contribute to Pten-null leukemia stem-cell formation. Nature 2008, 453: 529-533.
Google Scholar
Gupta V, Bhinge KN, Hosain SB, Xiong K, Gu X, Shi R, Ho M-Y, Khoo K-H, Li S-C, Li Y-T, Ambudkar SV, Jazwinski SM, Liu Y-Y: Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J Biol Chem 2012, 287: 37195-37205.
Google Scholar
Hakomori S-I: Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 1989, 52: 257-331.
Google Scholar
Hakomori S: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 1996, 56: 5309-5318.
Google Scholar
Havens AM, Jung Y, Sun YX, Wang J, Shah RB, Bühring HJ, Pienta KJ, Taichman RS: The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis. BMC Cancer 2006, 6: 195.
Google Scholar
Hemmoranta H, Satomaa T, Blomqvist M, Heiskanen A, Aitio O, Saarinen J, Natunen J, Partanen J, Laine J, Jaatinen T: N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. Exp Hematol 2007, 35: 1279-1292.
Google Scholar
Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW: Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 2002, 20: 329-337.
Google Scholar
Hennen E, Faissner A: Lewis X: a neural stem cell specific glycan? Int J Biochem Cell Biol 2012, 44: 830-833.
Google Scholar
Hernandez JD, Klein J, Van Dyken SJ, Marth JD, Baum LG: T-cell activation results in microheterogeneous changes in glycosylation of CD45. Int Immunol 2007, 19: 847-856.
Google Scholar
Huang Y-C, Yang Z-M, Chen X-H, Tan M-Y, Wang J, Li X-Q, Xie H-Q, Deng L: Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem Cell Rev 2009, 5: 247-255.
Google Scholar
Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL, Kim YS: Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res 1989, 49: 197-204.
Google Scholar
Jeschke U, Richter DU, Hammer A, Briese V, Friese K, Karsten U: Expression of the Thomsen-Friedenreich antigen and of its putative carrier protein mucin 1 in the human placenta and in trophoblast cells in vitro . Histochem Cell Biol 2002, 117: 219-226.
Google Scholar
Kang M-K, Kang S-K: Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Developm 2007, 16: 837-847.
Google Scholar
Kannagi R, Cochran NA, Ishigami F, Hakomori S-I, Andrews PW, Knowles BB, Solter D: Stage-specific embryonic antigens (SSEA-3 and −4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 1983, 2: 2355-2361.
Google Scholar
Karsten U, Butschak G, Cao Y, Goletz S, Hanisch F-G: A new monoclonal antibody (A78-G/A7) to the Thomsen-Friedenreich pan-tumor antigen. Hybridoma 1995, 14: 37-44.
Google Scholar
Karsten U, von Mensdorff-Pouilly S, Goletz S: What makes MUC1 a tumor antigen? Tumor Biol 2005, 26: 217-220.
Google Scholar
Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoeke M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP: The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 2010, 70: 719-729.
Google Scholar
Krause DS, Fackler MJ, Civin CI, May WS: CD34: structure, biology, and clinical utility. Blood 1996, 87: 1-13.
Google Scholar
Krupkova O, Loja T, Zambo I, Veselska R: Nestin expression in human tumors and tumor cell lines. Neoplasma 2010, 57: 291-298.
Google Scholar
LaBarge MA, Petersen OW, Bissell MJ: Of microenvironments and mammary stem cells. Stem Cell Rev 2007, 3: 137-146.
Google Scholar
Langkilde NC, Wolf H, Clausen H, Orntoft TF: Human urinary bladder carcinoma glycoconjugates expressing T-(Galβ(1–3)GalNAcα1-O-R) and T-like antigens: a comparative study using peanut agglutinin and poly- and monoclonal antibodies. Cancer Res 1992, 52: 5030-5036.
Google Scholar
Le Pendu J, Marionneau S, Cailleau-Thomas A, Rocher J, Le Moullac-Vaidye B, Clement M: ABH and Lewis histo-blood group antigens in cancer. APMIS 2001, 109: 9-31.
Google Scholar
Limas C, Lange P: T-antigen in normal and neoplastic urothelium. Cancer 1986, 58: 1236-1245.
Google Scholar
Lin W-M, Karsten U, Goletz S, Cheng R-C, Cao Y: Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast and liver cancer-initiating cells. Int J Exp Pathol 2010, 92: 97-105.
Google Scholar
Lin W-M, Karsten U, Goletz S, Cheng R-C, Cao Y: Expression of CD173 (H2) and CD174 (Lewis Y) with CD44 suggests that fucosylated histo-blood group antigens are markers of breast cancer-initiating cells. Virchows Arch 2010, 456: 403-409.
Google Scholar
Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu D, Black KL, Yu JS: Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006, 5: 67. 10.1186/1476-4598-5-67
Google Scholar
Lloyd KO, Burchell J, Kudryashov V, Yin BWT, Taylor-Papadimitriou J: Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. J Biol Chem 1996, 271: 33325-33334.
Google Scholar
Lobo NA, Shimono Y, Qian D, Clarke MF: The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007, 23: 675-699.
Google Scholar
Lukacs RU, Memarzadeh S, Wu H, Witte ON: Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 2010, 7: 682-693.
Google Scholar
Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M, Helyer L, Pan L, Leidal A, Gujar S, Giacomantonio CA, Lee PWK: Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 2011, 29: 32-45.
Google Scholar
Masuzawa Y, Miyauchi T, Hamanoue M, Ando S, Yoshida J, Takao S, Shimazu H, Adachi M, Muramatsu T: A novel core protein as well as polymorphic epithelial mucin carry peanut agglutinin binding sites in human gastric carcinoma cells: sequence analysis and examination of gene expression. J Biochem 1992, 112: 609-615.
Google Scholar
Matsuura H, Takio K, Titani K, Greene T, Levery SB, Salina MEK, Hakomori S: The oncofetal structure of human fibronectin defined by monoclonal antibody FDC-6: unique structural requirement for the antigenic specificity provided be a glycosylhexapeptide. J Biol Chem 1988, 263: 3314-3322.
Google Scholar
Medema JP: Cancer stem cells: the challenges ahead. Nature Cell Biol 2013, 15: 338-344.
Google Scholar
Miyauchi T, Kanekura T, Yamaoka A, Ozawa M, Miyazawa S, Muramatsu T: Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the β-chain of major histocompatibility complex class II antigen. J Biochem 1990, 107: 316-323.
Google Scholar
Mizrak D, Brittan M, Alison MR: CD133: molecule of the moment. J Pathol 2008, 214: 3-9.
Google Scholar
Monk M, Holding C: Human embryonic genes re-expressed in cancer cells. Oncogene 2001, 20: 8085-8091.
Google Scholar
Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, LaPorta CAM: Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 2007, 43: 935-946.
Google Scholar
Muramatsu T: Alterations of cell-surface carbohydrates during differentiation and development. Biochimie 1988, 70: 1587-1596.
Google Scholar
O’Brien CA, Pollett A, Gallinger S, Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445: 106-110.
Google Scholar
Okuno K, Shirayama Y, Ohnishi H, Yamamoto K, Ozaki M, Hirohata T, Nakajima I, Yasutomi M: A successful liver metastasis model in mice with neuraminidase treated colon 26. Surg Today 1993, 23: 795-799.
Google Scholar
Ponnusamy MP, Batra SK: Ovarian cancer: emerging concept on cancer stem cells. J Ovarian Res 2008., 1: 10.1186/1757-2215-1-4
Google Scholar
Pontier SM, Muller WJ: Integrins in mammary-stem-cell biology and breast-cancer progression – a role in cancer stem cells? J Cell Sci 2009, 122: 207-214.
Google Scholar
Poppema S, Lai R, Visser L, Yan XJ: CD45 (leucocyte common antigen) expression in T and B lymphocyte subsets. Leuk Lymphoma 1996, 20: 217-222.
Google Scholar
Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 2001, 414: 105-111.
Google Scholar
Ricci-Vitani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445: 111-115.
Google Scholar
Riethdorf S, Reimers N, Assmann V, Kornfeld J-W, Terracciano L, Sauter G, Pantel K: High incidence of EMMPRIN expression in human tumors. Int J Cancer 2006, 119: 1800-1810.
Google Scholar
Salcido CD, Larochelle A, Taylor BJ, Dunbar CE, Varticovski L: Molecular characterization of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Brit J Cancer 2010, 102: 1636-1644.
Google Scholar
Sangiorgi E, Capecchi MR: Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet 2008, 40: 915-920.
Google Scholar
Schäfer R, Schnaidt M, Klaffschenkel RA, Siegel G, Schüle M, Rädlein MA, Hermanutz-Klein U, Ayturan M, Buadze M, Gassner C, Danielyan L, Kluba T, Northoff H, Flegel WA: Expression of blood group genes by mesenchymal stem cells. Brit J Haematol 2011, 153: 520-528.
Google Scholar
Schindlbeck C, Jeschke U, Schulze S, Karsten U, Janni W, Rack B, Sommer H, Friese K: Characterisation of disseminated tumor cells in the bone marrow of breast cancer patients by the Thomsen-Friedenreich tumor antigen. Histochem Cell Biol 2005, 123: 631-637.
Google Scholar
Schlepper-Schäfer J, Springer GF: Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes. Biochim Biophys Acta 1989, 1013: 266-272.
Google Scholar
Shigeoka H, Karsten U, Okuno K, Yasutomi M: Inhibition of liver metastases from neuraminidase-treated Colon 26 cells by an anti-Thomsen-Friedenreich-specific monoclonal antibody. Tumor Biol 1999, 20: 139-146.
Google Scholar
Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Dien M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RAR, Lao K, Clarke MF: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009, 138: 592-603.
Google Scholar
Singh R, Campbell BJ, Yu L-G, Fernig DG, Milton JD, Goodlad RA, FitzGerald AJ, Rhodes JM: Cell surface-expressed Thomsen-Friedenreich antigen in colon cancer is predominantly carried on high molecular weight splice variants of CD44. Glycobiology 2001, 11: 587-592.
Google Scholar
Slawson C, Hart GW: O-GlcNAc signaling: implications for cancer cell biology. Nat Rev Cancer 2011, 11: 678-684.
Google Scholar
Solter D, Knowles BB: Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 1978, 75: 5565-5569.
Google Scholar
Son MJ, Woolard K, Nam D-H, Lee J, Fine HA: SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 2009, 4: 440-452.
Google Scholar
Springer GF: T and Tn, general carcinoma autoantigens. Science 1984, 224: 1198-1206.
Google Scholar
Springer GF: Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 1997, 75: 594-602.
Google Scholar
Springer GF, Desai PR, Banatwala I: Blood group MN antigens and precursors in normal and malignant human breast glandular tissue. J Natl Cancer Inst 1975, 54: 335-339.
Google Scholar
Springer GF, Desai PR, Tegtmeyer H, Carlstedt SC, Scanlon EF: T/Tn antigen vaccine is effective and safe in preventing recurrence of advanced human breast carcinoma. Cancer Biotherapy 1994, 9: 7-15.
Google Scholar
Srour EF, Brandt JE, Briddell RA, Leemhuis T, van Besien K, Hoffman R: Human CD34+ HLA-DR- bone marrow cells contain progenitor cells capable of self-renewal, multilineage differentiation, and long-term in vitro hematopoiesis. Blood Cells 1991, 17: 287-295.
Google Scholar
Taddei I, Deugnier M-A, Faraldo MM, Petit V, Bouvard D, Medina D, Fässler R, Thiery JP, Glikhova MA: β1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature Cell Biol 2008, 10: 716-722.
Google Scholar
Takaishi S, Okumura T, Tu S, Wang SSW, Shibata W, Vigneshwaran R, Gordon SAK, Shimada Y, Wang TC: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009, 27: 1006-1020.
Google Scholar
Tang C, Lee AS, Volkmer J-P, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR, Behr B, Wu JC, Weissman IL, Drukker M: An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nature Biotechnol 2011, 29: 829-834.
Google Scholar
Tardio JC: CD34-reactive tumors of the skin. An updated review of an ever-growing list of lesions. J Cutan Pathol 2009, 36: 1079-1092.
Google Scholar
Watt SM, Chan JY-H: CD164 – a novel sialomucin on CD34+ cells. Leuk Lymphoma 2000, 37: 1-25.
Google Scholar
Wearne KA, Winter HC, Goldstein IJ: Temporal changes in the carbohydrates expressed on BG01 human embryonic stem cells during differentiation as embryoid bodies. Glycoconj J 2008, 25: 121-136.
Google Scholar
Wenk J, Andrews PW, Casper J, Hata J-I, Pera MF, von Keitz A, Damjanov I, Fenderson BA: Glycolipids of germ cell tumors: extended globo-series glycolipids are a hallmark of human embryonal carcinoma cells. Int J Cancer 1994, 58: 108-115.
Google Scholar
Yanagisawa M, Yoshimura S, Yu RK: Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells. ASN NEURO 2011., 3: art:e00054 10.1042/AN20110006
Google Scholar
Yi B, Zhang M, Schwartz-Albiez R, Cao Y: Mechanisms of the apoptosis induced by CD176 antibody in human leukemic cells. Int J Oncol 2011, 38: 1565-1573.
Google Scholar
Yu L-G, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, Gerasimenko OV, Hilkens J, Hirabayashi J, Kasai K, Rhodes JM: Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 2007, 282: 773-781.
Google Scholar
Zebda N, Bailly M, Brown S, Doré JF, Berthier-Vergnes O: Expression of PNA-binding sites on specific glycoproteins by human melanoma cells is associated with a high metastatic potential. J Cell Biochem 1994, 54: 161-173.
Google Scholar
Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO, Livingston PO: Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int J Cancer 1997, 73: 50-56.
Google Scholar
Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008, 68: 4311-4320.
Google Scholar
Zöller M: CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 2011, 11: 254-267.
Google Scholar