Open Access

Exercise volume and aerobic fitness in young adults: the Midwest Exercise Trial-2


Received: 17 April 2015

Accepted: 15 February 2016

Published: 25 February 2016


To examine the effect of exercise volume at a fixed intensity on changes in aerobic fitness. Ninety-two overweight/obese individuals (BMI 25–40 kg m2), age 18–30 years, 50 % women, completed a 10 mo, 5 d wk−1 supervised exercise intervention at 2 levels of exercise energy expenditure (400 or 600 kcal session−1) at 70–80 % heart rate (HR) max. Exercise consisted primarily of walking/jogging on motor-driven treadmills. The duration and intensity of all exercise sessions were verified by a downloadable HR monitor set to collect HR in 1-min epochs. All participants were instructed to continue their typical patterns of non-exercise physical activity and dietary intake over the duration of the 10 mo intervention. Maximal aerobic capacity (indirect calorimetry) was assessed on a motor-driven treadmill using a modified Balke protocol at baseline, mid-point (5 mo), and following completion of the 10 mo intervention. VO2 max (L min−1) increased significantly in both the 400 (11.3 %) and 600 kcal session−1 groups (14 %) compared to control (−2.0 %; p < 0.001); however, the differences between exercise groups were not significant. Similar results were noted for change in relative VO2 max (mL kg−1 min−1); however, the magnitude of change was greater than for absolute VO2 max (L min−1) (400 group = 18.3 %; 600 group = 20.2 %) due to loss of body weight over the 10-mo intervention in both exercise groups. Our results indicate that exercise volume was not associated with change in aerobic fitness in a sample of previously sedentary, overweight and obese young adults.


Cardiovascular fitness Intensity Supervised exercise Overweight


Low aerobic fitness is associated with increased risk for all-cause and cardiovascular disease mortality (Berry et al. 2011; Gander et al. 2011; Shuval et al. 2012) as well as the risk for several chronic conditions including diabetes (Wei et al. 1999; Goodrich et al. 2012; Farrell et al. 2010), hypertension (Lee et al. 2012; Fogelhom 2010), cancer (Byun et al. 2011; Peel et al. 2009; Farrell et al. 2010), and dementia (Liu et al. 2012; Ahlskog et al. 2011). Higher levels of aerobic fitness confer health benefits irrespective of body weight, which may be potentially important since 69 % of the US population is currently overweight or obese (Ogden et al. 2014). For example, aerobic fitness has been associated with reduced mortality risk (Sui et al. 2007; Faselis et al. 2012; McAuley et al. 2010, 2012) and reduced risk for development of hypertension, metabolic syndrome and hypercholesterolemia (Lee et al. 2012) independent of obesity. Therefore, the effect of exercise prescription on changes in aerobic fitness in overweight and obese individuals represents an important clinical research question.

It is well established that when exercise volume is controlled, higher/vigorous intensity exercise [64–90 % VO2 max; 77–95 % heart rate (HR) max] (Garber et al. 2011) is superior to lower/moderate intensity exercise (46–63 % VO2 max; 64–76 % HR max) (Garber et al. 2011) for improving aerobic fitness (Swain 2005; Gormley et al. 2008; Helgerud et al. 2007; O’Donovan et al. 2005). However, when exercise intensity is controlled, the effect of exercise volume [prescribed as frequency and exercise energy expenditure (EEEx) or exercise time] on aerobic fitness is unclear. In a 2001 review on the total volume of physical activity and health and fitness Oja et al. (2001) concluded: “fairly strong evidence indicates a crude dose response between the total volume of weekly physical activity and cardiorespiratory fitness …”; however, it was noted that “None of the reviewed nonrandomized and randomized exercise trials have been designed to analyze specifically the dose response of the total exercise volume and health and fitness outcomes”. The results from the limited number of more recent randomized trials are mixed, with reports supporting (Church et al. 2007; Duscha et al. 2005; Dalleck et al. 2009) or failing to support (Duncan et al. 2005; Asikainen et al. 2002; Hautala et al. 2003; Rosenkilde et al. 2012) an association between exercise volume and change in aerobic fitness. Differences between study design, such as intervention length, method of prescribing exercise volume, level of exercise supervision, and age, gender, and baseline aerobic fitness of participants offer potential explanation for the discrepant results.

Data from the Midwest Exercise Trial-2 (MET-2) afforded an opportunity to examine the effect of exercise volume at a fixed intensity on changes in aerobic fitness in a sample of previously sedentary, overweight/obese young adults. The fact that MET-2 was a tightly controlled efficacy trial permitted us to examine a dose–response of exercise volume on aerobic fitness independent of intensity and frequency; thus providing some clarity on the discrepancies that exist in the literature regarding the associations between exercise volume and aerobic fitness. These results have potential public health policy utility as they will help identify the most appropriate exercise volume to achieve the greatest fitness gains, which is important as cardiovascular fitness is significantly associated with mortality risk (McAuley et al. 2010, 2012). The primary aims of MET-2 were to evaluate the role of aerobic exercise without energy restriction on weight and body composition; however, several secondary outcomes, including changes in aerobic fitness, were included a priori in the original study design.


A detailed description of the design and methods for MET-2 (Donnelly et al. 2012), results for the primary aim (Donnelly et al. 2013), and additional secondary aims have been published previously (Willis et al. 2014; Washburn et al. 2015). Briefly, MET-2 randomized overweight or obese individuals (BMI 25–40 kg m2) aged 18–30 years to a 10 mo, 5 d wk−1 supervised exercise intervention at 2 levels of EEEx (400 or 600 kcal session−1) or non-exercise control. This trial was registered at (NCT01186523) with primary outcome data collection occurring from July 2005 through July 2011.


A total of 2338 individuals completed the on-line initial eligibility questionnaire from which 141 participants were randomized to one of the 3 study groups. Potential participants were excluded for the following reasons: A history of chronic disease (i.e. diabetes, heart disease, etc.), elevated blood pressure (>140/90 mmHg), lipids (cholesterol > 6.72 mmol L−1; triglycerides > 5.65 mmol L−1), or fasting glucose (>7.8 mmol L−1), use of tobacco products, taking medications that would affect physical performance (i.e., beta blockers, or metabolism (i.e. thyroid, steroids), inability to perform laboratory tests or participate in moderate-to-vigorous intensity exercise, and planned physical activity >500 kcal wk−1 as assessed by recall (Taylor et al. 1978). Participants provided written informed consent prior to engaging in any aspect of the trial and were compensated for participation. Approval for this study was obtained from the Human Subjects Committee at the University of Kansas-Lawrence and all research conformed to guidelines laid down in the Declaration of Helsinki.

Randomization and blinding

Participants were stratified by gender and randomized by the study statistician (~80 % exercise; ~20 % control). All participants were instructed to continue their typical patterns of non-exercise physical activity and dietary intake over the duration of the 10 mo intervention. The blinding of participants to group assignment was not possible due to the nature of the intervention. However, both investigators and research staff were blinded at the level of outcome assessments, data entry and data analysis.

Exercise training

Exercise, consisting primarily of walking/jogging on motor-driven treadmills, was supervised by trained research staff and conducted in a dedicated exercise facility in the Energy Balance Laboratory at the University of Kansas-Lawrence. To provide variety and decrease the potential for overuse injuries, alternate activities including stationary biking, walking/jogging outside, and the use of elliptical trainers was permitted for 20 % of the total exercise sessions (i.e., 1 session wk−1). The exercise protocol was designed to progress in intensity and amount from baseline to the end of month 4, both to provide time to adapt to exercise and prevent injuries.

The duration of exercise required to elicit either 400 or 600 kcal session−1 for each participant was determined as follows: At the baseline assessment, treadmill speed/grade was set at 3 mph/0 % grade and was adjusted by increments of 0.5 mph/1 % grade until the participant reached 70 % HR max (±4 beats min−1). Maximal HR was the highest HR rate achieved during the assessment of maximal aerobic capacity (described below). EEEx was then assessed over a 15 min interval (1-min epochs) using a ParvoMedics TrueOne2400 indirect calorimetry system (ParvoMedics Inc., Sandy, UT). The average EEEx (kcal min−1) over the 15 min interval was calculated from measured oxygen consumption and carbon dioxide production using the Weir equation (1949). This value was used to provide the goal for the duration of exercise sessions for the first month of the intervention. For example: prescribed EEEx during month 1 = 150 kcal session−1, EEEx = 9.2 kcal min−1, exercise duration = 150 kcal session−1 divided by 9.2 kcal min−1 = 16 min session−1. Similar procedures to determine exercise duration were conducted at the end of each month over the course of the 10 mo intervention to adjust for potential effects of changes in both body weight and aerobic fitness on EEEx. The duration and intensity of all exercise sessions were verified by a downloadable HR monitor (RS 400; Polar Electro Inc., Woodbury, NY) set to collect HR in 1-min epochs. All exercise sessions and assessments of EEEx were preceded by a brief warm up on the treadmill (~2 min, 3–4 mph, 0 % grade). Treadmill speed and grade were subsequently increased to achieve the prescribed target HR. Additionally, the level of perceived exertion (Borg 1982), treadmill speed and grade, and HR were recorded by the research assistant at 10 min intervals during each exercise session. This procedure provided interaction between study staff and participants and helped to maintain compliance, as well as providing a detailed description of each exercise session. Compliance to the exercise protocol, an essential element of an efficacy study, was defined as successfully completing >90 % of scheduled exercise sessions defined as maintaining the target exercise HR ± 4 beats min−1 for the prescribed duration of the exercise session. Participants who were non-compliant during any 3 mo interval (months 0–3, 3–6, 6–9) or during the final month (month 10) were dismissed from the study.

Control group

Participants assigned to the non-exercise control group were instructed to continue their typical patterns for physical activity and dietary intake over the duration of the 10 mo study. With the exception of assessment of EEEx, the same outcome assessments were completed with both the exercise and control groups.


Aerobic fitness

Maximal aerobic capacity was assessed on a motor-driven treadmill using a modified Balke protocol (American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription 2009) at baseline, mid-point (5 mo), and following completion of the 10 mo intervention. Expired gases were collected in 20-s epochs (Parvo Medics n2400) and HR was monitored continually using a three lead electrocardiogram (Marquette Electronics, Milwaukee, WI, USA). Tests were considered valid if participants met three of the following four criteria: (1) HR ± 10 beats min−1 of the age-predicted maximal HR (220—age), (2) rating of perceived exertion (RPE) >17 on the 20-point Borg scale (1982), (3) respiratory exchange ratio (RER) >1.10, and (4) oxygen consumption plateau (i.e., no increase in oxygen consumption with increased workload) (Robergs et al. 2010). The maximal HR obtained was used for the determination of HR associated with the prescribed levels of EEEx as previously described.

Other measures

Body weight was measured monthly using a digital scale accurate to ±0.1 kg (PS6600, Befour Inc., Saukville, WI). Energy intake was assessed at baseline, 3, 6, and 10 mo over a 7-d period of ad libitum eating in a University of Kansas cafeteria from digital photographs obtained before and after consumption (Hise et al. 2002; Grunwald et al. 2003). Daily physical activity was assessed by portable accelerometer (Actigraph Model GT1 M Actigraph, LLC, Pensacola, FL) over 7 consecutive days at baseline, 3, 6, and 10 mo.

Statistical analysis

Sample size was determined to provide sufficient power for evaluating aerobic fitness in a design with one between-subjects factor (group: 400, 600 kcal, control) and one within-subjects factor (time: 3 levels, baseline, 5 and 10 mo). Our achieved sample size provided 85 % power to detect a medium difference (Cohen’s f = 0.25) in VO2 max (L min−1) among groups, with an alpha level of 0.05 and an assumed correlation among repeated measures as high as 0.60.

Sample demographics and all outcome measures were summarized by descriptive statistics; means and standard deviations for continuous variables and frequencies and percentages for categorical variables. Mixed modeling for repeated measures was used to estimate group differences in percent change in VO2 max, along with a proper error covariance structure that provided better model fit than other error covariance structures according to Akaike Information Criterion and Bayesian Information Criterion. When group effect or group x time interaction was significant at 0.05 alpha level, pairwise group means were compared using Bonferroni adjustment for inflated Type I error. In secondary mixed modeling analysis, the impacts of age, gender, baseline BMI and VO2 max, and study group and average exercise min session−1 were examined to identify the factors that may contribute to change in aerobic fitness. All analyses were conducted using SAS 9.3 (SAS Institute, Cary, NC).



Ninety-two of the 141 participants randomized at baseline (65.2 %) complied with the study protocol and completed all outcome assessments. The completion rate was 75, 70 and 60 % for the control, 400 and 600 kcal session−1 groups, respectively. Approximately 44 % of those who did not complete the study were dismissed by the investigators for failure to comply with the study protocol. Additional reasons for drop out included lack of interest/time, schedule conflicts, and unwillingness to comply with the dietary assessment protocol. The baseline characteristics of the 92 participants who completed the study are presented in Table 1. The sample had a mean age of ~23 years, BMI ~ 31 kg m2, and was comprised of 50 % women. There were no differences in baseline characteristics between the 3 study groups or between participants who were initially randomized (n = 141) and those who completed the study protocol (n = 92) with the exception of a small but significantly higher level of aerobic fitness (p < 0.04) in participants who completed (33.4 ± 5.9 mL kg−1 min−1) versus those who did not complete the study protocol (31.4 ± 5.5 mL kg−1 min−1). No major adverse events were reported among participants in either the exercise or control groups.
Table 1

Baseline participant characteristics


400 kcal session−1

n = 18 men, 19 women

600 kcal session−1

n = 19 men, 18 women


n = 9 men, 9 women

Age (years)

23.1 ± 3.0

23.0 ± 3.5

22.6 ± 3.0


 Weight (kg)

91.4 ± 20.7

92.0 ± 16.1

87.4 ± 14.6

 BMI (kg m2)

31.2 ± 5.6

30.6 ± 3.9

29.7 ± 3.8

Race, No. (%)


30 (83.3 %)

36 (97.3 %)

14 (77.8 %)


6 (16.7 %)

1 (2.7 %)

1 (5.6 %)

Ethnicity No. (%)

 Not Hispanic or Latino

34 (94.4 %)

37 (100.0 %)

15 (83.3 %)

Exercise test variables

 Maximal HR (beats min−1)

196.8 ± 9.0

197.1 ± 8.7

195.8 ± 6.2

 Respiratory exchange ratio

1.2 ± 0.0

1.2 ± 0.1

1.2 ± 0.1

 Maximal VO2 (L min−1)

3.0 ± 0.7

3.1 ± 0.8

2.8 ± 0.6

 Maximal VO2 (mL kg−1 min−1)

33.4 ± 6.5

34.1 ± 5.7

32.3 ± 5.0


 Energy intake (kcal d−1)

2887 ± 670

2948 ± 687

2836 ± 642

Unless otherwise stated values are mean ± standard deviation

Exercise compliance

Data describing the exercise training intervention, excluding the initial 4 mo ramp-up period, are presented in Table 2. Attendance at exercise sessions was high (≥91 %) and did not differ by exercise group or gender. The average EEEx from month 4–10 for the 400 and 600 kcal session−1 groups was 402 ± 6 and 604 ± 7 kcal session−1, respectively. There were no differences in exercise intensity between exercise groups or between men and women assigned to exercise at 400 or 600 kcal session−1.
Table 2

Exercise intervention: descriptive information


400 kcal session−1

600 kcal session−1


(n = 18)


(n = 19)


(n = 19)


(n = 18)

EEEx (kcal session−1)

401.1 ± 6.4

402.4 ± 7.5

605.2 ± 8.9

602.4 ± 11.7

Exercise time (min session−1)

31 ± 6

48 ± 7

42 ± 8

63 ± 9

Exercise intensity (% HR max)

78 ± 4

80 ± 2

80 ± 1

79 ± 3

Sessions attended

92 %

92 %

91 %

92 %

Values are mean ± standard deviation for months 4–10 of exercise training which excludes the 4 mo ramp-up period

EEEx exercise energy expenditure, HR heart rate

Aerobic fitness

VO2 max (L min−1) increased significantly in both the 400 (11.3 %) and 600 kcal session−1 groups (14 %) compared to control (−2.0 %; p < 0.001); however, the differences between exercise groups were not significant (Table 3; Fig. 1). Similar results were noted for change in relative VO2 max (mL kg−1 min−1); however, the magnitude of change was greater than for absolute VO2 max (L min−1) (400 group = 18.3 %; 600 group = 20.2 %) due to loss of body weight over the 10-mo intervention in both exercise groups.
Table 3

Change in cardiovascular fitness over the 10 mo intervention by group and gender



400 kcal session−1

600 kcal session−1


Total sample

VO2 max (L min−1)*


3.0 ± 0.7

3.1 ± 0.8

2.8 ± 0.6


3.3 ± 0.8

3.4 ± 1.0

2.7 ± 0.6


3.4 ± 0.8

3.5 ± 0.9

2.7 ± 0.5

VO2 max (ml kg−1 min−1)*


33.4 ± 6.6

34.2 ± 5.7

32.3 ± 5.0


37.8 ± 7.1

38.0 ± 9.2

31.0 ± 5.8


39.3 ± 7.9

40.9 ± 7.2

31.4 ± 5.3


VO2 max (L min−1)*


3.6 ± 0.5

3.7 ± 0.7

3.2 ± 0.4


3.9 ± 0.5

4.1 ± 0.8

3.2 ± 0.4


4.0 ± 0.5

4.2 ± 0.7

3.2 ± 0.4

VO2 max (ml kg−1 min−1)*


37.1 ± 6.5

36.4 ± 6.4

34.2 ± 5.8


41.4 ± 7.6

41.6 ± 7.3

33.6 ± 6.7


42.9 ± 8.0

44.2 ± 7.6

33.0 ± 6.4


VO2 max (L min−1)*


2.5 ± 0.4

2.5 ± 0.4

2.4 ± 0.2


2.7 ± 0.4

2.7 ± 0.8

2.3 ± 0.3


2.7 ± 0.5

2.8 ± 0.4

2.3 ± 0.3

VO2 max (ml kg−1 min−1)*


29.6 ± 4.2

31.8 ± 3.7

30.2 ± 3.3


34.3 ± 4.6

34.3 ± 9.7

28.5 ± 3.7


37.7 ± 6.2

37.3 ± 4.7

29.8 ± 3.7

Values are mean ± standard deviation

* Change in both the 400 and 600 kcal session−1 groups were significantly greater than control (p < 0.05). The differences for change between the 400 and 600 kcal session−1 groups were not statistically significant

Fig. 1

Percent change in VO2 max in the complete sample (top), men (center) and women (bottom)

The pattern of change in VO2 max (L min−1) shown in the total sample was also observed in both men and women (Table 3; Fig. 1). VO2 max increased significantly in both the 400 kcal session−1 (men = 11.1 %, p = 0.001; women = 11.4 %, p = 0.008) and 600 kcal session−1 groups (men = 16.4 %, p < 0.001; women = 11.4 %, p = 0.012) compared to control (men = −4.0 %, NS; women = −1.5 %, NS) with no significant differences for change in VO2 max between exercise groups (men p = 0.297; women p = 1.0). Similar results were noted for change in relative VO2 max (mL kg−1 min−1) by sex. However, the magnitude of change was greater for relative compared with absolute VO2 max (L min−1) due reductions in body weight in both men (400 = −3.8 kg, 600 = −5.9 kg) and women (400 = −4.1 kg, 600 = −4.4 kg). VO2 max (mL kg−1 min−1) increased 15.5 and 22.6 % in men in the 400 and 600 kcal session−1 groups, respectively and 21 and 17.7 % in women in the 400 and 600 kcal session−1 groups, respectively.

Results from secondary mixed modeling analysis indicated that when age, sex, baseline BMI, and baseline VO2 max are included in the model, neither exercise group or the mean number of exercise minutes per session were significant predictors of the change in aerobic fitness (Table 4). Mixed modeling also indicated that the change in VO2 max was greater in men than in women, and greater in those with lower VO2 max at baseline.
Table 4

Factors associated with change in VO2 max (L min−1) including either exercise group (A) or exercise min session−1 (B) as independent variables





A: Exercise Group (400/600 kcal session−1)














 Women (reference)

Baseline BMI




Baseline VO2 max (L min−1)




Exercise group

 400 kcal session−1

 600 kcal session−1 (reference)




B: Exercise (min session−1)














 Women (reference)

Baseline BMI




Baseline VO2 max (L min−1)




Mean exercise (min session−1)




Other outcomes

Weight change over the 10 mo intervention in both the 400 (−4.3 %) and 600 kcal session−1 groups (−5.7 %) was significantly different than control; however, weight change between exercise groups did not differ significantly. There were no significant differences for weight change between men and women in either the 400 kcal session−1 (men = −3.7 %; women = −4.9 %) or 600 kcal session−1 groups (men = −5.9 %; women = −5.4 %) Energy intake (kcal d−1) was not different between exercise groups over the 10 mo intervention (see Washburn et al. 2015). Daily physical activity (including exercise and non-exercise activity) in both exercise groups was significantly higher than control, and did not change over the 10 mo intervention in either exercise group or in controls (for a detailed analysis, see Willis et al. (2014).


The association between aerobic fitness and health parameters is well established (Goodrich et al. 2012; Farrell et al. 2010; Fogelhom 2010; Lee et al. 2012; DeFina et al. 2015). However, there are limited data regarding the association between exercise dose (volume and intensity) and changes in aerobic fitness in overweight and obese young adults, a group for which exercise may be an attractive option to reduce chronic disease risk factors including body weight. The results of this 10-mo randomized trial suggest that increased volume of vigorous intensity exercise was not associated with increased aerobic fitness.

Our results are in agreement with previous reports which have shown no effect of exercise volume at fixed intensities, ranging from 45 to 80 % VO2 max, on aerobic fitness (Duncan et al. 2005; Asikainen et al. 2002; Hautala et al. 2003; Rosenkilde et al. 2012). Similar to the present study, Rosenkilde and colleagues utilized aerobic exercise in a study of overweight young men (mean age and BMI = 29 y and 28 kg m−2) comparing 300 and 600 kcal d−1 (Rosenkilde et al. 2012). However, their study only lasted 13 wk in duration with 10 wk of intervention. Although their exercise prescription, study design, and rates of adherence (99 and 96 %) were similar to the present study, supervision of exercise during their intervention was unclear. Participants were asked to exercise at ≥70 % VO2 max 3 d wk−1 and were permitted to self-select their intensity the other days, leading to average estimated intensities of ~66–67 % VO2 max derived from heart rate data. Participants exercised an average of 6 d wk−1 for 29.9 and 55.2 min, with EEEx averaging 335 and 653 kcal d−1, respectively. Therefore, estimated weekly EEEx was equal to 2010 and 3918 kcal wk−1 and weekly exercise time was 179.4 and 331 min wk−1. Reductions in body weight were modest (−4 and −3 % in the 300/600 kcal groups, respectively) and not significantly different between groups. Changes in relative VO2max were also not different between groups (18 and 17 % increases, respectively), thus agreeing with our results that increased exercise volume, when intensity is matched, does not result in greater improvements in VO2 max.

In contrast to the results of the current study, some investigators have concluded that the amount of exercise may be more important than intensity for eliciting increases in aerobic fitness (Church et al. 2007; Duscha et al. 2005; Dalleck et al. 2009). For example, Church et al. (2007) conducted a 6 mo supervised exercise intervention in overweight and obese older women (~57 years) randomly assigned to exercise at 50 % VO2 peak, 3–4 d wk−1 at one of 3 amounts (4, 8, or 12 kcal kg−1 wk−1.) or a non-exercise control. Results showed the exercise energy expenditure and minutes of exercise actually completed were: 4 kcal kg−1 group = 335 kcal wk−1, 72 min wk−1; 8 kcal kg−1 group = 681 kcal wk−1, 136 min wk−1; 12 kcal kg−1 group = 1006 kcal wk−1, 192 min wk−1. A graded dose–response change in aerobic fitness across exercise groups was observed. Compared with the non-exercise control group, VO2 max increased 4.2, 6.0 and 8.2 % in the 4, 8 and 12 kcal kg−1 groups, respectively. Duscha et al. (2005) analyzed data on the change in aerobic fitness from the Studies of Targeted Risk Reduction Intervention Through Defined Exercise (STRRIDE) trial and their results indicated that the increase in VO2 max (L min−1) in the high amount group (15.4 %) was significantly greater than in the low amount group (11.5 %).

Differences in baseline aerobic fitness and exercise volume assigned to the lowest volume group may at least partially explain the discrepant results of studies evaluating the effect of exercise volume at fixed intensities on changes in aerobic fitness. Both the level of baseline aerobic fitness and the volume of prescribed exercise in the lowest volume group are lower in studies which conclude that exercise amount has a significant impact on changes in aerobic fitness. For example, the average baseline VO2 max in studies supporting the importance of exercise volume (Church et al. 2007; Duscha et al. 2005; Dalleck et al. 2009) was 22.2 mL kg−1 min−1 (range 15.3–29.2) compared with 33.2 mL kg−1 min−1 (range 23–43) in studies (including the present study) which found no effect of exercise volume on aerobic fitness (Duncan et al. 2005; Asikainen et al. 2002; Hautala et al. 2003; Rosenkilde et al. 2012). Therefore, increased exercise volume may induce increased aerobic fitness only among individuals with initially low level of aerobic fitness at baseline. Our mixed modeling results, which indicated greater increases in fitness among participants with lower baseline VO2 max, offer partial support for this explanation. In addition, in studies which support the importance of exercise volume in increasing aerobic fitness, the average volume in the lowest volume group was 115 min wk−1 (range 72–149 min wk−1) compared with 198 min wk−1 (range 180–331 min wk−1) in studies which found no effect of exercise volume on aerobic fitness. For example, Church et al. (2007) compared exercise at 50 % VO2 peak across 3 volumes: 72, 136 and 192 min wk−1. The lowest exercise volume (72 min wk−1) is less than the minimal recommendations for increasing aerobic fitness (Garber et al. 2011). Thus, the finding of a dose–response for exercise volume in these studies may be an artifact of comparing a low exercise volume, which would be expected to induce minimal increases in aerobic fitness, with a higher volume of exercise where substantial increases in aerobic fitness are expected. Finally, it is also worth noting that the participants of the studies showing a dose response were considerably older than the studies that have failed to show a response (average = 55.6 vs. 32.3 years). Therefore it is possible that older individuals with lower levels of aerobic fitness compared to their younger peers more favorably responded to distinct changes in volume.

MET-2 was an efficacy study in which exercise dose was tightly controlled and all exercise sessions were completed under supervision. Exercise dose was prescribed by energy expenditure rather than time and the dose was delivered with a high degree of precision (±1 % of target). Previous studies have dosed exercise by energy expenditure (Church et al. 2007; Asikainen et al. 2002; Rosenkilde et al. 2012); however, EEEx was not assessed in these studies, therefore the precise exercise dose was not known. Our results suggest that increased exercise volume, measured as both energy expenditure and time, was not associated with increased aerobic fitness. Only two previous studies on exercise volume and aerobic fitness have included both men and women (Duscha et al. 2005; Duncan et al. 2005); however, data were not presented by sex. The results of MET-2 suggest that increased exercise volume does not increase aerobic fitness in either men or women. The sample for MET-2 was limited to otherwise healthy, sedentary, overweight or obese young adults. Thus, the generalizability of our results, to samples with other demographic characteristics, is unknown. However, individuals with characteristics similar to our study sample represent a sizeable segment of the US population who would likely benefit from exercise as evidenced by current estimates for overweight and obesity among men (~67 %) and women (~56 %) age 20–39 years (Flegal et al. 2012; Ogden et al. 2014).

In conclusion, our results indicate no difference for change in aerobic fitness between exercise at ~80 % HR max over 10 mo at either 2000 or 3000 kcal wk−1. Participants completing the 2000 kcal wk−1 protocol increased VO2 max by 11.3 and ~46 % of the sample lost ≥5 % of baseline body weight (Donnelly et al. 2013). Epidemiologic studies have suggested that each 1-MET increase in aerobic fitness confers an 8 to 19 % reduction in cardiovascular disease and all-cause mortality (Myers et al. 2002; Gulati et al. 2003; Lee et al. 2011). Based on the observed increase in aerobic fitness alone (1.7 METs), participants in the current study may expect a 14–32 % decrease in mortality risk. An exercise prescription of 2000 kcal wk−1 which required exercise (5 d wk−1) of approximately 31 min d−1 for men and 48 min d−1 for women may represent a reasonable recommendation for improving health and reducing mortality risk in overweight and obese young adults.



body mass index


heart rate


oxygen consumption


exercise energy expenditure


Midwest Exercise Trial 2


metabolic equivalent


rating of perceived exertion


respiratory exchange ratio












Authors’ contributions

RAW, JED, and JJH designed the study; JED obtained the funding for the study; JJH oversaw data collection. JL analyzed the data. RAW and MMS wrote the manuscript. All authors read and approved the final manuscript.


This study was supported by the National Institutes of Health Grant DK49181 awarded to Dr. Donnelly. registration number NCT01186523.

Competing interests

The authors declare that they have no competing interests.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

Division of Internal Medicine, Cardiovascular Research Institute, The University of Kansas Medical Center
Department of Kinesiology, Auburn University at Montgomery
University of Kansas
Institute for Measurement, Methodology, Analysis, and Policy, Texas Tech University


  1. Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC (2011) Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc 86(9):876–884View ArticleGoogle Scholar
  2. American College of Sports Medicine (2009) ACSM’s guidelines for exercise testing and prescription, 8th edn. Lippincott, Williams & Wilkins, Philadlephia, PAGoogle Scholar
  3. Asikainen TM, Miilupalo S, Oja P, Rinne M, Pasanen M, Uusi-Rasi K, Vuori I (2002) Randomised, controlled walking trials in postmenopausal women: the minimum dose to improve aerobic fitness? Br J Sports Med 36:189–194View ArticleGoogle Scholar
  4. Berry JD, Willis B, Gupta S, Barlow CE, Lakoski SG, Khera A, Rohatgi A, de Lemos JA, Haskell W, Lloyd-Jones DM (2011) Lifetime risks for cardiovascular diseae mortality by cardiorespiratory fitness levels measured at ages 45, 55, and 65 years in men: the Cooper Center Longitudinal Study. J Am Coll Cardiol 57:1604–1610View ArticleGoogle Scholar
  5. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381View ArticleGoogle Scholar
  6. Byun W, Sui X, Hebert JR, Church TS, Lee IM, Matthews CE, Blair SN (2011) Cardiorespiratory fitness and risk of prostate cancer: findings for the Aerobics Center Longitudinal Study. Cancer Epidemiol 35(1):59–65View ArticleGoogle Scholar
  7. Church MS, Earnest CP, Skinner JS, Blair SN (2007) Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA 297(19):2081–2091View ArticleGoogle Scholar
  8. Dalleck LC, Allen BA, Hanson BA, Borresen EC, Erickson ME, De Lap SL (2009) Dose–response relationship between moderate-intensity exercise duration and coronary heart disease risk factors in postmenopausal women. J Womens Health 18(1):105–113View ArticleGoogle Scholar
  9. DeFina LF, Haskell WL, Willis BL, Barlow CE, Finley CE, Levine BD, Cooper KH (2015) Physical activity versus cardiorespiratory fitness: two (partly) distinct components of cardiovascular health? Prog Cardiovasc Dis 57(4):324–329. doi: View ArticleGoogle Scholar
  10. Donnelly JE, Washburn RA, Smith BK, Sullivan DK, Gibson C, Honas JJ, Mayo MS (2012) A randomized, controlled, supervised, exercise trial in young overweight men and women: the Midwest Exercise Trial II (MET2). Contemp Clin Trials 33(4):804–810View ArticleGoogle Scholar
  11. Donnelly JE, Honas JJ, Smith BK, Mayo MS, Gibson CA, Sullivan DK, Lee J, Herrmann SD, Lambourne K, Washburn RA (2013) Aerobic exercise alone results in clinically significant weight loss for men and women: midwest exercise trial 2. Obesity (Silver Spring) 21(3):E219–E228. doi: View ArticleGoogle Scholar
  12. Duncan GE, Anton SD, Sydeman SJ, Newton RL Jr, Corsica JA, Durning PE, Keterson TU, Martin AD, Limacher MC, Perri GG (2005) Prescribing exercise at varied levels of intensity and frequency. Arch Intern Med 165:2362–2369View ArticleGoogle Scholar
  13. Duscha BD, Slentz CA, Johnson JL, Houmard JA, Bensimhon DR, Knetzger Kj, Kraus WE (2005) Effects of exercise training amount and intensity on peak oxygen consumption in middle-age men and women at risk for cardiovascular disease. Chest 128:2788–2793View ArticleGoogle Scholar
  14. Farrell SW, Fitzgerald SJ, McAuley PA, Barlow CE (2010) Cardiorespiratory fitness, adiposity, and all-cause mortality in women. Med Sci Sports Exerc 42(11):2006–2012View ArticleGoogle Scholar
  15. Faselis C, Doumas M, Panagiotakos D, Kheirbek R, Korshak L, Manolis A, Pittaras A, Tisioufis C, Papademetriou B, Fletcher R, Kokkinos P (2012) Body mass index, exercise capacity, and mortality risk in male veterans with hypertension. Am J Hypertens 25(4):444–450View ArticleGoogle Scholar
  16. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2012. JAMA 307:491–497View ArticleGoogle Scholar
  17. Fogelhom M (2010) Physical activity, fitness and fatness: relations to mortality, morbidity and disease risk factors: a systematic review. Obes Rev 11:202–221View ArticleGoogle Scholar
  18. Gander J, Lee DC, Sui X, Hebert JR, Hooker SP, Blair SN (2011) Self-rated health status and cardiorespiratory fitness as predictors of mortality in men. Br J Sports Med 45(14):1095–1100View ArticleGoogle Scholar
  19. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359View ArticleGoogle Scholar
  20. Goodrich KM, Crowley SK, Lee DC, Sui XS, Hooker SP, Blair SN (2012) Associations of cardiorespiratory fitness and parental history of diabetes with risk of type 2 diabetes. Diabetes Res Clin Pract 95(3):425–431View ArticleGoogle Scholar
  21. Gormley SE, Swain DP, High R, Spina RJ, Dowling EA, Kotipalli US, Gandrakota R (2008) Effect of intensity of aerobic training on VO2 max. Med Sci Sports Exerc 40(7):1343–1366View ArticleGoogle Scholar
  22. Grunwald GK, Sullivan DK, Hise M, Donnelly JE, Jacobsen DJ, Johnson SL, Hill JO (2003) Number of days, number of subjects, and sources of variation in longitudinal intervention or crossover feeding trials with multiple days of measurement. Br J Nutr 90(6):1087–1095View ArticleGoogle Scholar
  23. Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, Al-Hani AJ, Black HR (2003) Exercise capacity and the risk of death in women: the St. James Women Take Heart Project. Circulation 108:1554–1559View ArticleGoogle Scholar
  24. Hautala AJ, Makikallio TH, Kiviniemi A, Laukkanen RT, Nissila S, Huikuri HV, Tulppo MP (2003) Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. Am J Physiol 285:H1747–H1752Google Scholar
  25. Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2 max more than moderate training. Med Sci Sports Exerc 39(4):665–671View ArticleGoogle Scholar
  26. Hise ME, Sullivan DK, Jacobsen DJ, Johnson SL, Donnelly JE (2002) Validation of energy intake measurements determined from observer-recorded food records and recall methods compared with the doubly labeled water method in overweight and obese individuals. Am J Clin Nutr 75(2):263–267Google Scholar
  27. Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, Stanford FC, Kohl HW, Blair SN (2011) Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation 124(23):2483–2490View ArticleGoogle Scholar
  28. Lee DC, Sui X, Church TS, Lavie CJ, Jackson AS, Blair SN (2012) Changes in fitness and fatness on the development of cardiovascular disease risk factors hypertension, metabolic syndrome, and hypercholesterolemia. J Am Coll Cardiol 59(7):665–672View ArticleGoogle Scholar
  29. Liu R, Sui X, Laditka JN, Church TS, Colabianchi N, Hussey J, Blair SN (2012) Cardiorespiratory fitness as a predictor of dementia mortality in men and women. Med Sci Sports Exerc 44(2):253–259View ArticleGoogle Scholar
  30. McAuley PA, Kokkinos PF, Oliverira RB, Emerson BT, Myers JN (2010) Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40–70 years. Mayo Clin Proc 85(2):115–121View ArticleGoogle Scholar
  31. McAuley PA, Smith NS, Emerson BT, Myers JN (2012) The obesity paradox and cardiorespiratory fitness. J Obes 2012:951582View ArticleGoogle Scholar
  32. Myers J, Prakash M, Froelicher Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346:793–801View ArticleGoogle Scholar
  33. O’Donovan G, Owen A, Bird SR, Kearney EM, Nevill AM, Jones DW, Woolf-May K (2005) Changes in cardiorespiratory fitness and coronary heart disease risk factors following 24 wk of moderate-or high-intensity exercise of equal energy cost. J Appl Physiol 98:1619–1625View ArticleGoogle Scholar
  34. Ogden CL, Carroll MD, Flegal KM (2014) Prevalence of obesity in the United States. JAMA 312(2):189–190. doi: View ArticleGoogle Scholar
  35. Oja P (2001) Dose response between total volume of physical activity and health and fitness. Med Sci Sports Exerc 33(6, Suppl):S428–S437View ArticleGoogle Scholar
  36. Peel JB, Sui X, Adams SA, Hebert JR, Hardin JW, Blair SN (2009) A prospective study of cardiovascular fitness and breast cancer mortality. Med Sci Sports Exerc 41(4):742–748View ArticleGoogle Scholar
  37. Robergs RA, Dwyer D, Astorino T (2010) Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med 40(2):95–111. doi: View ArticleGoogle Scholar
  38. Rosenkilde M, Auerbach P, Reichkendler MH, Ploug T, Stallknecht BM, Sjodin A (2012) Body fat loss and compensatory mechanisms in response to different doses of aerobic exercise: a randomized controlled trial in overweight sedentary males. Am J Physiol Regul Integr Comp Physiol 303(6):R571–R579. doi: View ArticleGoogle Scholar
  39. Shuval K, Barlow CE, Chartier KG, Gabriel KP (2012) Cardiorespiratory fitness, alcohol, and mortality in men. The Cooper Center Longitudinal Study. Am J Prev Med 42(5):460–467View ArticleGoogle Scholar
  40. Sui X, Lamonte MJ, Laditka JN, Hardin JW, Chase N, Hooker SP, Blair SN (2007) Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA 298(21):2507–2516View ArticleGoogle Scholar
  41. Swain DP (2005) Moderate or vigorous intensity exercise: which is better for improving aerobic fitness? Prev Cardiol 8(1):55–58View ArticleGoogle Scholar
  42. Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G (1978) A questionnaire for the assessment of leisure time physical activities. J Chronic Dis 31:741–755View ArticleGoogle Scholar
  43. Washburn RA, Honas JJ, Ptomey LT, Mayo MS, Lee J, Sullivan DK, Lambourne K, Willis EA, Donnelly JE (2015) Energy and Macronutrient Intake in the Midwest Exercise Trial-2 (MET-2). Med Sci Sports Exerc. doi: Google Scholar
  44. Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN (1999) The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med 130(2):89–96View ArticleGoogle Scholar
  45. Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9View ArticleGoogle Scholar
  46. Willis EA, Herrmann SD, Honas JJ, Lee J, Donnelly JE, Washburn RA (2014) Nonexercise energy expenditure and physical activity in the midwest exercise trial 2. Med Sci Sports Exerc 46(12):2286–2294. doi: View ArticleGoogle Scholar


© Schubert et al. 2016