Barker DJ: In utero programming of chronic disease. Clin Sci (Lond) 1998, 95(2):115-128. 10.1042/CS19980019
Google Scholar
Beugnet A, Tee AR, Taylor PM, Proud CG: Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 2003, 372(Pt 2):555-566.
Google Scholar
Blair H, Der Linden DS, Jenkinson C, Morris S, Mackenzie D, Peterson S, Firth E, Kenyon P: Do ewe size and nutrition during pregnancy affect foetus and foetal organ weight in twins? Livest Sci 2011, 142(1):99-107.
Google Scholar
Bolster DR, Crozier SJ, Kimball SR, Jefferson LS: AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002, 277(27):23977-23980. 10.1074/jbc.C200171200
Google Scholar
Brosnan JT, Brosnan ME: The sulfur-containing amino acids: an overview. J Nutr 2006, 136(6):1636S-1640S.
Google Scholar
Brown LD, Rozance PJ, Barry JS, Friedman JE, Hay WW Jr: Insulin is required for amino acid stimulation of dual pathways for translational control in skeletal muscle in the late-gestation ovine fetus. Am J Physiol Endocrinol Metab 2009, 296(1):E56-E63.
Google Scholar
Chiu M, Tardito S, Barilli A, Bianchi MG, Dall’Asta V, Bussolati O: Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino acids 2012, 43: 1-7. 10.1007/s00726-012-1281-3
Google Scholar
Christie GR, Hajduch E, Hundal HS, Proud CG, Taylor PM: Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner. J Biol Chem 2002, 277(12):9952-9957. 10.1074/jbc.M107694200
Google Scholar
Csapó J, Albert C, Lóki K, Csapó-Kiss Z: Separation and determination of the amino acids by ion exchange column chromatography applying postcolumn derivatization. Acta Universitatis Sapientiae Alimentaria 2008, 1: 5-29.
Google Scholar
De Boo HA, Van Zijl PL, Smith DC, Kulik W, Lafeber HN, Harding JE: Arginine and mixed amino acids increase protein accretion in the growth-restricted and normal ovine fetus by different mechanisms. Pediatr Res 2005, 58(2):270-277. 10.1203/01.PDR.0000169977.48609.55
Google Scholar
Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW: Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci 2010, 88(13 Suppl):E51-E60.
Google Scholar
Du M, Zhu MJ, Means WJ, Hess BW, Ford SP: Nutrient restriction differentially modulates the mammalian target of rapamycin signaling and the ubiquitin-proteasome system in skeletal muscle of cows and their fetuses. J Anim Sci 2005, 83(1):117-123.
Google Scholar
Escobar J, Frank JW, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA: Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am J Physiol Endocrinol Metab 2006, 290(4):E612-E621.
Google Scholar
Fahey A, Brameld J, Parr T, Buttery P: The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb. J Anim Sci 2005, 83(11):2564-2571.
Google Scholar
Firth EC, Rogers CW, Vickers M, Kenyon PR, Jenkinson CM, Blair HT, Johnson PL, Mackenzie DD, Peterson SW, Morris ST: The bone-muscle ratio of fetal lambs is affected more by maternal nutrition during pregnancy than by maternal size. Am J Physiol Regul Integr Comp Physiol 2008, 294(6):R1890-R1894. 10.1152/ajpregu.00805.2007
Google Scholar
Freetly HC, Leymaster KA: Relationship between litter birth weight and litter size in six breeds of sheep. J Anim Sci 2004, 82(2):612-618.
Google Scholar
Gootwine E, Spencer TE, Bazer FW: Litter-size-dependent intrauterine growth restriction in sheep. Animal 2007, 1: 547-564. 10.1017/S1751731107691897
Google Scholar
Gootwine E, Zenu A, Bor A, Yossafi S, Rosov A, Pollott G: Genetic and economic analysis of introgression the B allele of the FecB (Booroola) gene into the Awassi and Assaf dairy breeds. Livest Prod Sci 2001, 71(1):49-58. 10.1016/S0301-6226(01)00240-8
Google Scholar
Greenwood PL, Hunt AS, Hermanson JW, Bell AW: Effects of birth weight and postnatal nutrition on neonatal sheep: I: body growth and composition, and some aspects of energetic efficiency. J Anim Sci 1998, 76(9):2354-2367.
Google Scholar
Hara K, Yonezawa K, Weng Q-P, Kozlowski MT, Belham C, Avruch J: Amino acid sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998, 273(23):14484-14494. 10.1074/jbc.273.23.14484
Google Scholar
Hoshi T, Heinemann SH: Regulation of cell function by methionine oxidation and reduction. J Physiol 2001, 531(1):1-11. 10.1111/j.1469-7793.2001.0001j.x
Google Scholar
Hundal HS, Taylor PM: Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 2009, 296(4):E603-E613. 10.1152/ajpendo.91002.2008
Google Scholar
Jefferies B: Body condition scoring and its use in management. Tasmanian J Agric 1961, 32: 19-21.
Google Scholar
Kenyon P, Blair H, Jenkinson C, Morris S, Mackenzie D, Peterson S, Firth E, Johnston P: The effect of ewe size and nutritional regimen beginning in early pregnancy on ewe and lamb performance to weaning. New Zeal J Agr Res 2009, 52(2):203-212. 10.1080/00288230909510505
Google Scholar
Kenyon P, van der Linden D, Jenkinson C, Morris S, Mackenzie D, Peterson S, Firth E, Blair H: The effect of ewe size and nutritional regimen beginning in early pregnancy on development of singleton foetuses in late pregnancy. Livest Sci 2011, 142(1):92-98.
Google Scholar
Kozak M: Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 1983, 47(1):1-45.
Google Scholar
Kwon H, Ford SP, Bazer FW, Spencer TE, Nathanielsz PW, Nijland MJ, Hess BW, Wu G: Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol Reprod 2004, 71(3):901-908. 10.1095/biolreprod.104.029645
Google Scholar
Liechty EA, Boyle DW, Moorehead H, Auble L, Denne SC: Aromatic amino acids are utilized and protein synthesis is stimulated during amino acid infusion in the ovine fetus. J Nutr 1999, 129(6):1161-1166.
Google Scholar
Liechty EA, Lemons JA: Changes in ovine fetal hindlimb amino acid metabolism during maternal fasting. Am J Physiol-Endoc M 1984, 246(5):E430-E435.
Google Scholar
Liechty EA, Polak MJ, Lemons JA: Branched-chain amino acid carbon and nitrogen arteriovenous concentration differences across the ovine fetal hindlimb. Pediatr Res 1987, 21(1):44-48. 10.1203/00006450-198701000-00011
Google Scholar
McCoard S, McNabb W, Peterson S, McCutcheon S, Harris P: Muscle growth, cell number, type and morphometry in single and twin fetal lambs during mid to late gestation. Reprod Fertil Dev 2000, 12: 319-327. 10.1071/RD99059
Google Scholar
McCoard SA, McNabb WC, Birtles MJ, Harris PM, McCutcheon SN, Peterson SW: Immunohistochemical detection of myogenic cells in muscles of fetal and neonatal lambs. Cells Tissues Organs 2001, 169(1):21-33. 10.1159/000047857
Google Scholar
Millward D, Nnanyelugo D, James W, Garlick P: Protein metabolism in skeletal muscle: the effect of feeding and fasting on muscle RNA, free amino acids and plasma insulin concentrations. Brit J Nutr 1974, 32(01):127-142. 10.1079/BJN19740063
Google Scholar
Millward DJ: Protein turnover in skeletal muscle: 2: the effect of starvation and a protein-free diet on the synthesis and catabolism of skeletal muscle proteins in comparison to liver. Clin Sci 1970, 39: 591-603.
Google Scholar
Morel P, Morris S, Kenyon P: Effects of birth weight on survival in twin born lambs. Proc NZ Soc Anim Prod 2009, 69: 75-79.
Google Scholar
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO: Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009, 136(3):521-534. 10.1016/j.cell.2008.11.044
Google Scholar
Nobukuni T, Joaquin M, Roccio M, Dann S, Kim S, Gulati P, Byfield M, Backer J, Natt F, Bos J: Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Sci STKE 2005, 102(40):14238.
Google Scholar
Pacheco D, Treloar BP, Kenyon PR, Blair HT, McCoard S: Brief Communication: Intracellular concentrations of free amino acids are reduced in skeletal muscle of late gestation twin compared to single fetuses. Proc NZ Soc Anim Prod 2010, 70: 199-201.
Google Scholar
Proud CG: mTOR-mediated regulation of translation factors by amino acids. Biochem Bioph Res Co 2004, 313(2):429-436. 10.1016/j.bbrc.2003.07.015
Google Scholar
Quigley SP, Kleemann DO, Walker SK, Speck PA, Rudiger SR, Nattrass GS, DeBlasio MJ, Owens JA: Effect of variable long-term maternal feed allowance on the development of the ovine placenta and fetus. Placenta 2008, 29(6):539-548. 10.1016/j.placenta.2008.02.014
Google Scholar
Rattray P: Feed requirements for maintenance, gain and production. In ‘Sheep production’: feeding, growth and health. II edition. Edited by: McCutcheon SN, McDonald MF, Wickham GA. Wellington, New Zealand: Ray Richards Publishers; 1986:75-109.
Google Scholar
Rattray PV, Garrett WN, East NE, Hinman N: Growth, development and composition of the ovine conceptus and mammary gland during pregnancy. J Anim Sci 1974, 38(3):613-626.
Google Scholar
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM: The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320(5882):1496-1501. 10.1126/science.1157535
Google Scholar
SAS: Statistical analysis system. Cary, NC, USA: SAS Institute Inc.; 2006.
Google Scholar
Schiaffino S, Mammucari C: Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle 2011, 1(1):1-14. 10.1186/2044-5040-1-1
Google Scholar
Sciascia Q, Pacheco D, Bracegirdle J, Berry C, Kenyon P, Blair H, Senna Salerno M, Nicholas G, McCoard S: Brief communication: effects of restricted fetal nutrition in utero on mTOR signalling in ovine skeletal muscle. Proc NZ Soc Anim Prod 2010, 70: 180-182.
Google Scholar
Suryawan A, Jeyapalan AS, Orellana RA, Wilson FA, Nguyen HV, Davis TA: Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. Am J Physiol Endocrinol Metab 2008, 295(4):E868-E875. 10.1152/ajpendo.90314.2008
Google Scholar
Suryawan A, Orellana RA, Fiorotto ML, Davis TA: Triennial growth symposium: leucine acts as a nutrient signal to stimulate protein synthesis in neonatal pigs. J Anim Sci 2011, 89(7):2004-2016. 10.2527/jas.2010-3400
Google Scholar
Tan B, Yin Y, Liu Z, Li X, Xu H, Kong X, Huang R, Tang W, Shinzato I, Smith S, Wu G: Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 2009, 37(1):169-175. 10.1007/s00726-008-0148-0
Google Scholar
van der Linden DS, Sciascia Q, Sales F, McCoard SA: Placental nutrient transport is affected by pregnancy rank in sheep. J Anim Sci 2012. doi:10.2527/jas.2012-5629
Google Scholar
Waterland RA: Assessing the effects of high methionine intake on DNA methylation. J Nutr 2006, 136(6):1706S-1710S.
Google Scholar
Wilkening RB, Boyle DW, Teng C, Meschia G, Battaglia FC: Amino acid uptake by the fetal ovine hindlimb under normal and euglycemic hyperinsulinemic states. Am J Physiol-Endoc M 1994, 266(1):E72-E78.
Google Scholar
Williamson D, Gallagher P, Harber M, Hollon C, Trappe S: Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 2003, 547(3):977-987. 10.1113/jphysiol.2002.036673
Google Scholar
Wu G: Amino acids: metabolism, functions, and nutrition. Amino Acids 2009, 37(1):1-17. 10.1007/s00726-009-0269-0
Google Scholar
Wu G, Bazer F, Davis T, Kim S, Li P, Marc Rhoads J, Carey Satterfield M, Smith S, Spencer T, Yin Y: Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37(1):153-168. 10.1007/s00726-008-0210-y
Google Scholar
Wu G, Bazer FW, Wallace JM, Spencer TE: Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 2006, 84(9):2316-2337. 10.2527/jas.2006-156
Google Scholar
Wu G, Meininger CJ, Knabe DA, Baze FW, Rhoads JM: Arginine nutrition in development, health and disease. Curr Opin Clin Nutr 2000, 3(1):59-66. 10.1097/00075197-200001000-00010
Google Scholar
Wu G, Morris SM Jr: Arginine metabolism: nitric oxide and beyond. Biochem J 1998, 336(Pt 1):1-17.
Google Scholar
Yao K, Yin Y-L, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G: Dietary arginine supplementation increases mtor signaling activity in skeletal muscle of neonatal pigs. J Nutr 2008, 138(5):867-872.
Google Scholar
Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M: Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol 2006, 575(Pt 1):241-250.
Google Scholar