Aachib M, Mbonimpa M, Aubertin M (2004) Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water Air Soil Pollut 156:163–193
Article
CAS
Google Scholar
Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquat Bot 39:57–73
Article
Google Scholar
Azan SSE (2011) Invasive aquatic plants and the aquarium and ornamental pond industries. Theses and dissertations, Ryerson University
Björkman C, Dalin P, Ahrné K (2008) Leaf trichome responses to herbivory in willows: induction, relaxation and costs. New Phytol 179:176–184
Article
PubMed
Google Scholar
Carter J, Gunawardena AHLAN (2011) Regeneration of the aquatic monocot Aponogeton madagascariensis (lace plant) through callus induction. Aquat Bot 94:143–149
Article
CAS
Google Scholar
Çinar A, Karataş M, Aasim M (2013) High frequency plant regeneration of Dwarf Hygro (Hygrophila polysperma [Roxb.] T. Anderson) on liquid culture. J Appl Biol Sci 7:75–78
Google Scholar
Czaja AT (1930) Die photometrischen Bewegungen der Blätter von Aponogeton ulvaceus. Ber Dtsch Bot Ges 48:349–362
Google Scholar
Dalin P, Ågren J, Björkman C, Huttunen P, Kärkkäinen K (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Heidelberg, pp 89–105
Chapter
Google Scholar
Dash S, Kanungo SK, Dinda SC (2014) Antidiabetic activity of Aponogeton natans (Linn.) Engl. & Krause—an important folklore medicine. Int J Pharm Pharm Sci 6:574–577
Google Scholar
Dhar U, Joshi M (2005) Efficient plant regeneration protocol through callus for Saussurea obvallata (DC.) Edgew. (Asteraceae): effect of explant type, age and plant growth regulators. Plant Cell Rep 24:195–200
Article
CAS
PubMed
Google Scholar
Grímsson F, Zetter R, Halbritter H, Grimm GW (2014) Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: implications for the origin and palaeobiogeography of the genus. Rev Palaeobot Palynol 200:161–187
Article
PubMed
PubMed Central
Google Scholar
Hariprasath L, Jegadeesh R, Raaman N (2015) In vitro propagation of Scenecio candicans DC and comparative antioxidant properties of aqueous extracts of the in vivo plant and in vitro-derived callus. S Afr J Bot 98:134–141
Article
CAS
Google Scholar
Hellquist CB, Jacobs SWL (1998) Aponogetonaceae of Australia, with descriptions of six new taxa. Telopea 8:7–19
Article
Google Scholar
Hill K, Schaller GE (2013) Enhancing plant regeneration in tissue culture: a molecular approach through manipulation of cytokinin sensitivity. Plant Signal Behav 8:e25709
Article
PubMed Central
Google Scholar
Ingrouille MJ, Eddie B (2006) Plants: diversity and evolution. Cambridge University Press, Cambridge
Book
Google Scholar
Inoue N, Arase T, Hagiwara M, Amano T, Hayashi T, Ikeda R (1999) Ecological significance of root tip rotation for seedling establishment of Oryza sativa L. Ecol Res 14:31–38
Article
Google Scholar
James B (1986) A fishkeeper’s guide to aquarium plants. Tetra Press, Blacksburg
Google Scholar
Jenks MA, Kane ME, McConnell DB (2000) Shoot organogenesis from petiole explants in the aquatic plant Nymphoides indica. Plant Cell Tiss Org Cult 63:1–8
Article
CAS
Google Scholar
Jones AMP, Saxena PK (2013) Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLoS One 8:e76802
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kaul RB (1973) Development of foliar diaphragms in Sparganium eurycarpum. Am J Bot 60:944–949
Article
Google Scholar
Kitazawa D, Hatakeda Y, Kamada M, Fuiji N, Miyazawa Y, Hoshino A, Iida S, Fukaki H, Morita MT, Tasaka M, Suge H, Takahashi H (2005) Shoot circumnutation and winding movements require gravisensing cells. Proc Natl Acad Sci USA 102:18742–18747
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kosuge K, Iida S, Katou K, Mimura T (2013) Circumnutation on the water surface: female flowers of Vallisneria. Sci Rep 3:1133
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54
Article
PubMed Central
Google Scholar
Les DH, Moody ML, Jacobs SWL (2005) Phylogeny and systematics of Aponogeton (Aponogetonaceae): the Australian species. Syst Bot 30:503–519
Article
Google Scholar
Lusa MG, Boeger MRT, Moço MCC, Bona C (2011) Morpho-anatomical adaptations of Potamogeton polygonus (Potamogetonaceae) to lotic and lentic environments. Rodriguésia 62:927–936
Article
Google Scholar
Lye KA (1989) Aponogetonaceae. In: Polhill RM (ed) Flora of tropical East Africa. A. A. Balkema, Rotterdam, p 1
Google Scholar
Maricle BR, Lee RW (2002) Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquat Bot 74:109–120
Article
Google Scholar
Munasinghe JU, Dilhan MAAB, Sundarabarathy TV (2010) Utilization of aquatic plants: a method to enhance the productivity of water in seasonal tanks in the Anuradhapura district. In: Weligamage P, Godaliyadda GGA, Jinapala K (eds) Proceedings of the national conference on water, food security and climate change in Sri Lanka, BMICH, Colombo, June 9–11, 2009, vol 1. Irrigation for food security, 2010. International Water Management Institute, Colombo, pp 23–32
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497
Article
CAS
Google Scholar
Oh MJ, Na HR, Choi HK, Liu JR, Kim SW (2008) High frequency plant regeneration from zygotic-embryo-derived embryogenic cell suspension cultures of watershield (Brasenia schreberi). Plant Biotechnol Rep 2:87–92
Article
Google Scholar
Pemberton RW (2000) Waterblommetjie (Aponogeton distachyos, Aponogetonaceae), a recently domesticated aquatic food crop in Cape South Africa with unusual origins. Econ Bot 54:144–149
Article
Google Scholar
Raghu AV, Geetha SP, Martin G, Balachandran I, Ravindran PN (2006) In vitro clonal propagation through mature nodes of Tinospora cordifolia (Willd.) Hook. F. & Thoms.: an important ayurvedic medicinal plant. In Vitro Cell Dev Biol Plant 42:584–588
Article
CAS
Google Scholar
Ramírez-Mosqueda MA, Iglesias-Andreu LG (2015) Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell Tiss Org Cult 123:657–664
Article
Google Scholar
Rascio N (2002) The underwater life of secondarily aquatic plants: some problems and solutions. Crit Rev Plant Sci 21:401–427
Article
Google Scholar
Raven JA, Osborne BA, Johnston AM (1985) Uptake of CO2 by aquatic vegetation. Plant Cell Environ 8:417–425
Article
CAS
Google Scholar
Razdan M (2003) Introduction to plant tissue culture, 2nd edn. Science, Enfield
Google Scholar
Robinson P (2011) Gardening with rock & water. Hermes House, Leicestershire
Google Scholar
Shankar LH, Mishra PK (2012) Study of aquatic medicinal plants of Hazaribag district of Jharkhand, India. Int Res J Pharm 3:405–409
Google Scholar
Sivanesan I, Jeong BR (2007) Direct shoot regeneration from nodal explants of Sida cordifolia Linn. In Vitro Cell Dev Biol Plant 43:436–441
Article
CAS
Google Scholar
Snow LM (1914) Contributions to the knowledge of the diaphragms of water plants. I. Scirpus validus. Bot Gaz 58:495–517
Article
Google Scholar
Soukup A, Votrubová O, Čížková H (2000) Internal segmentation of rhizomes of Phragmites australis: protection of the internal aeration system against being flooded. New Phytol 145:71–75
Article
Google Scholar
Stanly C, Bhatt A, Chan LK (2011) An efficient in vitro plantlet regeneration of Cryptocoryne wendtii and Cryptocoryne becketii through shoot tip culture. Acta Physiol Plant 33:619–624
Article
Google Scholar
Stant MY (1964) Anatomy of the Alismataceae. J Linn Soc Bot 59:1–42
Article
Google Scholar
Stolarz M (2009) Circumnutation as a visible plant action and reaction. Plant Signal Behav 4:380–387
Article
CAS
PubMed
PubMed Central
Google Scholar
Stolarz M, Żuk M, Król E, Dziubińska H (2014) Circumnutation Tracker: novel software for investigation of circumnutation. Plant Methods 10:24
Article
PubMed Central
Google Scholar
Sun SL, Zhong JQ, Li SH, Wang XJ (2013) Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind.). Bot Stud 54:36
Article
Google Scholar
Swartz HJ (1991) Post culture behaviour: genetic and epigenetic effects and related problems. In: Debergh PC, Zimmerman RH (eds) Micropropagation: technology and application. Kluwer, Dordrecht, pp 95–121
Chapter
Google Scholar
Sweeney ME (2008) The 101 best aquarium plants: how to choose and keep hardy, vibrant, eye-catching species that will thrive in your home aquarium (adventurous aquarist guide). TFH, Neptune City
Google Scholar
Tariq U, Ali M, Abbasi BH (2014) Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. J Photochem Photobiol B 130:264–271
Article
CAS
PubMed
Google Scholar
Thabrew WV (2014) A manual of water plants. Author House, Bloomington
Google Scholar
Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375
Article
CAS
PubMed
PubMed Central
Google Scholar
Trojak-Goluch A, Kawka M, Czarnecka D (2015) The effects of explant source and hormone content on plant regeneration and induction of tetraploids in Humulus lupulus L. In Vitro Cell Dev Biol Plant 51:152
Article
CAS
Google Scholar
van Bruggen HWE (1998) Aponogetonaceae. In: Kubitzki K (ed) Flowering plants monocotyledons: Alismatanae and Commelinanae (except Gramineae). Springer, Heidelberg, pp 21–25
Chapter
Google Scholar
Wangwibulkit M, Vajrodaya S (2016) Ex-situ propagation of Pogostemon helferi (Hook. f.) press using tissue culture and a hydroponic system. Agric Nat Resour 50:20–25
Google Scholar
Xu L, Najeeb U, Razluddin R, Shen WQ, Shou JY, Tang GX, Zhou WJ (2009) Development of an efficient tissue culture protocol for callus formation and plant regeneration of wetland species Juncus effusus L. In Vitro Cell Dev Biol Plant 45:610–618
Article
CAS
Google Scholar
Yemets AI, Klimkina LAA, Tarassenko LV, Blume YB (2003) Efficient callus formation and plant regeneration of goosegrass (Eleusine indica). Plant Cell Rep 21:503–510
CAS
PubMed
Google Scholar
Yepes LM, Aldwinekle HS (1994) Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tiss Org Cult 37:257–269
CAS
Google Scholar
Yildiz M (2012) The prerequisite of the success in plant tissue culture: high frequency shoot regeneration. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture. Intech, Rijeka, pp 63–90
Zhao D, Xing J, Li M, Lu D, Zhao Q (2001) Optimization of growth and jaceosidin production in callus and cell suspension cultures of Saussurea medusa. Plant Cell Tiss Org Cult 67:227–234
Article
CAS
Google Scholar
Zhou C, An S, Jiang J, Yin D, Wang Z, Fang C, Sun Z, Qian C (2006) An in vitro propagation protocol of two submerged macrophytes for lake revegetation in east China. Aquat Bot 85:44–52
Article
CAS
Google Scholar
Zoriniants SE, Nosov AV, Gonzalez MM, Zeel MM, Vargas VML (2003) Variation of nuclear DNA content during somatic embryogenesis and plant regeneration of Coffea arabica L. using cytophotometry. Plant Sci 164:141–146
Article
CAS
Google Scholar