Phosphoserine is an intermediate in the production of serine through the glycolytic pathway: 3-phosphoglycerate is first oxidized to form 3-phosphohydroxypyruvate, which is then transaminated to form phosphoserine. Subsequently, through the action of the enzyme phosphoserine phosphatase, phosphoserine is converted to serine (de Koning et al. 2003; Bender 2012). Plasma serine is then involved in a tight balance with glycine, and the two AAs are interconvertible, which is in agreement with the close correlation found in our study between serine and glycine (r = 0.79, p < 0.001).
A different issue regards the phosphoserine which is formed within proteins as the result of reversible post-translational phosphorylation of their serine residues. This is among the fundamental processes regulating protein function, is investigated in the field of phosphoproteomics and may in itself be involved in the metabolic abnormalities of sepsis (Sickmann and Meyer 2001; Ubersax and Ferrell 2007; Wu 2009; Chen et al. 2011).
Increases in plasma phosphoserine have generally been associated with pyridoxal-5-phosphate (vitamin B6) and magnesium deficiency (Lord and Bralley 2008). Apart from this, no other implications have been described, at least to our knowledge, although phosphoserine may easily be measured together with the other AAs, and although higher phosphoserine was occasionally reported in lethal versus non-lethal sepsis and acute necrotizing pancreatitis, without exploring the involved correlations (Roth et al. 1982; Roth et al. 1985).
Our study showed that the best AA correlates of increasing phosphoserine in sepsis were increasing cystathionine, 3-methylhistidine, histidine, hydroxyproline and tyrosine (r > 0.65, p < 0.001 for all). Less tight correlations were mostly reflecting metabolic affinities among these and other AAs (for instance affinities involving the neutral AAs glycine, serine and threonine, or the aromatic AAs tyrosine and phenylalanine), and a general tendency for hyperaminoacidemia in worse stages of illness.
Increasing cystathionine is known to be associated with both kidney and liver dysfunction, and impairment of hepatic AA transsulfuration is likely involved in the latter (Look et al. 2000). Increases in the aromatic AAs tyrosine and phenylalanine also represent consequences of liver dysfunction, as does the decrease in Fischer AA ratio (cumulatively accounting for hepatic-mediated imbalances in branched chain and aromatic AAs) (Freund et al. 1979) which also correlated with increasing phosphoserine.
Increasing plasma 3-methylhistidine is an index of proteolysis (mainly of myofibrillar proteins) (Hasselgren and Fischer 1998); furthermore, this post-translationally methylated histidine is excreted by the kidney, therefore its level is also expected to correlate with renal dysfunction and creatinine, as demonstrated by the multiple regression in Table 2. Of note, in our study, in spite of the heterogeneous patient conditions, nutritional AA dose emerged as another important determinant of 3-methylhistidine, however associated with its decrease.
Increasing hydroxyproline has a meaning similar to that of 3-methylhistidine because the post-translational hydroxylation of proline in proteins produces hydroxyproline, and hypercatabolism (mainly connective tissue degradation) enhances release into plasma and urinary excretion of hydroxyproline (Beisel 1986; Gäddnäs et al. 2009; Wu et al. 2011).
Therefore the AA correlations in our study suggest that in sepsis elevations of phosphoserine may cumulatively reflect abnormal kidney and/or liver dysfunction and enhanced proteolysis, and thus degree of illness. This was reconfirmed by the direct correlations found between phosphoserine and creatinine, bilirubin and ammonia, which together accounted for 45% of the variability of phosphoserine (multiple r = 0.67, r2 = 0.45), and by the correlation with the SOFA score (r = 0.55, p < 0.001). The correlation with histidine could less easily be explained, even though high histidine may reflect the enhanced sum of endogenous protein and carnosine (beta-alanyl-histidine) breakdown (Enwonwu et al. 2000).
In evaluating the association of increasing phosphoserine and of its best AA correlates with severity of illness, there is to observe that a relevant source of phosphoserine may be the breakdown of phosphorylated proteins and cell phospholipids (Rossi et al. 1980; Lord and Bralley 2008). Although we cannot quantify its contribution, a characteristic shared by phosphoserine, 3-methylhistidine and hydroxyproline is that all three AAs derive from post-synthetic modifications of proteins (Bender 2012), and enhanced proteolysis could partly explain the tendency for parallel increases of these AAs, while common dependency on kidney dysfunction should be an additional factor. Phosphoserine had a major relevance in our patients because, during worsening of illness, its increase was comparably greater than that of 3-methylhistidine and hydroxyproline. As already mentioned, plasma phosphoserine may in large part derive from the catabolism of proteins and phospholipids (Rossi et al. 1980; Lord and Bralley 2008). Intracellular synthesis of phosphoserine occurs in the glycolytic pathway, in which conversion of 3-phosphoglycerate into 3-phosphohydroxypyruvate is catalysed by 3-phosphoglycerate dehydrogenase, and the latter is subsequently converted into phosphoserine (3-phosphoserine) by 3-phosphoserine aminotransferase (van der Crabben et al. 2013). Phosphoserine may be finally converted into serine (L-serine) by phosphoserine phosphatase, while phosphorylation of serine can only take place when it is a component of proteins (Rossi et al. 1980). In theory, expansion of the phosphoserine pool could derive from enhanced septic glycolytic flux, from enhanced protein and phospholipid catabolic drive, and from kidney dysfunction if present. On speculative grounds, also insufficient activity of phosphoserine phosphatase should be considered. Our data cannot account for all these possibilities. However the assessed correlations support a major role of protein catabolism. Phosphoserine is the most abundant AA among the phosphorylated AA residues in proteins, including human skeletal muscle and liver proteins (Olsen et al. 2006; Ubersax and Ferrell 2007; Højlund et al. 2009; Lundby et al. 2012; Song et al. 2012), phosphoserine outflow from muscle in injury was already demonstrated in the past (Brooks et al. 1986), and this is in agreement with the strong correlation that we found between phosphoserine and 3-methylhistidine.
Other findings in our study regarded the balance between phosphoserine and the biochemically related AAs serine and glycine. The phosphoserine/serine ratio behaved similar to phosphoserine, but showed comparably smaller increases. Increasing phosphoserine and other signs of worsening of illness were associated with maintenance of lower serine for any given glycine level; although this was in agreement with previous findings on renal insufficiency (Bender 2012; Fürst and Stehle 2004) the clinical relevance for our patients was uncertain. Conversely, very relevant appeared the ancillary finding of a significant impact of nutritional AA support in decreasing 3-methylhistidine for any given creatinine and phosphoserine level (multiple regression in Table 2), and therefore in moderating proteolysis. This was not new in itself, however it was impressive that nutritional AA dose emerged so strongly (partial r = −0.44, p < 0.001) as a likely determinant of reduced proteolysis, in spite of the multiple causes of inter-patient variability, further reaffirming the important role of nutrition in sepsis.