Open Access

Rotationally inelastic dynamics of LiH (X1Σ+, v = 0) in collisions with Ar: State-to-state inelastic rotational rate coefficients

  • Aliou Niane1Email author,
  • Cheikh Amadou Bamba Dath1,
  • Ndèye Arame Boye Faye1,
  • Kamel Hammami2 and
  • Nejm-Eddine Jaidane2
SpringerPlus20143:188

https://doi.org/10.1186/2193-1801-3-188

Received: 21 November 2013

Accepted: 26 February 2014

Published: 14 April 2014

Abstract

A theoretical study of rotational collision of LiH(X1Σ+,v = 0, J) with Ar has been carried out. The ab initio potential energy surface (PES) describing the interaction between the Ar atom and the rotating LiH molecule has been calculated very accurately and already discussed in our previous work [Computational and Theoretical Chemistry 993 (2012) 20–25]. This PES is employed to evaluate the de-excitation cross sections. The ab initio PES for the LiH(X1Σ+)-Ar(1S) Van der waals system is calculated at the coupled-cluster [CCSD(T)] approximation for a LiH length fixed to an experimental value of 3.0139 bohrs. The basis set superposition error (BSSE) is corrected and the bond functions are placed at mid-distance between the center of mass of LiH and the Ar atom. The cross sections are then derived in the close coupling (CC) approach and rate coefficients are inferred by averaging these cross sections over a Maxwell-Boltzmann distribution of kinetic energies. The 11 first rotational levels of rate coefficients are evaluated for temperatures ranging from 10 to 300 K. We notice that the de-excitation rate coefficients appear large in the order 10−10 cm−3 s−1 and show very low temperature dependence. The rate coefficients magnify significantly the propensity toward ∆ J = −1 transitions. These results confirm the same propensity already noted for the cross sections.

Keywords

PES CC approach Collision Cross-sections Rate coefficients

Introduction

The analysis of atom diatom scattering of molecular collisions shows a field of current interest (Santiago et al. 2008; Aguillon et al. 2000). The rotational collisions between diatomic molecules and atomic partners give rise to complex energy transfer processes which provide one of the most rigorous tests of high-level ab initio potential energy surfaces (Paterson et al. 2011; Dagdigian et al. 1995, 1997; Eyles et al. 2011). The LiH molecule has much interest in atmospherical models (Dalgarno et al. 1996; Gianturco et al. 1999) thanks to its importance in chemistry of the lithium. These calculations of rate coefficients are stimulated by the studies of Ren et al. (2006) which have shown that the high-purity Ar atmosphere at room temperature contribute significantly to the stability of LiH in environment.

The collision dynamics of LiH(X1Σ+) with rare gas (Rg) has received particular attentions. Theoretically, the electronic structure methods, semi-empirical as well as ab initio, have been employed to calculate intermolecular potential energy surfaces to study the LiH in excited rotational levels by collision with the atoms H (Berriche and Tlili 2004; Berriche 2004), He (Gianturco et al. 1997a, 1997b; Bodo et al. 1998; Forni 1999) and Ne (Lu et al. 2000; Feng et al. 2004; Feng et al. 2005). These studies have shown the weakly van der Waals forces interacting molecular systems of LiH in its ground electronic state with Rg atoms. The competition between the charge transfer processes and the chemical binding have done that the interactions of van der Waals systems represent a critical test for the potential energy surfaces (PESs).

In our previous work for the LiH-Ar system, we have reported the first quantum mechanical close coupling calculations of integral cross sections for transitions between the lower rotational levels of LiH induced by collision with Ar based on the ab initio potential energy surface. We have used in all the calculations the ab initio coupled-cluster [CCSD(T)] level of theory and with aug-cc-pVQZ Gaussian basis set for the H and Ar atoms and cc-pVQZ Gaussian basis set for the Li atom.

Interaction potential energy surface

We have computed the interaction PES for the LiH(X1Σ+)–Ar(1S) Van der Waals system using the rigid-rotor approximation and the Jacobi coordinate system in which re is the LiH internuclear distance, R the distance from the center of mass (c.m) of LiH to Ar atom, and θ the angle between the two distance vectors. The collinear LiH…Ar geometry corresponds to θ = 0° while the LiH bond length is frozen at the experimental equilibrium geometry of the ground state re = 3.0139 bohr (Huber & Herzberg 1979). Treating all geometries in the CS symmetry group, the PES has been computed with the CCSD(T) method (Knowles et al. 1993; 2000) as implemented in the MOLPRO2002 package (Werner et al. 2009). The H and Ar atoms have been described by the standard aug-cc-pVQZ basis set (Hutson & Green 1994; Smith et al. 1979; Lique et al. 2007). The Li atom has been described with cc-pVQZ basis set which we have added (1s1p1d1f1g) functions (Dunning 1989; Kendall et al. 1992; Woon and Dunning 1994, 1995). To this basis, we have added a set of (3s3p2d2f1g) bond functions defined by Cybulski and Toczylowski (1999) and placed at mid-distance between the center of mass of LiH and Ar atom. The basis set superposition error (BSSE) has been corrected at all geometries with the counterpoise procedure of Boys and Bernadi (1970). The PES obtained has a global minimum of 525.13 cm−1 located at R = 5.30 bohr and θ = 180°. The anisotropy of the PES is very large because of the character stems from the electronic structure of the LiH.

The basic input required by the MOLSCAT (Hutson & Green 1994) package used in dynamics calculations, were obtained by expanding the interaction potential in terms of Legendre polynomials as:
V R , θ = λ = 0 λmax V λ R P λ cosθ

From ab initio grid containing 19 values of θ, we have been able to include terms up to λ max  = 18 The standard deviation between the analytical form and the calculated surface remains below 1.0%.

Results and Discussion

Rotational cross sections

Using the propagator of Manolopoulos (1986) as implemented in the MOLSCAT quantum mechanical code (Hutson and Green 1994), the scattering cross sections have been calculated with the close coupling approach developed by Arthurs and Dalgarno (1960) for a total energy ranging from 15 to 2500 cm−1. The energy steps are 0.1 cm−1 below 100 cm−1, 0.5 cm−1 from 100 to 500 cm−1, 1 cm−1 from 500 cm−1 to 1000 cm−1, 10 cm−1 from 1000 cm−1 to 1500 cm−1 and 500 cm−1 from 1500 cm−1 to 2500 cm−1. For the rotational basis sets, we have used J max  = 10 for E ≤ 100 cm−1, J max  = 15 for 100 < E ≤ 1000 cm−1 and J max  = 30 for E ≥ 1000 cm−1. The scattering calculations have been performed to rotational basis sets of adequate size for a good accuracy of the results. The other parameters required as input in MOLSCAT and displayed in Table 1 have been fixed after the convergence tests. However, the maximum values of the total angular momentum JTOT was chosen according to a convergence criterion of the cross sections to within 0.01 Å for diagonal terms and 0.001 Å for off-diagonal ones. For example, we have JTOT = 97, 179, 229 and 317 for the collision energies of 100 cm−1, 500 cm−1, 1000 cm−1 and 2500 cm−1 respectively.
Table 1

MOLSCAT parameters used in the present calculations

INTFLG = 6

STEPS = 20, 10

OTOL = 0.001

DTOL = 0.01

Be = 7.513100 cm−1

De = 0.00086170 cm−1

Jmax = 10, 15, 30

Rmin = 3.0 bohr Rmax = 30 bohr

The Figure 1 presents the energy dependence of the LiH-Ar collisional de-excitation cross sections for the ∆J = J' – J = − 1, J = 3 → 1, J = 4 → 1 and J = 5 → 1 rotational transitions. As one can see for collision energy below 200 cm−1, this figure illustrates some resonances. These resonances are the shape resonances due to the quasi-bound states arising from the trap of Ar atom into the well depth (Smith et al. 1979; Christoffel and Bowman 1983) and the Feshbach resonances in the vicinity of the opening of a new j level derived to tunneling through the centrifugal energy barrier. These facts have been discussed by Vincent et al. (2007).
Figure 1

Rotational de-excitation cross sections of LiH in collision with Ar as a function of the relative kinetic energy.

The de-excitation cross sections decrease with increasing ∆J as a function of the kinetic energy. An analysis of this figure shows clearly that the magnitude of the transition 2 → 1 is larger than the others included the transition 1 → 0 in our previous work (Niane et al. 2012). The plots of de-excitation cross sections decrease with increasing ∆J and have almost the similar behavior. The Figure 1 illustrates the propensity in favor of the transitions ∆J = J' – J = − 1. This is consistent with similar results by Hammami et al. (2009). The features in our recent excitation cross sections (Niane et al. 2012) for the transitions 1 → J allow understanding the detailed balance equation that relate excitation and de-excitation cross sections.

Downward rate coefficients

The downward rate coefficients are calculated by averaging from rotational cross sections σ J→J’ (E k ) over a Maxwell-Boltzmann distribution of kinetic energies E k following the procedure used in previous works (Hammami et al. 2008a, 2008b, 2009; Nkem et al. 2009).
q J J ' T = 8 β 3 πμ × 0 E k σ J J ' E k e β E k d E k

where T is the kinetic temperature, μ = 6.68193048 a.u. is the reduced mass of the LiH-Ar collision partners, β = 1 k B T (kB is the Boltzmann constant) and E k  = E – E j is the relative kinetic energy. The Table 2 displays the results at selected temperatures.

To better analyse the rates variation with temperature are shown in Figure 2.
Table 2

Downward rate coefficients (given as A(B) = A.10 B ) of rotational levels of LiH in collisions with Ar as a function of kinetic temperature (in units of cm 3 s −1 )

Initial

Final

Rate coefficients

level J

level J’

10 K

30 K

50 K

100 K

150 K

200 K

300 K

1

0

1.4523(−10)

1.4645(−10)

1.4592(−10)

1.5986(−10)

1.7872(−10)

1.9545(−10)

2.2034(−10)

2

0

5.8075(−11)

7.1884(−11)

7.2722(−11)

6.7117(−11)

6.3849(−11)

6.2450(−11)

6.1586(−11)

2

1

2.4694(−10)

2.8061(−10)

2.7242(−10)

2.4286(−10)

2.3069(−10)

2.2910(−10)

2.3796(−10)

3

0

3.9204(−11)

5.6170(−11)

5.7489(−11)

5.0864(−11)

4.4844(−11)

4.0685(−11)

3.5799(−11)

3

1

1.2052(−10)

1.7421(−10)

1.8270(−10)

1.6721(−10)

1.4951(−10)

1.3632(−10)

1.1974(−10)

3

2

2.2353(−10)

2.7512(−10)

2.8660(−10)

2.7651(−10)

2.6171(−10)

2.5181(−10)

2.4369(−10)

4

0

3.5679(−11)

4.6672(−11)

4.7499(−11)

4.2990(−11)

3.8446(−11)

3.4945(−11)

3.0214(−11)

4

1

1.0461(−10)

1.3556(−10)

1.4080(−10)

1.3174(−10)

1.1999(−10)

1.1031(−10)

9.6563(−11)

4

2

1.5181(−10)

1.8957(−10)

1.9925(−10)

1.9695(−10)

1.8754(−10)

1.7818(−10)

1.6299(−10)

4

3

1.9458(−10)

2.2991(−10)

2.3826(−10)

2.4094(−10)

2.3928(−10)

2.3746(−10)

2.3571(−10)

5

0

3.2612(−11)

3.8686(−11)

3.8332(−11)

3.4966(−11)

3.1964(−11)

3.9586(−11)

2.6135(−11)

5

1

8.1900(−11)

1.0025(−10)

1.0301(−10)

9.8940(−11)

9.2976(−11)

8.7593(−11)

7.9068(−11)

5

2

1.2049(−10)

1.3733(−10)

1.4167(−10)

1.4138(−10)

1.3770(−10)

1.3348(−10)

1.2550(−10)

5

3

1.4602(−10)

1.6247(−10)

1.6695(−10)

1.6875(−10)

1.6826(−10)

1. 6712(−10)

1.6388(−10)

5

4

1.5841(−10)

1.8774(−10)

1.9702(−10)

2.0350(−10)

2.0674(−10)

2.0968(−10)

2.1505(−10)

6

0

2.3956(−11)

2.7303(−11)

2.7071(−11)

2.5504(−11)

2.4158(−11)

2.3035(−11)

2.1228(−11)

6

1

5.6627(−11)

6.6954(−11)

6.8777(−11)

6.8459(−11)

6.6913(−11)

6.5130(−11)

6.1593(−11)

6

2

7.8772(−11)

9.0165(−11)

9.3549(−11)

9.6310(−11)

9.6931(−11)

9.6642(−11)

9.4753(−11)

6

3

9.9003(−11)

1.1003(−10)

1.1335(−10)

1.1672(−10)

1.1871(−10)

1.2005(−10)

1.2111(−10)

6

4

1.1464(−10)

1.3069(−10)

1.3559(−10)

1.4003(−10)

1.4277(−10)

1.4518(−10)

1.4885(−10)

6

5

1.4103(−10)

1.6839(−10)

1.7655(−10)

1.8257(−10)

1.8621(−10)

1.9002(−10)

1.9764(−10)

7

0

1.5219(−11)

1.6972(−11)

1.7037(−11)

1.6840(−11)

1.6642(−11)

1.6479(−11)

1.6070(−11)

7

1

3.6069(−11)

4.1334(−11)

4.2680(−11)

4.4206(−11)

4.5119(−11)

4.5593(−11)

4.5618(−11)

7

2

4.8848(−11)

5.5593(−11)

5.8314(−11)

6.2473(−11)

6.5332(−11)

6.7306(−11)

6.9356(−11)

7

3

6.2249(−11)

6.9436(−11)

7.2594(−11)

7.7704(−11)

8.1503(−11)

8.4507(−11)

8.8581(−11)

7

4

7.5679(−11)

8.5248(−11)

8.9100(−11)

9.4838(−11)

9.9007(−11)

1.0250(−10)

1.0795(−10)

7

5

9.5470(−11)

1.0918(−10)

1.1370(−10)

1.1934(−10)

1.2351(−10)

1.2726(−10)

1.3370(−10)

7

6

1.3671(−10)

1.6099(−10)

1.6733(−10)

1.7162(−10)

1.7462(−10)

1/7817(−10)

1.8590(−10)

8

0

8.8089(−12)

9.7013(−12)

9.9159(−12)

1.0294(−11)

1.0690(−11)

1.1032(−11)

1.1471(−11)

8

1

2.1408(−11)

2.4022(−11)

2.5081(−11)

2.7118(−11)

2.8920(−11)

3.0395(−11)

3.2349(−11)

8

2

2.9185(−11)

3.2861(−11)

3.4919(−11)

3.9058(−11)

4.2518(−11)

4.5355(−11)

4.9356(−11)

8

3

3.7481(−11)

4.1756(−11)

4.4470(−11)

4.9984(−11)

5.4442(−11)

5.8151(−11)

6.3736(−11)

8

4

4.6666(−11)

5.2136(−11)

5.5420(−11)

6.1976(−11)

6.7113(−11)

7.1358(−11)

7.8001(−11)

8

5

5.9281(−11)

6.6721(−11)

7.0434(−11)

7.7459(−11)

8.3015(−11)

8.7657(−11)

9.5109(−11)

8

6

8.2936(−11)

9.3863(−11)

9.7797(−11)

1.0386(−10)

1.0884(−10)

1.1334(−10)

1.2110(−10)

8

7

1.3408(−10)

1.5491(−10)

1.6003(−10)

1.6371(−10)

1.6652(−10)

1.6996(−10)

1.7762(−10)

9

0

4.7020(−12)

5.2283(−12)

5.4786(−12)

6.0201(−12)

6.5558(−12)

7.0524(−12)

7.8370(−12)

9

1

1.1801(−11)

1.3287(−11)

1.4146(−11)

1.6069(−11)

1.7895(−11)

1.9553(−11)

2.2164(−11)

9

2

1.6467(−11)

1.8651(−11)

2.0197(−11)

2.3731(−11)

2.6917(−11)

2.9747(−11)

3.4258(−11)

9

3

2.1330(−11)

2.4051(−11)

2.6216(−11)

3.1200(−11)

3.5466(−11)

3.9152(−11)

4.5064(−11)

9

4

2.6912(−11)

3.0344(−11)

3.3040(−11)

3.9293(−11)

4.4497(−11)

4.8862(−11)

5.5809(−11)

9

5

3.4467(−11)

3.8889(−11)

4.1962(−11)

4.9054(−11)

5.5023(−11)

6.0004(−11)

6.7897(−11)

9

6

4.6934(−11)

5.2930(−11)

5.6296(−11)

6.3612(−11)

6.9894(−11)

7.5266(−11)

8.3952(−11)

9

7

7.1389(−11)

8.0616(−11)

8.4337(−11)

9.1006(−11)

9.6683(−11)

1.0180(−10)

1.1054(−10)

9

8

1.2869(−10)

1.4711(−10)

1.5162(−10)

1.5584(−10)

1.5917(−10)

1.6291(−10)

1.7084(−10)

10

0

2.4197(−12)

2.7180(−12)

2.9313(−12)

3.4324(−12)

3.9173(−12)

4.3837(−12)

5.1889(−12)

10

1

6.2689(−12)

7.1015(−12)

7.7515(−12)

9.3244(−12)

1.0841(−11)

1.2286(−11)

1.4776(−11)

10

2

8.9852(−12)

1.0238(−11)

1.1346(−11)

1.4105(−11)

1.6691(−11)

1.9095(−11)

2.3229(−11)

10

3

1.1774(−11)

1.3402(−11)

1.4980(−11)

1.8997(−11)

2.2613(−11)

2.5840(−11)

3.1273(−11)

10

4

1.4982(−11)

1.7035(−11)

1.9048(−11)

2.4279(−11)

2.8911(−11)

3.2908(−11)

3.9456(−11)

10

5

1.9199(−11)

2.1785(−11)

2.4145(−11)

3.0330(−11)

3 ?5872(−11)

4.0614(−11)

4.8262(−11)

10

6

2.5855(−11)

2.9221(−11)

3.1888(−11)

3.8707(−11)

4.4906(−11)

5.0278(−11)

5.8978(−11)

10

7

3.7560(−11)

4.2255(−11)

4.5290(−11)

5.2547(−11)

5.0100(−11)

6.4872(−11)

7.4413(−11)

10

8

6.1122(−11)

6.8648(−11)

7.2240(−11)

7.9634(−11)

8.6010(−11)

9.1702(−11)

1.0130(−10)

10

9

1.2147(−10)

1.3727(−10)

1.4152(−10)

1.4706(−10)

1.5149(−10)

1.5590(−10)

1.6445(−10)

Figure 2

Calculated downward rate coefficients for the collisions of LiH with Ar for J→ 0 ( J= 2 – 5) panel (a) and ∆ J= −1 ( J’= 1 – 4; J= 2 – 5) and J→ 1( J= 2 – 5) panel (b) transitions as a function of the kinetic temperature.

We notice that the downward rate coefficients depend on low temperature. This effect of temperature dependence has been seen by Taylor and Hinde (2005) at little temperature, they explain that the lack of dependence is indicated of downward mechanism in which attractive collisions dominate the energy transfer process for ion-molecule processes. The LiH-Ar system is very attracted when the Ar atom is near the lithium end of LiH. The Figure 2 shows the propensity toward ∆J = − 1 transitions. This result confirms the same propensity observed with the cross sections and remains an important consequence of atmospherical chemistry.

We report in Figures 3 and 4 the downward rate coefficients as a function of J for selected ∆J = −1, −2 and J → 1 transitions respectively. Except the ∆J = −1 transition at 10 K, the plots of rate coefficients exhibit the same trends and decrease with increasing J’ from J' = 2. For J → 1, the downward rate coefficients decrease with increasing J and the gap between the plots narrow considerably. In addition, the collision rate coefficients reflect the similar behavior with the general trends observed earlier for HCP-He (Hammami et al. 2008b) and HCP-H2 (Hammami et al. 2008c) systems.
Figure 3

Calculated downward rate coefficients for the collisions of LiH with Ar for J’+ 1 →J’ and J’+ 2 →J’ transitions for selected kinetic temperature.

Figure 4

Calculated downward rate coefficients for the collisions of LiH with Ar for panel (a) J’→ 0 and panel (b) J’→ 1transitions for selected kinetic temperature.

Conclusion

In this work, using the ab initio PES LiH(X1Σ+)–Ar(1S) van der Waals system computed in our previous work (Niane et al. 2012), we have obtained results of a quantum mechanical close coupling calculation of integral cross sections for lower rotational levels. By averaging the cross sections over a Maxwell-Boltzmann distribution of kinetic energies, we have inferred the downward rate coefficient for the lowest 11 levels.

The downward rate coefficients at 300 K for the transitions 1 → 0, 2 → 1 and 3 → 2 are estimated respectively at 2.5664 10−10, 2.7792 10−10 and 2.5272 10−10 cm3s−1. It is obvious that these results may be useful for the atmospherical chemistry as well as for experiments. Finally, encouraged by this result, we will be undertaking the study of the spectroscopy of complex and the vibrational dependence of potential energy surface which is crucial for the diatomic molecular.

Declarations

Acknowledgements

This work is supported by the Abdus Salam International Centre for Theoretical Physics, Office of External Activities (ICTP-OEA) under NET45 program. We thanks Drs F. Lique (Université du Havre, 25 Rue Philippe Lebon, BP 540, 76 058 Le Havre cedex) and N. Feautrier (Observatoire de Paris-Meudon), for their interest in this work and for fruitful discussions. We are also grateful to the Centre de Calcul de l’Université Cheikh Anta Diop of Dakar.

Authors’ Affiliations

(1)
Laboratory of Atoms Lasers, Department of Physics, Faculty of Science and Techniques, University Cheikh Anta Diop of Dakar
(2)
Laboratory for Atomic Molecular Spectroscopy and Applications, Department of Physics, Faculty of Science, University Tunis El Manar, Campus Universities

References

  1. Aguillon F, Belyaev AK, Sidis V, Sizum M: Time-dependant study of collinear H + H2( v) collisions. Phys Chem Chem Phys 2000, 2: 3577-3582. 10.1039/b003275lView ArticleGoogle Scholar
  2. Arthurs AM, Dalgarno A: The theory of scattering by a rigid rotator. Proc R Soc Lond A 1960, 256: 540-551. 10.1098/rspa.1960.0125View ArticleGoogle Scholar
  3. Berriche H: Rotationally inelastic collisions of LiH (X1S+) with H: State-to-state inelastic rotational cross-section. J Mol Struct 2004, 682: 89-96. 10.1016/j.theochem.2004.05.034View ArticleGoogle Scholar
  4. Berriche H, Tlili C: Ab initio potential energy surface and rotationally inelastic collisions of LiH (X1S+) with H. I. The ab initio evaluation of the potential energy surface. J Mol Struct 2004, 678: 11-16. 10.1016/j.theochem.2004.01.051View ArticleGoogle Scholar
  5. Bodo E, Kumar S, Gianturco FA: Vibrational heating efficiency of LiH molecules in collision with He atoms. J Phys Chem A 1998, 102: 9390-9398. 10.1021/jp981462qView ArticleGoogle Scholar
  6. Boys SF, Bernardi F: Calculation of small molecular interactions by differences of separate total energies - some procedures with reduced errors. Mol Phys 1970, 19: 533-566. 10.1080/00268977000101541View ArticleGoogle Scholar
  7. Christoffel KM, Bowman JM: Quantum and classical dynamics of a coupled double well oscillator. J Chem Phys 1983, 103: 3952.View ArticleGoogle Scholar
  8. Cybulski SM, Toczylowski RR: Ground state potential energy curves for He2, Ne2, Ar2, He-Ne, He-Ar, and Ne-Ar: A coupled-clurster study. Chem Phys 1999, 111: 10520. 10.1063/1.480430Google Scholar
  9. Dagdigian PJ: The Chemical Dynamics and Kinetics of Small Free Radicals, Part I. Edited by: Liu K, Wagner A. Singapore: World Science; 1995:315.Google Scholar
  10. Dagdigian PJ: State-resolved collision-induced electronic transitions. Annu Rev Phys Chem 1997, 48: 95. 10.1146/annurev.physchem.48.1.95View ArticleGoogle Scholar
  11. Dalgarno A, Kirby K, Stancil PC: Astrophys J. 1996, 458: 397.View ArticleGoogle Scholar
  12. Dunning TH Jr: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 1989, 90: 1007. 10.1063/1.456153View ArticleGoogle Scholar
  13. Eyles CJ, Brouard M, Yang C-H, Klos J, Aoiz FJ, Gijsbertsen A, Wiskerke AE, Stolte S: Interference structures in the differencial cross sections for inelastic scattering of NO by Ar. Nat Chem 2011, 3: 597. 10.1038/nchem.1071View ArticleGoogle Scholar
  14. Feng E, Huang W, Cui Z, Zhang W: State-to-state cross-sections for rotationally inelastic collision of LiH with Ne. Chem Phys 2004, 303: 309-316. 10.1016/j.chemphys.2004.06.021View ArticleGoogle Scholar
  15. Feng E, Huang W, Cui Z, Zhang W: Predicted rovibrational structure of Ne–LiH complex based on an ab initio potential, J. Mol. Struct. Theochem 2005, 724: 195-202. 10.1016/j.theochem.2005.03.026View ArticleGoogle Scholar
  16. Forni A: Rotationally inelastic collisions of LiH with He: a quasi-classical dynamics study. J Mol (Theochem) 1999, 468: 73. 10.1016/S0166-1280(98)00507-7View ArticleGoogle Scholar
  17. Gianturco FA, Kumar S, Pathak SK, Raimondi M, Sironi M, Gerratt J, Cooper DL: Interaction forces energy transfer dynamics of LiH(X1Σ+) and helium atoms – I. The ab initio evaluation of the lowest potential energy surface. Chem Phys 1997, 215: 227-238. 10.1016/S0301-0104(96)00264-9View ArticleGoogle Scholar
  18. Gianturco FA, Kumar S, Pathak SK, Raimondi M, Sironi M: Interaction forces energy transfer dynamics of LiH(X1Σ+) and helium atoms – I. Rotationally inelastic collisions and excitation efficiency. Chem Phys 1997, 215: 239-252. 10.1016/S0301-0104(96)00317-5View ArticleGoogle Scholar
  19. Gianturco FA, Paesani F, Curik R, Delgado-Barrio G, Gozalez-Lezana T, Miret-Artes S, Villareal P: Can the LiH molecule bind He atoms? A computational experiment. Chem Phys Lett 1999, 311: 255. 10.1016/S0009-2614(99)00818-0View ArticleGoogle Scholar
  20. Gonzalez-Sanchez I, Bodo E, Yurtsever E, Gianturco FA: Quenching efficiency of “hot” polar molecules by He buffer gas at ultralow energies: quantum results for MgH and LiH rotations. Eur Phys J D 2008, 48: 75-82. 10.1140/epjd/e2008-00072-8View ArticleGoogle Scholar
  21. Hammami K, Owono Owono LC, Jaidane N, Ben Lakhdar Z: Rotational excitation of methyldynium (CH+) by helium atom at low temperature. J Mol Struct Theochem 2008, 853: 18-26. 10.1016/j.theochem.2007.11.038View ArticleGoogle Scholar
  22. Hammami K, Owono Owono LC, Jaidane N, Ben Lakhdar Z: State to state rotational integral cross sections and rate coefficients of HCP collision with He at low temperature. J Mol Struct (THEOCHEM) 2008, 860: 45-51. 10.1016/j.theochem.2008.03.017View ArticleGoogle Scholar
  23. Hammami K, Owono Owono LC, Jaidane N, Ben Lakhdar Z: Rotational inelastic collisions of methinoposphide (HCP) with para-H2 at low temperature. J Phys Chem 2008, 129: 204305. 10.1063/1.3009268View ArticleGoogle Scholar
  24. Hammami K, Owono Owono LC, Stäuber P: Rotational excitation of methylidynium (CH+) by a helium atom at high temperature. Astron Astrophys 2009, 507: 1083-1086. 10.1051/0004-6361/200912663View ArticleGoogle Scholar
  25. Huber KP, Herzberg G: Molecular Spectra and Molecular Constants of Diatomic Molecules. 4th edition. New York: Van Nostrand; 1979.Google Scholar
  26. Hutson JM, Green S: MOLSCAT Computer Code, Version 14. United Kingdom: Collaborative Computational Project N 6 of the Science and Engineering Research Council; 1994.Google Scholar
  27. Kendall RA, Dunning TH Jr, Harrison RJ: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 1992, 96: 6796. 10.1063/1.462569View ArticleGoogle Scholar
  28. Knowles PJ, Hampel C, Werner HJ: Coupled-cluster theory for highspin open-shell reference wave functions. J Chem Phys 1993, 99: 5219. 10.1063/1.465990View ArticleGoogle Scholar
  29. Knowles PJ, Hampel C, Werner HJ: Note that the implementation in all versions of MOLPRO prior to 2000.1 is afflicted by the bug detailed in said erratum: as a result, the RCCSD(T)/UCCSD(T) difference reported should be reduced by 0.2 kcal/mol. J Chem Phys 2000, 112: 3106. 10.1063/1.480886View ArticleGoogle Scholar
  30. Lique F, Senent ML, Spielfiedel A, Feautrier N: Rotationally inelastic collisions of SO (X3Σ) with H2: potential energy surface and first results with para-H2. J Chem Phys 2007, 126: 164312. 10.1063/1.2723733View ArticleGoogle Scholar
  31. Lu Y, Xie D, Yang M, Yan G: An ab initio potential energy surface of Ne–LiH. Chem Phys Lett 2000, 327: 305-313. 10.1016/S0009-2614(00)00892-7View ArticleGoogle Scholar
  32. Manolopoulos DE: An improved log derivative method for inelastic scattering. J Chem Phys 1986, 85: 6425. 10.1063/1.451472View ArticleGoogle Scholar
  33. Niane A, Hammami K, Faye NAB, Jaidane N: Ab initio potential energy surface and rotationally inelastic collisions of hydride of lithium (LiH) with argon (Ar): State-to-state inelastic rotational cross section. Comput Theor Chem 2012, 993: 20-25.View ArticleGoogle Scholar
  34. Nkem C, Hammami K, Manga A, Owono Owono LC, Jaidane N, Ben Lakhdar Z: Collision-induced rotational excitation of SiH+ by He atom at low temperatures. Mol Struc (THEOCHEM) 2009, 901: 220-225. 10.1016/j.theochem.2009.01.037View ArticleGoogle Scholar
  35. Paterson G, Relf A, Costen ML, McKendrick KG, Alexander MH, Dagdigian PJ: Rotationally elastic and inelastic dynamics of NO(X2Π, ν = 0) in collisions with Ar. J Chem Phys 2011, 135: 234304. 10.1063/1.3665135View ArticleGoogle Scholar
  36. Ren R, Ortiz AL, Markmaitree T, Osborn W, Shaw LL: Stability of lithium hydride in Argon and air. J Phys Chem B 2006, 110: 10567-10575. 10.1021/jp060068mView ArticleGoogle Scholar
  37. Santiago RD, Alvarez-BAjo O, Lemus R, Arias JM, Gomez-Camacho J, Rodriguez-Gallardo M: Algebraic description of the inelastic collision between an atom and a Morse oscillator in one dimension. J Phys B: At Mol Opt Phys 2008, 41: 145203. 10.1088/0953-4075/41/14/145203View ArticleGoogle Scholar
  38. Smith LN, Malick DJ, Secrest D: Rotational compound state resonances for an argon and methane scattering system. J Chem Phys 1979, 71: 4502. 10.1063/1.438203View ArticleGoogle Scholar
  39. Taylor BK, Hinde RJ: The He–LiH potential energy surface revisited. II. Rovibrational energy transfer on a three-dimensional surface. J Chem Phys 2005, 122: 074308. 10.1063/1.1851495View ArticleGoogle Scholar
  40. Vincent LFM, Spielfield A, Lique F: Rotational excitation of SiS molecules by collisions with He atoms. Astron Astrophys 2007, 472: 1037-1040. 10.1051/0004-6361:20077869View ArticleGoogle Scholar
  41. Werner HJ, Knowles PJ, Almöf J: MOLPRO, Ab Initio Programs. 2009.http://www.molpro.net SeeGoogle Scholar
  42. Woon DE, Dunning TH Jr: Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 1994, 100: 2975-2988. 10.1063/1.466439View ArticleGoogle Scholar
  43. Woon DE, Dunning TH Jr: Gaussian basis sets for use in correlated molecular calculations. V. Core-valence sets for boron through neon. J Chem Phys 1995, 103: 4572-4585. 10.1063/1.470645View ArticleGoogle Scholar

Copyright

© Niane et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.