Identifying influential metrics in the combined metrics approach of fault prediction
- Rinkaj Goyal†^{1}Email author,
- Pravin Chandra†^{2} and
- Yogesh Singh†^{2}
Received: 19 August 2013
Accepted: 21 November 2013
Published: 23 November 2013
Abstract
Fault prediction is a pre-eminent area of empirical software engineering which has witnessed a huge surge over the last couple of decades. In the development of a fault prediction model, combination of metrics results in better explanatory power of the model. Since the metrics used in combination are often correlated, and do not have an additive effect, the impact of a metric on another i.e. interaction should be taken into account. The effect of interaction in developing regression based fault prediction models is uncommon in software engineering; however two terms and three term interactions are analyzed in detail in social and behavioral sciences. Beyond three terms interactions are scarce, because interaction effects at such a high level are difficult to interpret. From our earlier findings (Softw Qual Prof 15(3):15-23) we statistically establish the pertinence of considering the interaction between metrics resulting in a considerable improvement in the explanatory power of the corresponding predictive model. However, in the aforesaid approach, the number of variables involved in fault prediction also shows a simultaneous increment with interaction. Furthermore, the interacting variables do not contribute equally to the prediction capability of the model.
This study contributes towards the development of an efficient predictive model involving interaction among predictive variables with a reduced set of influential terms, obtained by applying stepwise regression.
Keywords
Fault prediction Interaction Object oriented metrics Regression Stepwise regressionBackground
Fault prediction models based on different modelling techniques have been widely used to improve software quality for the last three decades. Out of the many modelling techniques used by researchers, regression and its variants are still drawing a major portion of the attention of research communities (Basili et al.1996; Denaro et al.2003; Yu2012; Bibi et al.2008; Thwin and Quah2005; Briand et al.2000; Khoshgoftaar et al.2002; Gyimothy et al.2005). Comparison of regression with other evolutionary algorithm based techniques has also been appraised as well (Raj Kiran and Ravi2008; Radjenovic et al.2013).
The application of regression analysis focuses on identifying potential complexity metrics and building relationship models that are capable of identifying faults-prone software modules.
No single set of metrics exists which can be applied to all projects equally. Therefore by taking failure [scenarios] and their correlation into account within a project, the capability to design an improved prediction model can be achieved by combining metrics (2006).
In the recent literature, the benefits and comparative advantages of using a combination of source code metrics to predict bugs, has been illustrated by (D’Ambros et al.2012) and (Okutan and Yildiz2012). However, combining metrics may lead to interactions among metrics which has not yet been properly dealt within software engineering literature, though it has been reported in other areas of the sciences and engineering.
This issue has been highlighted in our previous study (Goyal et al.2013) in which we developed eight different models by considering two types of metrics i.e. Chidamber and Kemerer (CK) and other object oriented (OO) metrics (Chidamber and Kemerer1994). These models describe different possibilities of two-term interaction in which the first four models take combinations of CK and OO into consideration. The four remaining models consider CK, OO and their combination separately with or without quadratic terms.
Through our earlier findings, we statistically established that the full-interaction model in which, linear two-term interaction with self-interacting terms outperforms other models.
Though the models developed in the previous study were statistically effective, the large number of predictive variables arising from interaction may lead to the over-fitting of data, thereby giving rise to prediction errors.
In this study our goal is to select the most influential metrics, derived through the interaction, since all candidate complexity metrics may not have equally resolute predictive powers. In order to reduce the dimensionality of data a feature selection technique needs to be utilized. For the purpose of this paper, we have used stepwise regression.
Through applying stepwise regression a subset of predictors that optimally models the measured responses has been computed, which yields the most influential combination of predictive variables.
Data and mathematical methods used
The following methodology has been implemented in order to select those suitable variables, from amongst the chosen predicting variable set, taken into account in this study.
Selection and structure of the dataset
Description of class level source metrics
CK Metric (Chidamber and Kemerer1994) | Interpretation |
---|---|
Coupling between bbject classes (CBO) | Investigates the coupling between classes by taking the dependency of one class with other classes into consideration. |
Depth of the inheritance tree (DIT) | Investigates the complexity of inheritance hierarchy by counting ancestor levels in the inheritance tree. |
Lack of cohesion metric (LCOM) | Investigates cohesion with a class by measuring the dissimilarity of methods. |
Response for the classes (RFC) | Investigates the coupling between classes by calculating the sum of the number of local methods and the methods that can be called remotely. |
Weighted methods per class (WMC) | Investigates the complexity of class by summing up the complexity of methods. |
Number of children (NOC) | Investigates complexity of inheritance hierarchy by counting the number of immediate subclasses of a class. |
OO (Object oriented) | Interpretation |
NOA | Number of attributes. |
FanIn | Number of other classes that reference the class. |
FanOut | Number of other classes referenced by the class. |
NOAI | Number of attributes inherited. |
NLOC | Number of lines of code. |
NOM | Number of methods. |
NOMI | Number of methods inherited. |
NOPRA | Number of private attributes. |
NOPRM | Number of private methods. |
NOPA | Number of public attributes. |
NOPM | Number of public methods. |
Multiple linear regression (MLR)
where α_{0} = intercept term, α_{1}, α_{2}: coefficients for the independent variables and ϵ is a random error component.
MLR with interaction
where α_{0} = intercept term, α_{1}, α_{2}: coefficients for the independent variables and α_{12}: coefficient for the interaction term; x_{1}, x_{2}: values taken by the independent variables.
Formation of a set of linearly interacting terms
Step 1: Consider n variables i.e. x_{1} to x_{n}.
Step 2: For a variable x_{1}, consider pairwise interaction with remaining n-1 variables.
Step 3: Repeat step 2 for all other remaining variables as well.
The systematic execution of steps 1–3 result in [n (n-1)/2] + n number of variables arranged as a triangular matrix with the diagonal values as zero, since the self-interaction between variables resulting in quadratic terms are not being considered here. For example for 17 variables, the set would comprise of [(17 *16) /2] +17 = 153 linearly interacting terms.
Triangular Matrix representing interacting terms
- (i)
For CK metric analysis: 21
- (ii)
For OO metric analysis: 66
- (iii)
For CK + OO analysis: 153
Experimental design and statistical measures used
Empirical aspect of the dataset
Dataset | Release | No. of records | No. of classes | No. of attributes | No. of defects | Percentage of defect |
---|---|---|---|---|---|---|
Mylyn | 3.1 | 1862 | 2196 | 17 | 340 | 18.26 |
PDE | 3.4.1 | 1497 | 1562 | 17 | 341 | 22.78 |
Eclipse | 3.4 | 997 | 997 | 17 | 374 | 37.51 |
Equinox | 3.4 | 324 | 439 | 17 | 244 | 75.31 |
Lucene | 2.4.0 | 691 | 691 | 17 | 97 | 14.04 |
To compare the performance of the models developed, we present R^{2}, Adjusted R^{2} values as statistical measures. The R^{2} measures the percentage of explained variation in the dependent variable of a predictive model by taking every independent variable into consideration. Its value lies in between 0 and 1, with a value closer to one indicating the strong predictive capability of the model developed. However, value of R^{2} can be increased by including more independent variables which may not be having sufficient explanatory power. Thus, the value of R^{2} needs to be adjusted for the degree of freedom. The adjusted R^{2} is a preferred statistical measure to ascertain the fitness of the model; it quantifies the percentage of variance explained by only those independent variables which actually touch on the dependent variable (Runkler 2012). A value of Adj. R^{2} approaching to 1 indicates better performance of predictive models.
where SSE = Sum of squared error of the dependent variable
SST = Sum of squared derivation of the dependent variable
n = Sample size
p = Number of predictors (independent variables)
Step-wise regression (SWR)
In regression analysis with a long list of independent variables, some of which may not be useful predictors, the purpose is to find the best subset of independent variables. Trying out all subsets would result in too large a number of possibilities. For example, in our experiment the number of possibilities would be 2^{153} -1, which is too a large number to compute within the scope of this model, thereby making the problem computationally intractable.
The stepwise model–building technique (Draper and Smith 1981) could be one potential solution to this problem. Within this technique the predictor variables are included one at a time, depending upon whether the included variable increases the adjusted R^{2} or not. Initially, the R^{2} value of each variable is considered independently, following which stepwise regression is implemented, starting with that variable that has the highest value of R^{2} and moving on to the next variable with next highest R^{2} value. This process continues until the adjusted R^{2} starts decreasing. The adjusted R^{2} is used as a “stepping” criterion here.
Results and discussion
The repercussion of considering interaction amongst metrics in the development of a predictive model
Statistical measures with (WI) and without (WOI) interaction of metrics
Metrics | Mylyn | PDE | Eclipse | Equinox | Lucene | No of variables | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
R^{2} | Adj R^{2} | R^{2} | Adj R^{2} | R^{2} | Adj R^{2} | R^{2} | Adj R^{2} | R^{2} | Adj R^{2} | ||
CK (WOI) | 0.1186 | 0.1157 | 0.0614 | 0.0576 | 0.3856 | 0.3818 | 0.5652 | 0.5570 | 0.3838 | 0.3784 | 6 |
CK (WI) | 0.1877 | 0.1784 | 0.0976 | 0.0848 | 0.5318 | 0.5217 | 0.6826 | 0.6605 | 0.4202 | 0.4020 | 21 |
OO (WOI) | 0.1757 | 0.1708 | 0.6271 | 0.6243 | 0.4129 | 0.4064 | 0.6320 | 0.6191 | 0.2457 | 0.2335 | 11 |
OO (WI) | 0.3516 | 0.3277 | 0.7049 | 0.6912 | 0.6210 | 0.5941 | 0.8349 | 0.7925 | 0.5774 | 0.4996 | 66 |
CK + OO (WOI) | 0.2024 | 0.1950 | 0.6439 | 0.6398 | 0.4280 | 0.4190 | 0.6906 | 0.6730 | 0.4049 | 0.3899 | 17 |
CK + OO (WI) | 0.4784 | 0.4316 | 0.7683 | 0.7419 | 0.7933 | 0.7558 | 0.9384 | 0.8830 | 0.6847 | 0.5948 | 153 |
In Table 3, Mylyn exhibits lower values of Adj. R^{2} when compared to other software modules for CK and OO both (with and without interaction). This may be due to the fact that the procedural code complexity of the methods of a class has not been taken into account and this study focuses only on object oriented metrics.
Obtaining a reduced set of influential terms
List of reduced set of metrics for the combination of CK and OO metrics
Total number of interacting metrics = 153 | ||
---|---|---|
Software module | Reduced set of metrics | No. of reduced metrics |
Mylyn | CBO, RFC, NOA, FanIn, FanOut, CBO + DIT, CBO + RFC, CBO + NLOC, CBO + NOM, LCOM + NOA, LCOM + FanOut, LCOM + NOPRA, LCOM + NOPRM, RFC + NOM, RFC + NOPRM, WMC + NOC, WMC + NOPRM, WMC + NOPM, NOC + NOPRM, NOA + FanOut, FanIn + FanOut, FanIn + NOMI, FanIn + NOPRM, FanIn + NOPA, FanIn + NOPM, FanOut + NLOC, FanOut + NOPM, NLOC + NOPRM, NOPRA + NOPA, NOPRA + NOPM, NOPRM + NOPM, NOPA + NOPM, DIT + WMC, NOC + FanOut, FanOut + NOPRM, FanOut + NOMI | 36 |
PDE | RFC, NOA, NOPRM, CBO + LCOM, DIT + LCOM, DIT + WMC, NOA + NOPRA, NOA + NOPA, FanIn + FanOut, FanOut + NLOC | 10 |
Lucene | LCOM, NOPRA, LCOM + WMC, LCOM + NOPA, RFC + NOC, RFC + FanOut, RFC + NOPM, WMC + NOPM, NOC + NOMI, NOC + NOPA, FanOut + NLOC, NOMI + NOPRA, NOMI + NOPRM, NOMI + NOPM, NOPRA + NOPA, NOPRM + NOPM | 16 |
Equinox | CBO, WMC, NOMI, NOPRA, NOPRM, CBO + DIT, DIT + FanOut, LCOM + NOC, LCOM + NOAI, RFC + FanIn, WMC + FanOut, NOC + FanOut, NOA + NOAI, FanIn + FanOut, FanIn + NOPRA, FanIn + NOPRM, FanIn + NOPA, NLOC + NOMI, NOM + NOPRM | 19 |
Eclipse | CBO, RFC, NOPM, CBO + FanOut, DIT + WMC, DIT + NLOC, DIT + NOM, LCOM + NOAI, RFC + NOC, RFC + NOAI, RFC + NOPRA, RFC + NOPRM, RFC + NOPA, WMC + FanIn, WMC + NOAI, WMC + NLOC, WMC + NOM, WMC + NOPRM, WMC + NOPM, NOC + FanIn, NOC + FanOut, NOC + NLOC, NOA + NOPM, FanIn + NOPA, FanOut + NOAI, FanOut + NOM, FanOut + NOPM, NOAI + NLOC, NOAI + NOMI, NOAI + NOPRM, NLOC + NOPRA, NLOC + NOPRM, NLOC + NOPA, NOM + NOPRM, NOM + NOPA, NOMI + NOPA | 36 |
List of the reduced set of metrics considering CK metrics only
Total number of interacting metrics = 21 | ||
---|---|---|
Software module | Reduced set of metrics | No. of reduced variables |
Mylyn | CBO, RFC, RFC + WMC, RFC + NOC, WMC + NOC | 5 |
PDE | RFC, DIT + WMC | 2 |
Lucene | LCOM, CBO + RFC | 2 |
Equinox | CBO, CBO + LCOM, LCOM + NOC | 3 |
Eclipse | CBO, RFC, CBO + RFC, DIT + LCOM, DIT + WMC, RFC + WMC, RFC + NOC | 7 |
List of the reduced set of metrics considering OO metrics only
Total number of interacting metrics = 66 | ||
---|---|---|
Software module | Reduced set of metrics | No. of reduced variables |
Mylyn | NOA, FanOut, NOPRM, NOA + FanOut, FanIn + NOPA, FanOut + NOM, FanOut + NOMI, FanOut + NOPRM, FanOut + NOPM, NLOC + NOPRM, NOM + NOPRA, NOM + NOPRM, NOPRA + NOPRM, NOPRA + NOPM, NOPRM + NOPM, NOMI + NOPRA, NOMI + NOPRM | 17 |
PDE | NOA, FanOut, NLOC, NOA + NOPRA, FanOut + NOMI, NOMI + NOPRM | 6 |
Lucene | NOM, NOA + FanIn, FanIn + NOPRA, FanIn + NOPA, FanOut + NOM, FanOut + NOPA, NOMI + NOPRA, NOMI + NOPA | 8 |
Equinox | FanIn, FanOut, FanIn + NLOC, FanIn + NOPRA, NLOC + NOMI | 5 |
Eclipse | NOA, FanIn, FanOut, NOAI, NLOC, NOPA, NOA + FanIn, NOA + FanOut, NOA + NLOC, FanIn + FanOut, FanIn + NLOC, FanIn + NOPRM, FanOut + NOM, FanOut + NOPRA, FanOut + NOAI, NOAI + NLOC, NOAI + NOPA, NLOC + NOPA, NLOC + NOPM, NOMI + NOPA, NOPRA + NOPA, NOPRM + NOPM | 22 |
SWR was then conducted for CK and OO metrics in isolation. The total number of possibilities is 21 in the case of CK and 66 for OO. Again, we can observe a significant reduction in the number of relevant interacting metrics as is evident from Tables 5 and6.
Superset of interacting terms for all software modules
Superset of all metrics included in all five software modules
Metrics | Superset of reduced and influential metrics | No. of reduced metrics |
---|---|---|
CK (WI) | CBO, LCOM, RFC, CBO + LCOM, CBO + RFC, DIT + LCOM, DIT + WMC, LCOM + NOC, RFC + WMC, RFC + NOC, WMC + NOC | 11 |
OO (WI) | NOA, FanIn, FanOut, NOAI, NLOC, NOM, NOPRM, NOPA, NOA + FanIn, NOA + FanOut, NOA + NLOC, NOA + NOPRA, FanIn + FanOut, FanIn + NLOC, FanIn + NOPRA, FanIn + NOPRM, FanIn + NOPA, FanOut + NOM, FanOut + NOMI, FanOut + NOPRA, FanOut + NOPRM, FanOut + NOPA, FanOut + NOPM, NOAI + NLOC, NOAI + NOPA, NLOC + NOMI, NLOC + NOPRM, NLOC + NOPA, NLOC + NOPM, NOM + NOPRA, NOM + NOPRM, NOMI + NOPRA, NOMI + NOPRM, NOMI + NOPA, NOPRA + NOPRM, NOPRA + NOPA, NOPRA + NOPM, NOPRM + NOPM | 38 |
CK + OO (WI) | CBO, LCOM, RFC, WMC, NOA, FanIn, FanOut, NOMI, NOPRA, NOPRM, NOPM, CBO + DIT, CBO + LCOM, CBO + RFC, CBO + FanOut, CBO + NLOC, CBO + NOM, DIT + LCOM, DIT + WMC, DIT + FanOut, DIT + NLOC, DIT + NOM, LCOM + WMC, LCOM + NOC, LCOM + NOA, LCOM + FanOut, LCOM + NOAI, LCOM + NOPRA, LCOM + NOPRM, LCOM + NOPA, RFC + NOC, RFC + FanIn, RFC + FanOut, RFC + NOAI, RFC + NOM, RFC + NOPRA, RFC + NOPRM, RFC + NOPA, RFC + NOPM, WMC + NOC, WMC + FanIn, WMC + FanOut, WMC + NOAI, WMC + NLOC, WMC + NOM, WMC + NOPRM, WMC + NOPM, NOC + FanIn, NOC + FanOut, NOC + NLOC, NOC + NOMI, NOC + NOPRM, NOC + NOPA, NOA + FanOut, NOA + NOAI, NOA + NOPRA, NOA + NOPA, NOA + NOPM, FanIn + FanOut, FanIn + NOMI, FanIn + NOPRA, FanIn + NOPRM, FanIn + NOPA, FanIn + NOPM, FanOut + NOAI, FanOut + NLOC, FanOut + NOM, FanOut + NOMI, FanOut + NOPRM, FanOut + NOPM, NOAI + NLOC, NOAI + NOMI, NOAI + NOPRM, NLOC + NOMI, NLOC + NOPRA, NLOC + NOPRM, NLOC + NOPA, NOM + NOPRM, NOM + NOPA, NOMI + NOPRA, NOMI + NOPRM, NOMI + NOPA, NOMI + NOPM | 83 |
The influential metrics thus identified have increased information content as fault predictors, encompassing different aspects of the measurement of software characteristics. Brief description of metrics discussed in results is given in Table 1.
Referring to Table 7, while first considering CK metrics with interaction [CK (WI)]; coupling between objects (CBO), lack of cohesion of methods (LCOM), and response for class (RFC) metrics are influential in isolation, hence appearing individually and affirming the results reported by (Gyimothy et al. 2005). In furtherance of this, other influential metrics derived in CK (WI) as shown in Table 7 are appearing as interacting terms.
The individual characteristics of LCOM measure the level of relatedness among the methods of a class, and those of CBO measure the dependence of this class to other classes. The interrelatedness of these individual metrics, i.e. CBO and LCOM, can be justified by the fact that they both share class attributes, member functions and the use of the attributes by these methods, consequently appearing as CBO + LCOM.
Weighted method per class (WMC) is the weighted sum of the complexity of the methods and both CBO and RFC are based on the invocation of a method from another class, thereby making them related to one another (RFC + WMC, CBO + RFC). Further, the interdependence of CBO and depth of inheritance tree (DIT) can be explained on account of the fact that the coupling between classes, arising from inheritance, will be higher for the classes which have high values of DIT (Subramanyam and Krishnan 2003). CK metrics, in general, refer to the different aspects of a class design; that is identification, semantics and relationship with other classes and are often interrelated (Chidamber et al. 1998).
Regarding the predictive capability of inheritance metrics i.e. DIT and number of children (NOC), contradictory results have been reported in literature (Okutan and Yildiz 2012;Yu 2012;Basili et al. 1996;Gyimothy et al. 2005;Subramanyam and Krishnan 2003). Nevertheless, our results indicate that their combination (interaction) with other metrics like WMC, LCOM and RFC becomes a determining factor in the accuracy of the fault prediction model.
Other OO metrics used in this paper have the additional advantage of simplicity in the measurement of software characteristics; that is complexity, reusability, encapsulation and modularity. As is evident from Table 3, these metrics exhibit predictive power equivalent to CK metrics, if not better.
Similar to the argument presented for CK (WI), within OO (WI) in Table 7 dominant OO metrics in isolation are number of attributes (NOA), FanIn, FanOut, number of attributes inherited (NOAI), NLOC, number of methods (NOM), number of private methods (NOPRM) and number of public attributes (NOPA). Whereas FanOut, FanIn, NLOC, number of private attributes (NOPRA) and NOPRM metrics are more frequently used in interacting terms.
The majority (42 out of 83) of influential metrics considered under CK + OO (WI) is derived from the combination (with interaction) of CK and OO metrics. Subsequently, it has been observed that the metric FanOut appears in combination with all CK metrics, which further validates the applicability of inter-class metrics when used in combination. Out of 30 interacting OO metrics from within CK + OO (WI), metrics like NOPRA, NOPA, NOPRM, number of public methods (NOPM) and number of methods inherited (NOMI) frequently appear in combination. These primitive OO metrics quantify the basic building blocks of a typical object oriented software module and contribute significantly to the development of a fault prediction model.
Statistical measures for superset of CK, OO metrics and their combination
CK metrics | ||||
Software modules | With superset of 11 interacting terms | With total 21 interacting terms | ||
Mylyn | 0.1709 | 0.1660 | 0.1877 | 0.1784 |
PDE | 0.0909 | 0.0842 | 0.0976 | 0.0848 |
Lucene | 0.4010 | 0.3913 | 0.4202 | 0.4020 |
Equiox | 0.6490 | 0.6366 | 0.6826 | 0.6605 |
Eclipse | 0.5071 | 0.5016 | 0.5318 | 0.5217 |
OO metrics | ||||
Software modules | With superset of 38 interacting terms | With total 66 interacting terms | ||
R^{2} | Adj R^{2} | R^{2} | Adj R^{2} | |
Mylyn | 0.3134 | 0.2991 | 0.3516 | 0.3277 |
PDE | 0.6709 | 0.6623 | 0.7049 | 0.6912 |
Lucene | 0.4918 | 0.4622 | 0.5774 | 0.4996 |
Equiox | 0.7887 | 0.7605 | 0.8349 | 0.7925 |
Eclipse | 0.5527 | 0.5349 | 0.6210 | 0.5941 |
Combination of CK and OO metrics | ||||
Software modules | With superset of 83 interacting terms | With total 153 interacting terms | ||
R^{2} | Adj R^{2} | R^{2} | Adj R^{2} | |
Mylyn | 0.4156 | 0.3883 | 0.4784 | 0.4316 |
PDE | 0.7204 | 0.7040 | 0.7683 | 0.7419 |
Lucene | 0.5934 | 0.5378 | 0.6847 | 0.5948 |
Equiox | 0.8580 | 0.8089 | 0.9384 | 0.8830 |
Eclipse | 0.7217 | 0.6964 | 0.7933 | 0.7558 |
Threats to validity
Certain issues that could have an effect on the results of the study and may have subsequently limited our interpretations were identified;
The scope of this paper is restricted to two-term interaction effects in the context of linear regression. Non-linear regression has other well developed heuristic based approaches of feature selection, which are beyond the scope of this paper.
In SWR a unique optimal subset of variables is presumed, however the presence of multiple optimal solutions cannot be denied. Thus, the process presented herein may be augmented by an additional step to identify the "best" of all the possible subsets, obtained after the slaying of a cycle of SWR.
Five different Java based software modules, each with a reasonable number of records, were considered in this study. In order to further support the derived results, software modules implemented in other programming languages may also be considered.
Conclusion
The objective of this study was to find the set of influential interacting predictive variables in dealing with interaction based predictive modelling. A total of 17 metrics derived from the dataset taken were used in isolation, as well as in combination. Statistics generated reveal that the impact of interaction results in a fairly increased value of Adjusted R^{2}, and this claim is further supported by calculations made for all five software modules in the given dataset. However, not all interactions are equally contributing. To find the most influential subset of interacting terms, SWR was conducted up to a 10% threshold of Adjusted R^{2} (up to 90% of its value) and the resulting [reduced] set of metrics which contribute the most towards prediction was thereby obtained. This reduced set of metrics derived, was further computed for all software modules in the dataset.
Adherence to the guidelines and methodology suggested in this article should assist readers in understanding interaction effects in fault prediction and finding an influential subset. A regression model containing interactive relationships has an edge over simple additive models, if not for the fact that it leads to the further requirement of deriving a reduced set of variables from the increased set obtained. The scope of this paper is, however, limited to interaction effects in the context of linear regression.
Web sites
Bug Prediction Dataset: [online]http://bug.inf.usi.ch
Notes
Declarations
Acknowledgements
Corresponding author would like to take the opportunity to thank all those, who have assisted and aided him in the success of the favorable outcome of this study, especially, Mr. Tanveer Oberoi and Ms. Preeti Goyal to copyedit manuscript.
Authors’ Affiliations
References
- Basili VR, Briand LC, Melo WL: A validation of object-oriented design metrics as quality indicators. IEEE Trans Softw Eng 1996, 22(10):751-761. 10.1109/32.544352View ArticleGoogle Scholar
- Bibi S, Tsoumakas G, Stamelos I, Vlahavas I: Regression via Classification applied on software defect estimation. Expert Syst Appl 2008, 34(3):2091-2101. 10.1016/j.eswa.2007.02.012View ArticleGoogle Scholar
- Briand LC, Wüst J, Daly JW, Victor Porter D: Exploring the relationships between design measures and software quality in object-oriented systems. J Syst Softw 2000, 51(3):245-273. 10.1016/S0164-1212(99)00102-8View ArticleGoogle Scholar
- Chidamber SR, Kemerer CF: A metrics suite for object oriented design. IEEE Trans Softw Eng 1994, 20(6):476-493. 10.1109/32.295895View ArticleGoogle Scholar
- Chidamber SR, Darcy DP, Kemerer CF: Managerial use of metrics for object-oriented software: An exploratory analysis. IEEE Trans Softw Eng 1998, 24(8):629-639. 10.1109/32.707698View ArticleGoogle Scholar
- Cohen J, Cohen P, West SG, Aiken LS: Applied multiple Regression/correlation analysis for the behavioral sciences. 2nd edition. Hillsdale, NJ: Lawrence Erlbaum Associates; 2003.Google Scholar
- D’Ambros M, Lanza M, Robbes R: An extensive comparison of bug prediction approaches. In Mining Software Repositories (MSR), 2010 7th IEEE Working Conference. Cape Town, South Africa: IEEE; 2010:31-41.View ArticleGoogle Scholar
- D’Ambros M, Lanza M, Robbes R: Evaluating defect prediction approaches: a benchmark and an extensive comparison. Empir Softw Eng 2012, 17(4–5):531-577.View ArticleGoogle Scholar
- Denaro G, Pezzè M, Morasca S: Towards industrially relevant fault-proneness models. Int J Softw Eng Knowl Eng 2003, 13(04):395-417. 10.1142/S0218194003001366View ArticleGoogle Scholar
- Draper N, Smith H: Applied Regression Analysis. 2d edition. New York: John Wiley & Sons, Inc; 1981.Google Scholar
- Goyal R, Chandra P, Singh Y: “Impact of interaction in the combined metrics approach of fault prediction”. Softw Qual Prof 2013, 15(3):15-23. ASQGoogle Scholar
- Gyimothy T, Ferenc R, Siket I: Empirical validation of object-oriented metrics on open source software for fault prediction. IEEE Trans Softw Eng 2005, 31(10):897-910.View ArticleGoogle Scholar
- Khoshgoftaar TM, Allen EB, Deng J: Using regression trees to classify fault-prone software modules. IEEE Trans Reliab 2002, 51(4):455-462. 10.1109/TR.2002.804488View ArticleGoogle Scholar
- Nagappan N, Ball T, Zeller A: Mining metrics to predict component failures. In Proceedings of the 28th international conference on Software engineering. Shanghai, China: ACM; 2006:452-461.Google Scholar
- Okutan A, Yildiz OT: Software defect prediction using Bayesian networks. Empirical Software Engineering. LLC: Springer Science+Business Media; 2012:1-28.Google Scholar
- Pedhazur EJ: Multiple regression in behavioral research: Explanation and prediction. New York: Holt, Rinehart and Winston; 1997.Google Scholar
- Peters F, Menzies T, Marcus A: Better cross company defect prediction. In Proceedings of the Tenth International Workshop on Mining Software Repositories. San Francisco, CA, USA: IEEE; 2013:409-418.Google Scholar
- Radjenovic D, Herico M, Torkar R, Zivkovic A: Software fault prediction metrics: A systematic literature review. Inf Softw Technol 2013, 55: 1397-1418. 10.1016/j.infsof.2013.02.009View ArticleGoogle Scholar
- Raj Kiran N, Ravi V: Software reliability prediction by soft computing techniques. J Syst Softw 2008, 81(4):576-583. 10.1016/j.jss.2007.05.005View ArticleGoogle Scholar
- Runkler TA: Data Analytics: Models and Algorithms for Intelligent Data Analysis. Vieweg+Teubner Verlag Springer Fachmedien Wiesbaden; 2012.View ArticleGoogle Scholar
- Subramanyam R, Krishnan MS: Empirical analysis of ck metrics for object-oriented design complexity: Implications for software defects. IEEE Trans Softw Eng 2003, 29(4):297-310. 10.1109/TSE.2003.1191795View ArticleGoogle Scholar
- Thwin MMT, Quah T-S: Application of neural networks for software quality prediction using object-oriented metrics. J Syst Software 2005, 76(2):147-156. 10.1016/j.jss.2004.05.001View ArticleGoogle Scholar
- Yu L: Using Negative Binomial Regression Analysis to Predict Software Faults: A Study of Apache Ant. Int J Inf Technol Comput Sci 2012, 4(8):63.Google Scholar
Copyright
This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.