The surgical treatment of tibial pilon fractures includes open reduction and internal fixation, limited internal fixation combined with external fixation, minimally invasive treatment, and fusion of the ankle joint. According to the type of fracture and extent of soft tissue and open injury, early or delayed open reduction and internal fixation are chosen to reduce the occurrence of complications. Ankle arthroscopy may be used, along with open techniques of fracture repair. This can help to ensure normal alignment of bone and cartilage, and may also be used during fracture repair to look for cartilage injuries inside the ankle.
Sirkin et al. (2004) used open reduction and internal fixation to treat high-energy tibial fractures in a two-stage protocol according to the characteristics of the soft tissue injury. This protocol consisted of immediate open reduction and internal fixation of the fibular fracture at the early stage of injury, with simultaneous fixation of the tibial fracture using external fixators to span the ankle joint; then, anatomical reduction of the distal tibial articular surface and internal fixation were conducted after the repair of local soft tissue, to reduce the incidence of wound complications. Pollak et al. (2003) considered limited internal fixation combined with the use of external fixators to be optimal for treatment of patients with severe skeletal and soft tissue injuries; however, no advantage was shown over other methods in the treatment of patients without soft tissue injury. Japjec et al. (2013) treated 15 patients with pilon fractures (AO types C2 and C3) with fixation using external fixators and limited open reduction and internal fixation, and concluded that compared with formal open reduction and plate internal fixation, this method resulted in fewer wound complications and better ankle function.
Minimally invasive methods have been used to treat fractures according to the principles of biological osteosynthesis. Minimally invasive technology uses indirect reduction to reduce unnecessary exposure, and focuses on the management of surrounding soft tissue to protect the broken end of the fractures and surrounding blood supply, and thus improve the capacity for bony healing. Minimally invasive fixation includes percutaneous plate osteosynthesis, closed reduction and internal fixation with percutaneous cannulated screws, and arthroscopy-assisted reduction and internal fixation with percutaneous screws (Stasikelis et al. 1993; Müller and Sommer 2012; Puha et al. 2012; Tong et al. 2012; Ortmaier et al. 2015). Paluvadi et al. (2014) and Vidovic et al. (2015) used MIPO to treat distal tibial fractures, and reported good outcomes. Syed and Panchbhavi (2004) treated 7 patients with closed pilon fractures by using closed reduction and internal fixation with percutaneous cannulated screws, and reported excellent outcomes. The postoperative mean follow-up was 30.6 months, and the average score for ankle joint function was 90.8/100.
Joint fusion is rarely used in the initial treatment of fractures. It is only performed in patients with severe bone and soft tissue injury, especially those with ischemia, hypotension, multiple trauma, and serious neurological injuries (Crawford et al. 2014).
Arthroscopy and external fixators are used for the treatment of tibial pilon fractures, including AO type B and type C1-2 fractures. Cetik et al. (2007) treated a 42-year-old male patient with a tibial pilon fracture caused by high-energy trauma, with an arthroscopy-assisted unilateral external fixator and minimally invasive internal osteosynthesis. In this treatment, arthroscopy was used to reposition the fracture fragments and restore the joint surface, and the fracture fragments were fixed with screws immediately after being repositioned. The author believed that arthroscopy-assisted surgery combined with external fixator use and minimally invasive internal fixation was the optimal treatment for tibial pilon fractures, because external fixation could improve fracture alignment, arthroscopy could help restore the joint surface, and minimally invasive screws ensure fragment stability. Kralinger et al. (2003) also reported a case of closed distal tibial fracture (AO, C3) treated successfully with arthroscopy-assisted minimally invasive reduction and percutaneous screw fixation, and obtained a good outcome.
Atesok et al. (2011) published an investigation indicating that arthroscopy-assisted techniques in intra-articular fracture fixation are minimally invasive and have high accuracy, and have been successfully used for the treatment of fractures of the tibial plateau, tibial intercondylar eminence, tibial pilon, calcaneus, femoral head, glenoid, greater tuberosity, distal clavicle, radial head, coronoid, distal radius, and scaphoid. The main disadvantages of these techniques were the time-consuming and technically demanding nature of the procedures and the prolonged learning curve.
We believe that the major advantages of arthroscopy-assisted minimally invasive reduction with use of external fixators include a small wound, reduction under direct vision, and protection of the soft tissue and blood supply to the fractures. An external fixator provides indirect reduction and an effective operating space for arthroscopic implantation, especially for AO type B fractures and partial C1 fractures. This method has not been proven to be effective in the treatment of B3 and C3 fractures in clinical practice.
This study still has some limitations; for example, this method has not been compared with other traditional internal fixation methods, and few cases of tibial pilon fractures have been treated with arthroscopy-assisted minimally invasive reduction with the use of external fixators.