Open Access

Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials

SpringerPlus20165:1920

https://doi.org/10.1186/s40064-016-3585-3

Received: 12 July 2016

Accepted: 20 October 2016

Published: 4 November 2016

Abstract

In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite–Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained earlier by Pathan and Khan are also pointed out.

Keywords

Hermite polynomialsBernoulli polynomialsEuler polynomials and Genocchi polynomialsHermite–Bernoulli polynomialsHermite–Euler polynomialsHermite–Genocchi polynomialsSymmetric identities

Mathematics Subject Classification

05A1511B6833C4533C99

Background

Let \(H_n(x,y)\) be denoted by the 2-variable Kampé de Fériet generalization of the Hermite polynomials Bell (1934) and Dattoli et al. (1999) defined as
$$\begin{aligned} H_n(x,y)=n!\sum \limits _{r=0}^{[\frac{n}{2}]}\frac{y^rx^{n-2r}}{r!(n-2r)!} \end{aligned}$$
(1)
These polynomials are usually defined by the generating function as
$$\begin{aligned} e^{xt+yt^2}=\sum \limits _{n=0}^{\infty }H_n(x,y)\frac{t^n}{n!} \end{aligned}$$
(2)
and reduce to the ordinary Hermite polynomials \(H_n(x)\) (see Andrews 1985) when \(y=-1\) and x is replaced by 2x.
The generalized Bernoulli polynomials \(B_{n}^{(\alpha )}(x)\) of order \(\alpha \), \(\alpha \in \mathbb C\), the generalized Euler polynomials \(E_n^{(\alpha )}(x)\) of order \(\alpha \), \(\alpha \in \mathbb C\) and the generalized Genocchi polynomials \(G_n^{(\alpha )}(x)\) of order \(\alpha \), \(\alpha \in \mathbb C\), each of degree n as well as in \(\alpha \) are defined respectively by the following generating functions (see Dere and Simsek 2015, [Erdelyi et al. (1953), vol. 3, p. 253 et seq.], [Luke (1969), Section 2.8] and Luo et al. 2003; Pathan 2012; Pathan and Khan 2014, 2015, 2016; Simsek 2010; Srivastava et al. 2012):
$$\begin{aligned} \left( \frac{t}{e^t-1}\right) ^{\alpha }e^{xt}=\sum \limits _{n=0}^{\infty }B_{n}^{(\alpha )}(x)\frac{t^n}{n!},\quad (|t| < 2\pi ; 1^{\alpha }=1) \end{aligned}$$
(3)
$$\begin{aligned} \left( \frac{2}{e^t+1}\right) ^{\alpha }e^{xt}=\sum \limits _{n=0}^{\infty }E_{n}^{(\alpha )}(x)\frac{t^n}{n!},\quad (|t| < \pi ; 1^{\alpha }=1) \end{aligned}$$
(4)
and
$$\begin{aligned} \left( \frac{2t}{e^t+1}\right) ^{\alpha }e^{xt}=\sum \limits _{n=0}^{\infty }G_{n}^{(\alpha )}(x)\frac{t^n}{n!}, \quad (|t| < \pi ; 1^{\alpha }=1) \end{aligned}$$
(5)
It is easy to see that
$$\begin{aligned} B_n^{(\alpha )}(x)=B_{n}^{(\alpha )}(x;1), \quad E_n^{(\alpha )}(x)=E_{n}^{(\alpha )}(x;1) \end{aligned}$$
and
$$\begin{aligned} G_n^{(\alpha )}(x)=G_{n}^{(\alpha )}(x;1)\quad(n\in \mathbb N) \end{aligned}$$
(6)
Moreover
$$\begin{aligned} B_n (1)-B_n=\delta _{(n,1)},\quad n\ge 0 \end{aligned}$$
(7)
For each \(k\in \mathbb N_0\), \( S_k(n) \) defined by
$$\begin{aligned} S_k(n)=\sum \limits _{j=0}^{n}j^k \end{aligned}$$
(8)
is called the sum of integer powers Tuenter (2001). The exponential generating function for \(S_k(n)\) is given by
$$\begin{aligned} \sum \limits _{k=0}^{\infty }S_k(n)\frac{t^k}{k!}=\frac{e^{(n+1)t}-1}{e^t-1} \end{aligned}$$
(9)
For each \(k\in \mathbb N_0\), \( T_k(n)\) defined by
$$\begin{aligned} T_k(n)=\sum \limits _{j=0}^{n}(-1)^j {j^k} \end{aligned}$$
(10)
is called the alternating sum. The exponential generating function for \(T_k(n)\) is
$$\begin{aligned} \sum \limits _{k=0}^{\infty }T_k(n)\frac{t^k}{k!}=\frac{1-{(-e^t)}^{(n+1)}}{1+e^t} \end{aligned}$$
(11)
The following are some special values
$$\begin{aligned}&S_k (0)=T_k(0)=\delta _{(0,k)}\nonumber \\&S_k(1)=0^k+1^k=\delta _{(0,k)}+1, \quad T_k (1)=0^k-1^k=\delta _{(0,k)}-1 \end{aligned}$$
(12)
where \( \delta _{(i,j)}\) is the Kronecker delta defined by \(\delta _{(i,j)}=1\) for \( i=j \) and \( \delta _{(i,j)}=0\) for \(i\ne j\).
A close relation of the power sum and the Bernoulli polynomials, also the alternate sum and the Euler polynomials, can be seen in Abramowitz and Stegun [1972, Eq.(23.1.4)] as follows
$$\begin{aligned} S_k(n)=\sum \limits _{i=0}^{n}{i^k}=\frac{{B_{k+1}(n+1)}-{B_{k+1}}}{k+1} \end{aligned}$$
(13)
$$\begin{aligned} (-1)^nT_k(n)=\sum \limits _{i=0}^{n}(-1)^{n-i}i^k=\frac{E_k{(n+1)}+(-1)^nE_k{(0)}}{2} \end{aligned}$$
(14)
where n and k are nonnegative integers.
The hyperbolic cotangent and the hyperbolic tangent (Weisstein http://mathworld.wolfram.com) respectively are defined by
$$\begin{aligned} cothz=\frac{e^{2z}+1}{e^{2z}-1}=\sum \limits _{n=-1}^{\infty }\frac{2^n(B_{n+1}+B_{n+1}(1))}{(n+1)!}z^n=\sum \limits _{n=0}^{\infty }\frac{2^{n-1}(B_n+B_n(1))}{n!}z^{n-1} \end{aligned}$$
(15)
and
$$\begin{aligned} tanhz=\frac{e^{2z}-1}{e^{2z}+1}=\sum \limits _{n=1}^{\infty }\frac{2^{n+1}(2^{n+1}-1)B_{n+1}}{(n+1)!}z^n \end{aligned}$$
(16)
Therefore
$$\begin{aligned} tanhz=-\sum \limits _{n=1}^{\infty }E_n (0)\frac{{(2z)}^n}{n!} \end{aligned}$$
(17)
where
$$\begin{aligned} E_n(0)=\frac{2(1-2^{n+1})}{(n+1)}B_{n+1}, ~n\ge 0, \quad ({\text{see}}\,[1,\,{\text{Eq.}}\,(23.1.20)]).\end{aligned}$$
Pathan and Khan (2015) introduced the generalized Hermite–Bernoulli polynomials for two variables \({}_HB_n^{(\alpha )}(x,y)\) defined by
$$\begin{aligned} \left( \frac{t}{e^t-1}\right) ^{\alpha }e^{xt+yt^2}=\sum \limits _{n=0}^{\infty }{}_HB_n^{(\alpha )}(x,y)\frac{t^n}{n!} \end{aligned}$$
(18)
which is essentially a generalization of Bernoulli numbers, Bernoulli polynomials, Hermite polynomials and Hermite–Bernoulli polynomials \({_HB}_n(x,y)\) introduced by Dattoli et al. [1999, p. 386 (1.6)] in the form
$$\begin{aligned} \left( \frac{t}{e^t-1}\right) e^{xt+yt^2}=\sum \limits _{n=0}^{\infty }{}_HB_n(x,y)\frac{t^n}{n!} \end{aligned}$$
(19)
The purpose of this paper is to give some general symmetry identities for generalized Hermite–Euler, Hermite–Genocchi and mixed type polynomials by using different analytical means on their respective generating functions. These results extend some known identities of Hermite, Bernoulli, Euler, Genocchi and mixed type polynomials studied by Dattoli et al. (1999), Liu and Wang (2009), Pathan (2012) and Pathan and Khan (2014, 2015, 2016).

Symmetry identities for generalized Hermite–Euler polynomials

In this section, we establish general symmetry identities for the generalized Hermite–Euler polynomials \({}_HE_{n}^{(\alpha )}(x,y)\), of order\(\alpha \) and alternate power sum. Throughout this section \(\alpha \) will be taken as an arbitrary real or complex parameter.

Theorem 1

For integers \(n\ge 0\), \(a\ge 1\) and \(b\ge 1,\) if a and b have the same parity, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{n-k}b^{k}{}_HE_{n-k}^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{k}b^{n-k} {}_HE_{n-k}^{(\alpha )}(ax,a^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i(b-1)E_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(20)

Proof

Let \(G(t)=:\frac{2^{2{\alpha }-1}(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}+1)^{\alpha }(e^{bt}+1)^{\alpha }}\)
$$\begin{aligned}G(t)&={\left( \frac{2}{e^{at}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1+e^{bt}}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}}e^{abyt} \\& ={\left( \sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{i=0}^{\infty }T_i{(a-1)}\frac{(bt)^i}{i!}\right) } \left( \sum \limits _{k=0}^{\infty }E_k^{(\alpha -1)}{(ay)\frac{(bt)^k}{k!}}\right) \\&={\left( {\sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\frac{(at)^n}{n!}}\right) }{\left( \sum \limits _{k=0}^{\infty }\sum \limits _{i=0}^{\infty } {b^{i+k}}T_i{(a-1)}E_k^{(\alpha -1)}(ay)\frac{t^{i+k}}{i!k!}\right) } \\&={\sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\frac{(at)^n}{n!}}{\sum \limits _{k=0}^{\infty }{b^k}\sum \limits _{i=0} ^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i{(a-1)}E_{k-i}^{(\alpha -1)}(ay)\frac{t^k}{k!}} \\ G(t)&={\sum \limits _{n=0}^{\infty }\sum \limits _{k=0}^{\infty }{a^n}{b^k}{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k} \left( \begin{array}{lll}k\\ i\end{array}\right) T_i{(a-1)}E_{k-i}^{(\alpha -1)}(ay)\frac{t^{n+k}}{k!n!}} \end{aligned}$$
Replacing n by \(n-k\) in the R.H.S. of above equation, we get
$$\begin{aligned} G(t)={\sum \limits _{n=0}^{\infty }\left[ \sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^{n-k}}{b^k}{}_HE_{n-k} ^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i{(a-1)}E_{k-i}^{(\alpha -1)}(ay)\right] }\frac{t^{n}}{n!} \end{aligned}$$
(21)
Using a similar plan, we get
$$\begin{aligned} G(t)={\sum \limits _{n=0}^{\infty }\left[ \sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^{n-k}}{a^k}{}_HE_{n-k} ^{(\alpha )}(ax,a^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i{(b-1)}E_{k-i}^{(\alpha -1)}(by)\right] }\frac{t^{n}}{n!} \end{aligned}$$
(22)
By comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S of above Eqs. (21) and (22), we arrive at the desired result.

Remark 1

For \(z=0\) in Theorem (1), the result reduces to known result of Liu and Wang [2009, p. 3348, (2.1)].

Corollary 1

For integers \( n\ge 0\), \(a\ge 1\) and \( b\ge 1 \) , if a and b have the same parity, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{n-k}b^{k}E_{n-k}^{(\alpha )}(bx)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay) \nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{k}b^{n-k} E_{n-k}^{(\alpha )}(ax)\sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i(b-1)E_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(23)

Theorem 2

For integers \( n\ge 0\), \(a\ge 1\) and \( b\ge 1 \) , if a is odd and b is even, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{n-k}b^{k}{}_HE_{n-k}^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =-2\sum \limits _{l=0,l\ne n}^{n+1}\left( \begin{array}{lll}{n+1}\\ ~l~\end{array}\right) \frac{B_{n+1-l}}{n+1} a^{n-l}\sum \limits _{k=0}^{l} \left( \begin{array}{lll}l\\ k\end{array}\right) b^{n-k}a^{k}{}_HE_{l-k}^{(\alpha )}(ax,a^{2}z)\nonumber \\&\qquad \times \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i(b-1)E_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(24)

Proof

Let \(G(t)=:\frac{2^{2{\alpha }-1}(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}+1)^{\alpha }(e^{bt}+1)^{\alpha }}\)
$$\begin{aligned}G(t)&={\left( \frac{2}{e^{at}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1+e^{bt}}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}}e^{abyt}\\ & ={\left( \sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{i=0}^{\infty }T_i{(a-1)}\frac{(bt)^i}{i!}\right) } \left( \sum \limits _{k=0}^{\infty }E_k^{(\alpha -1)}{(ay)\frac{(bt)^k}{k!}}\right) \\& ={\left( \sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{k=0}^{\infty }{b^k}\sum \limits _{i=0} ^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i{(a-1)}E_{k-i}^{(\alpha -1)}(ay)\frac{t^k}{k!}\right) } \end{aligned}$$
Replacing n by \(n-k\) in the R.H.S. of above equation, we get
$$\begin{aligned} G(t)={\sum \limits _{n=0}^{\infty }\left[ \sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^{n-k}}{b^k}{}_HE_{n-k} ^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i{(a-1)}E_{k-i}^{(\alpha -1)}(ay)\right] }\frac{t^{n}}{n!} \end{aligned}$$
(25)
Since G(t) is not symmetric in a and b, thus G(t) can also be expanded as
$$\begin{aligned}G(t)&={\left( \frac{2}{e^{bt}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{at})}^b}{1+e^{at}}\right) }{\left( \frac{1-{(-e^{bt})}^a}{1-{(-e^{at})}^b} \right) }{\left( \frac{2}{e^{at}+1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\& ={\left( \sum \limits _{l=0}^{\infty }{}_HE_{l}^{(\alpha )}(ax,a^{2}z)\frac{(bt)^l}{l!}\right) }{\left( \sum \limits _{i=0}^{\infty }T_i{(b-1)}\frac{(at)^i}{i!}\right) } \left( -\sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) \nonumber \\&\qquad \times \left( \sum \limits _{k=0}^{\infty }E_k^{(\alpha -1)}{(by)\frac{(at)^k}{k!}}\right) \nonumber \\G(t)&=\left( -\sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) {\left( \sum \limits _{l=0}^{\infty }{}_HE_{l}^{(\alpha )}(ax,a^{2}z)\frac{(bt)^l}{l!} \right) }\nonumber \\&\qquad \times {\left( \sum \limits _{k=0}^{\infty }\sum \limits _{i=0}^{k}a^k\left( \begin{array}{lll}k\\ i\end{array}\right) T_i{(b-1)}E_{k-i}^{(\alpha -1)}(by)\frac{t^k}{k!} \right) } \end{aligned}$$
(26)
Using identity (7) and comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of Eqs. (25) and (26), we get the desired result.

Remark 2

For \( z=0\) in Theorem (2), the result reduces to known result of Liu and Wang [2009, p. 3349, Theorem (4)].

Corollary 2

For integers \( n\ge 0\), \(a\ge 1\) and \( b\ge 1 \) , if a is odd and b is even, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{n-k}b^{k}E_{n-k}^{(\alpha )}(bx)\sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =-2\sum \limits _{l=0,l\ne n}^{n+1}\left( \begin{array}{lll}{n+1}\\ l\end{array}\right) \frac{B_{n+1-l}}{n+1} a^{n-l}\sum \limits _{k=0}^{l} \left( \begin{array}{lll}l\\ k\end{array}\right) b^{n-k}a^{k}E_{l-k}^{(\alpha )}(ax)\nonumber \\&\qquad \times \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) T_i(b-1)E_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(27)

Theorem 3

For integers \( n\ge 1\) , \(a\ge 1\) and \( b\ge 1\), if a is even and b is odd, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{n-k} b^k{}_HE_{n-k}^{(\alpha )}(bx,b^2 z)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{l=0}^{n-1}\left( \begin{array}{lll}n\\ l\end{array}\right) E_{n-l}(0)a^{n-l} \sum \limits _{k=0}^{l}\left( \begin{array}{lll}l\\ k\end{array}\right) b^{n-k} a^k {}_HE_{l-k}^{(\alpha )} (ax,a^2 z)\nonumber \\&\qquad \times \sum \limits _{i=0}^k\left( \begin{array}{lll}k\\ i\end{array}\right) T_i (b-1)E_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(28)

Proof

Let
$$\begin{aligned}G(t)&=:\frac{2^{2{\alpha }-1}(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}+1)^{\alpha }(e^{bt}+1)^{\alpha }}\nonumber \\G(t)&={\left( \frac{2}{e^{at}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1+e^{bt}}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\&={\left( \sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{i=0}^{\infty }T_i{(a-1)}\frac{(bt)^i}{i!}\right) } \left( \sum \limits _{k=0}^{\infty }E_k^{(\alpha -1)}{(ay)\frac{(bt)^k}{k!}}\right) \nonumber \\ \end{aligned}$$
(29)
Another expansion of G(t) is as follows :
$$\begin{aligned}G(t)&={\left( \frac{2}{e^{bt}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{at})}^b}{1+e^{at}}\right) } {\left( \frac{1-{(-e^{bt})}^a}{1-{(-e^{at})}^b}\right) }{\left( \frac{2}{e^{at}+1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\ &=\left( \sum \limits _{l=0}^{\infty }{}_HE_{l}^{(\alpha )}(ax,a^{2}z)\frac{(bt)^l}{l!}\right) \left( -\sum \limits _{n=0}^{\infty } \frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) \left( \sum \limits _{i=0}^{\infty }T_i{(b-1)}\frac{(at)^i}{i!}\right) \nonumber \\&\quad \times \left( \sum \limits _{k=0}^{\infty }E_k^{(\alpha -1)} {(by)\frac{(at)^k}{k!}}\right) \nonumber \\G(t)&=\left( \sum \limits _{l=0}^{\infty }{}_HE_{l}^{(\alpha )}(ax,a^{2}z)\frac{(bt)^l}{l!}\right) \left( -\sum \limits _{n=0}^{\infty } \frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) \nonumber \\&\quad \times \sum \limits _{k=0}^{\infty }\sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) a^kT_i{(b-1)}E_{k-i}^{(\alpha -1)}(by)\frac{t^k}{k!} \end{aligned}$$
(30)
Now using Eq. (17) and identity (7) and comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of Eqs. (29) and (30), we arrive at the desired result.

Remark 3

For \( z=0 \) in Theorem (3), the result reduces to known result of Liu and Wang [2009, p. 3350, (2.11)].

Corollary 3

For integers \( n\ge 1,\) \(a\ge 1\) and \( b\ge 1\), if a is even and b is odd, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{n-k} b^kE_{n-k}^{(\alpha )}(bx)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{l=0}^{n-1}\left( \begin{array}{lll}n\\ l\end{array}\right) E_{n-l}(0)a^{n-l} \sum \limits _{k=0}^{l}\left( \begin{array}{lll}l\\ k\end{array}\right) b^{n-k} a^k E_{l-k}^{(\alpha )}(ax)\nonumber \\&\qquad \times \sum \limits _{i=0}^k\left( \begin{array}{lll}k\\ i\end{array}\right) T_i (b-1)E_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(31)

Theorem 4

For integers \(n\ge 0\), \(a\ge 1 \) and \( b\ge 1\), if a and b have same parity, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0}^{a-1}{(-1)^i}{}_HE_k^{(\alpha )}(bx+{\frac{b}{a}}i,b^2z) E_{n-k}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^{n-k}}{b^k}\sum \limits _{i=0}^{b-1}{(-1)^i}{}_HE_k^{(\alpha )} (ax+{\frac{a}{b}}i,a^2z)E_{n-k}^{(\alpha -1)}(by) \end{aligned}$$
(32)

Proof

Let
$$\begin{aligned} G(t)=:\frac{2^{2{\alpha }-1}(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}+1)^{\alpha }(e^{bt}+1)^{\alpha }} \end{aligned}$$
We expand G(t) as follows :
$$\begin{aligned}G(t)&={\left( \frac{2}{e^{at}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1+e^{bt}}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}}e^{abyt}\\& ={\left( \frac{2}{e^{at}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \sum \limits _{i=0}^{a-1}(-1)^ie^{bti}\right) }{\left( \sum \limits _{n=0}^{\infty }E_n^ {(\alpha -1)}(ay)\frac{(bt)^n}{n!}\right) }\\&={\left( \sum \limits _{i=0}^{a-1}(-1)^i{\left( \frac{2}{e^{at}+1}\right) }^{\alpha }e^{(bx+\frac{b}{a}i)at+a^2b^2zt^2}\right) }{\left( \sum \limits _{n=0}^{\infty } E_{n}^{(\alpha -1)}(ay)\frac{(bt)^n}{n!}\right) }\\G(t)&={\left( \sum \limits _{i=0}^{a-1}(-1)^i\sum \limits _{k=0}^{\infty }{}_HE_k^{(\alpha )}(bx+\frac{b}{a}i;b^2z)\frac{(at)^k}{k!}\right) }{\left( \sum \limits _{n=0} ^{\infty }E_{n}^{(\alpha -1)}(ay)\frac{(bt)^n}{n!}\right) } \end{aligned}$$
Replacing n by \(n-k\) in the R.H.S. of above equation, we get
$$\begin{aligned} G(t)=\sum \limits _{n=0}^{\infty }\left[ \sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^kb^{n-k}\sum \limits _{i=0}^ {a-1}(-1)^i{}_HE_k^{(\alpha )}(bx+\frac{b}{a}i;b^2z)E_{n-k}^{(\alpha -1)}(ay)\right] \frac{t^n}{n!} \end{aligned}$$
(33)
Using a similar plan, we obtain
$$\begin{aligned} G(t)=\sum \limits _{n=0}^{\infty }\left[ \sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) b^ka^{n-k}\sum \limits _{i=0}^ {b-1}(-1)^i{}_HE_k^{(\alpha )}(ax+\frac{a}{b}i;a^2z)E_{n-k}^{(\alpha -1)}(by)\right] \frac{t^n}{n!} \end{aligned}$$
(34)
By comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of last two Eqs. (33) and (34), we arrive at the desired result.

Remark 4

For \(z=0\) in Theorem (4), the result reduces to known result of Liu and Wang [2009, Theorem 2.10].

Corollary 4

For integers \(n\ge 0\), \(a\ge 1 \) and \( b\ge 1\), if a and b have same parity, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0}^{a-1}{(-1)^i}E_k^{(\alpha )}(bx+{\frac{b}{a}}i) E_{n-k}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^{n-k}}{b^k}\sum \limits _{i=0}^{b-1}{(-1)^i}E_k^{(\alpha )} (ax+{\frac{a}{b}}i)E_{n-k}^{(\alpha -1)}(by) \end{aligned}$$
(35)

Theorem 5

For integers \(n\ge 0,\) \(a\ge 1\) and \(b\ge 1\), if a is odd and b is even, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0}^{a-1}{(-1)^i}{}_HE_k^{(\alpha )}(bx+{\frac{b}{a}}i,b^2z) E_{n-k}^{(\alpha -1)}(ay)\nonumber \\&\quad =-2\sum \limits _{l=0,l\ne n}^{n+1}\left({n+1}\right) \frac{B_{n+1-l}}{n+1} b^{n-l} \sum \limits _{k=0}^{l}{}\left( \begin{array}{lll}l\\ k\end{array}\right) a^{n-k}b^{k}\nonumber \\&\qquad \times \sum \limits _{i=0}^{b-1}(-1)^i{}_HE_k^{(\alpha )}(ax+\frac{a}{b}i,a^{2}z) E_{l-k}^{(\alpha -1)}(by) \end{aligned}$$
(36)

Proof

Let
$$\begin{aligned} G(t)=:\frac{2^{2{\alpha }-1}(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}+1)^{\alpha }(e^{bt}+1)^{\alpha }} \end{aligned}$$
In view of definition (1.15), G(t) has the following expansion:
$$\begin{aligned}&G(t)={\left( \frac{2}{e^{bt}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{at})}^b}{1+e^{at}}\right) }{\left( \frac{1-{(-e^{bt})}^a}{1-{(-e^{at})}^b} \right) }{\left( \frac{2}{e^{at}+1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\&\quad ={\left( -\sum \limits _{n=0}^{\infty }\frac{B_{n}+B_{n}(1)}{n!}abt^{n-1}\right) }{\left( \sum \limits _{i=0}^{b-1}{(-1)^i}\sum \limits _{n=0}^{\infty } {}_HE_n^{(\alpha )}(ax+{\frac{a}{b}}i,a^2z)\frac{(bt)^n}{n!}\right) }\nonumber \\&\qquad \times {\left( \sum \limits _{n=0}^{\infty }E_{n}^{(\alpha -1)}(by)\frac{(bt)^n}{n!}\right) } \end{aligned}$$
(37)
Using identity (7) and comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of Eqs. (33) and (37), we get the result (36).

Remark 5

For \(z =0\) in Theorem (5), the result reduces to known result of Liu and Wang [2009, Theorem (2.13)].

Corollary 5

For integers \(n\ge 0,\) \(a\ge 1\) and \(b\ge 1\), if a is odd and b is even, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0}^{a-1}{(-1)^i}E_k^{(\alpha )}(bx+{\frac{b}{a}}i) E_{n-k}^{(\alpha -1)}(ay) \nonumber \\&\quad =-2\sum \limits _{l=0,l\ne n}^{n+1}\left( \begin{array}{lll}{n+1}\\ l \end{array}\right) \frac{B_{n+1-l}}{n+1} b^{n-l} \sum \limits _{k=0}^{l}{}\left( \begin{array}{lll}l\\ k\end{array}\right) a^{n-k}b^{k}\nonumber \\&\qquad \times \sum \limits _{i=0}^{b-1}(-1)^iE_k^{(\alpha )}(ax+\frac{a}{b}i) E_{l-k}^{(\alpha -1)}(by) \end{aligned}$$
(38)

Symmetric identities for Hermite–Genocchi polynomials

In this section, we derive some symmetry identities for Hermite–Genocchi polynomials \({}_HG_{n}(x,y)\). We now begin the following theorems.

Theorem 6

For integers \(n\ge 0\), \(a\ge 1\) and \(b\ge 1\), if a and b have the same parity, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k+1}}{}_HG_k(bx,b^2y)T_{n-k}(a-1)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array} {lll}n\\ k\end{array}\right) {b^k}{a^{n-k+1}}{}_HG_k(ax,a^2y)T_{n-k}(b-1) \end{aligned}$$
(39)
and
$$\begin{aligned} b\sum \limits _{i=0}^{a-1}{(-1)^i}a^n{}_HG_n\left(bx+{\frac{b}{a}}i,b^2y\right)=a\sum \limits _{i=0}^{b-1}{(-1)^i}b^n{}_HG_n\left(ax+{\frac{a}{b}}i,a^2y\right) \end{aligned}$$
(40)

Proof

Let
$$\begin{aligned} P(t)=: \frac{2abt(1-(-e^{bt})^a)e^{abxt+a^2b^2yt^2}}{(e^{at}+1)(e^{bt}+1)} \end{aligned}$$
(41)
We can expand P(t) as follows
$$\begin{aligned}P(t)&=b{\left( \frac{2at}{e^{at}+1}\right) }e^{abxt+a^2b^2yt^2}{\left( \frac{1-(-e^{bt})^a}{e^{bt}+1}\right) }\nonumber \\&=b{\left( \sum \limits _{k=0}^{\infty }{}_HG_{k}(bx,b^2y)\frac{(at)^k}{k!}\right) }{\left( \sum \limits _{n=0}^{\infty }T_{n}(a-1)\frac{(bt)^n}{n!}\right) }\nonumber \\& =b\sum \limits _{n=0}^{\infty }\sum \limits _{k=0}^{\infty }a^kb^n{}_HG_{k}(bx,b^2y)T_{n}(a-1)\frac{t^{n+k}}{n!k!}\nonumber \\P(t)&=\sum \limits _{n=0}^{\infty }{\left[ \sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^kb^{n-k+1}{}_HG_{k}(bx,b^2y)T_{n-k}(a-1) \right] }\frac{t^n}{n!} \end{aligned}$$
(42)
On the other hand
$$\begin{aligned} P(t)=\sum \limits _{n=0}^{\infty }{\left[ \sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) b^ka^{n-k+1}{}_HG_{k}(ax,a^2y)T_{n-k}(b-1) \right] }\frac{t^n}{n!} \end{aligned}$$
(43)
Comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of above Eqs. (42) and (43), yields identity (39).
Now following (41) we expand P(t) as follows:
$$\begin{aligned}P(t)&=b{\left( \frac{2at}{e^{at}+1}\right) }e^{abxt+a^2b^2yt^2}{\left( \frac{1-(-e^{bt})^a}{e^{bt}+1}\right) } \nonumber \\&=b{\left( \frac{2at}{e^{at}+1}\right) }e^{abxt+a^2b^2yt^2}\sum \limits _{i=0}^{a-1}(-1)^ie^{bti} \nonumber \\& =b{\left( \frac{2at}{e^{at}+1}\right) }e^{a^2b^2yt^2}\sum \limits _{i=0}^{a-1}(-1)^ie^{(bx+\frac{b}{a}i)at}\nonumber \\P(t)&=b\sum \limits _{n=0}^{\infty }{\left[ \sum \limits _{i=0}^{a-1}a^n(-1)^i{}_HG_{n}\left(bx+\frac{b}{a}i,b^2y\right)\right] }\frac{t^n}{n!} \end{aligned}$$
(44)
On the similar lines, we can show that
$$\begin{aligned} P(t)=a\sum \limits _{n=0}^{\infty }{\left[ \sum \limits _{i=0}^{b-1}b^n(-1)^i{}_HG_{n}\left(ax+\frac{a}{b}i,a^2y \right)\right] }\frac{t^n}{n!} \end{aligned}$$
(45)
Comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of above Eqs. (44) and (45), yields identity (40).

Remark 6

For \(y=0\) in Theorem (6) and (7), the result reduces to known result of Liu and Wang [2009, p. 3358, (4.2) and (4.3)].

Corollary 6

For integers \(n\ge 0,\) \(a\ge 1\) and \(b\ge 1\), if a and b have the same parity, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k+1}}G_k(bx)T_{n-k}(a-1)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array} {lll}n\\ k\end{array}\right) {b^k}{a^{n-k+1}}G_k(ax)T_{n-k}(b-1) \end{aligned}$$
(46)
and
$$\begin{aligned} b\sum \limits _{i=0}^{a-1}{(-1)^i}a^nG_n\left(bx+{\frac{b}{a}}i\right)=a\sum \limits _{i=0}^{b-1}{(-1)^i}b^nG_n\left(ax+{\frac{a}{b}}i\right) \end{aligned}$$
(47)

Theorem 7

For integers \( n\ge 0,\) \(a\ge 1\) and \(b\ge 1 \), if a is odd and b is even, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^k b^{n-k+1}{}_HG_k(bx,b^2y)T_{n-k}(a-1)\nonumber \\&\quad =-2\sum \limits _{l=0,l\ne n}^{n+1}\left( \begin{array}{lll}n+1\\ l\end{array}\right) \frac{B_{n+1-l}}{n+1}b^{n-l}\sum \limits _{k=0}^{l} \left( \begin{array}{lll}l\\ k\end{array}\right) b^ka^{n-k+1}{}_HG_{k}(ax,a^2y)T_{l-k}(b-1) \end{aligned}$$
(48)
and
$$\begin{aligned}&b\sum \limits _{i=0}^{a-1}{(-1)^i}a^n{}_HG_n\left(bx+{\frac{b}{a}}i,b^2y\right)\nonumber \\&\quad =-2\sum \limits _{l=0,l\ne n}^{n+1}\left( \begin{array}{lll}n+1\\ l\end{array}\right) \frac{B_{n+1-l}}{n+1}a^{n-l+1}\sum \limits _{i=0}^{b-1}(-1)^ib^n{}_HG_{l}\left(ax+\frac{a}{b}i,a^2y\right) \end{aligned}$$
(49)

Proof

Let
$$\begin{aligned} P(t)=: \frac{2abt(1-(-e^{bt})^a)e^{abxt+a^2b^2yt^2}}{(e^{at}+1)(e^{bt}+1)} \end{aligned}$$
We can expand P(t) as follows:
$$\begin{aligned}&P(t)=a{\left( \frac{2bt}{e^{bt}+1}\right) }e^{abxt+a^2b^2yt^2}{\left( \frac{1-(-e^{bt})^a}{1-(-e^{at})^b}\right) }{\left( \frac{1-(-e^{at})^b}{e^{at}+1}\right) }\nonumber \\&\quad =a{\left( \sum \limits _{k=0}^{\infty }{}_HG_{k}(ax,a^2y)\frac{(bt)^k}{k!}\right) }{\left( -\sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) } {\left( \sum \limits _{l=0}^{\infty }T_{l}(b-1)\frac{(at)^l}{l!}\right) }\nonumber \\&\quad =-a{\left( \sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) }{\left( \sum \limits _{l=0}^{\infty }\sum \limits _{k=0}^{l}a^{l-k}b^k{}_HG_{k}(ax,a^2y) T_{l-k}(b-1)\frac{t^l}{{l-k}!k!}\right) }\nonumber \\&P(t)=-a{\left( \sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) }\sum \limits _{l=0}^{\infty }\sum \limits _{k=0}^{l}\left( \begin{array}{lll}l\\ k \end{array}\right) a^{l-k}{}_HG_{k}(ax,a^2y)T_{l-k}(b-1)\frac{t^{l}}{l!} \end{aligned}$$
(50)
Another expansion of P(t) is
$$\begin{aligned}&P(t)=-a{\left( \sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) }{\left( \frac{2bt}{e^{bt}+1}\right) }e^{abxt+a^2b^2yt^2}{\left( \sum \limits _{i=0} ^{b-1} (-1)^ie^{ati}\right) }\nonumber \\&\quad =-a{\left( \sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}(abt)^{n-1}\right) }{\left( \sum \limits _{i=0}^{b-1}(-1)^i\sum \limits _{k=0}^{\infty }b^k{}_HG_{k} \left(ax+\frac{a}{b}i;a^2y\right)\frac{t^k}{k!}\right) } \end{aligned}$$
(51)
Comparing the coefficients of \(\frac{t^n}{n!}\) in Eqs. (43) and (50), we obtain the first identity. Also comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of Eqs. (44) and (51), we obtain the second identity.

Remark 7

For \(y=0\) in Theorem (7), the result reduces to known result of Liu and Wang [2009, p. 3358, Theorem (4.4)].

Corollary 7

For integers \( n\ge 0,\) \(a\ge 1\) and \(b\ge 1 \), if a is odd and b is even, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^k b^{n-k+1}G_k(bx)T_{n-k}(a-1) \nonumber \\&\quad =-2\sum \limits _{l=0,l\ne n}^{n+1}\left( \begin{array}{lll}n+1\\ l\end{array}\right) \frac{B_{n+1-l}}{n+1}b^{n-l}\sum \limits _{k=0}^{l} \left( \begin{array}{lll}l\\ k\end{array}\right) b^ka^{n-k+1}G_{k}(ax)T_{l-k}(b-1) \end{aligned}$$
(52)
and
$$\begin{aligned}&b\sum \limits _{i=0}^{a-1}{(-1)^i}a^nG_n\left(bx+{\frac{b}{a}}i\right)\nonumber \\&\quad =-2\sum \limits _{l=0,l\ne n}^{n+1}\left( \begin{array}{lll}n+1\\ l\end{array}\right) \frac{B_{n+1-l}}{n+1}a^{n-l+1}\sum \limits _{i=0}^{b-1}(-1)^ib^nG_{l}\left(ax+\frac{a}{b}i \right) \end{aligned}$$
(53)

Theorem 8

For integers \(n\ge 0,\) \(a\ge 1\) and \(b\ge 1\), if a is even and b is odd, then the following identity holds true:
$$\begin{aligned}\sum \limits _{k=0}^{n}\left(\begin{array}{lll}n\\ k\end{array}\right) a^kb^{n-k+1}{}_HG_k(bx,b^2y)T_{n-k}(a-1)&=\sum \limits _{k=0}^{n-1}\left( \begin{array}{lll}n\\ k\end{array}\right) b^ka^{n-k+1}{}_HG_{k}(ax,a^2y)\nonumber \\&\quad\times (E_{n-k}(0)-T_{n-k}(b-1)) \end{aligned}$$
(54)
and
$$\begin{aligned}b\sum \limits _{i=0}^{a-1}(-1)^ia^n{}_HG_{n}\left(bx+\frac{b}{a}i,b^2y\right)&=\sum \limits _{l=0}^{n-1}\left( \begin{array}{lll}n\\ l\end{array}\right) a^{n-l+1}E_{n-l}(0)\nonumber \\&\quad \times \sum \limits _{i=0}^{b-1}(-1)^ib^n{}_HG_l\left(ax+\frac{a}{b}i,a^2y\right) \end{aligned}$$
(55)

Proof

Let
$$\begin{aligned} P(t)=:\frac{2abt(1-{(-e^{bt})}^a)}{(e^{at}+1)(e^{bt}+1)}e^{abxt+a^2b^2yt^2} \end{aligned}$$
(56)
we expand P(t) as follows:
$$\begin{aligned}P(t)&=a\left( \frac{2bt}{e^{bt}+1}\right) e^{abxt+a^2b^2yt^2}\left( \frac{1-{(-e^{bt})}^a}{1-{(-e^{at})}^b}\right) \left( \frac{(1-{(-e^{at})}^b)}{1+e^{at}} \right) \nonumber \\& =a\left( \sum \limits _{k=0}^{\infty }{}_HG_k(ax,a^2y)\frac{(bt)^k}{k!}\right) \left( \sum \limits _{n=1}^{\infty }E_{n}(0)\frac{(abt)^n}{n!}\right) \left( \sum \limits _{l=0}^{\infty }T_l(b-1)\frac{(at)^l}{l!}\right) \end{aligned}$$
(57)
Comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of Eqs. (42) and (57), we have
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k+1}}{}_HG_k(bx,b^2y)T_{n-k}(a-1) \nonumber \\&\quad =\sum \limits _{l=0}^{n-1} \left( \begin{array}{lll}n\\ l\end{array}\right) E_{n-l}(0)b^{n-l}\sum \limits _{k=0}^{l}{\left( \begin{array}{lll}l\\ k\end{array}\right) } a^{n-k+1}b^k{}_HG_{k}(ax,a^2y)T_{l-k}(b-1) \nonumber \\&\quad =\sum \limits _{k=0}^{n-1}\left( \begin{array}{lll}n\\ k\end{array}\right) a^{n-k+1}b^k{}_HG_{k}(ax,a^2y)\sum \limits _{l=k}^{n-1} \left( \begin{array}{lll}n-k\\ l-k\end{array}\right) E_{n-l}(0)b^{n-l}T_{l-k}(b-1) \end{aligned}$$
(58)
Finally using [Liu and Wang (2009), p. 3348, (2.4)], we arrive at the desired result (54).
Now following (56), we expand P(t) as follows:
$$\begin{aligned}P(t) &=a\left( \frac{2bt}{e^{bt}+1}\right) e^{abxt+a^2b^2yt^2}\left( \frac{1-{(-e^{bt})}^a}{1-{(-e^{at})}^b}\right) \left( \frac{(1-{(-e^{at})}^b)}{1+e^{at}} \right) \nonumber \\ \quad &=a{\left( \sum \limits _{n=1}^{\infty }E_{n}(0)\frac{(abt)^n}{n!}\right) }{\left( \sum \limits _{l=0}^{\infty }\sum \limits _{i=0}^{b-1}(-1)^ib^l{}_HG_{l}\left(ax+\frac{a}{b}i, a^2y\right)\frac{t^l}{l!}\right) } \end{aligned}$$
(59)
which on equating the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of Eqs. (44) and (59), gives the result (55).

Remark 8

For \( y=0 \) in Theorem (8), the result reduces to known result of Liu and Wang [2009, p. 3359, Theorem (4.6)].

Corollary 8

For integers \(n\ge 0\) , \(a\ge 1\) and \(b\ge 1\), if a is even and b is odd, then the following identity holds true:
$$\begin{aligned}\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) a^kb^{n-k+1}G_k(bx)T_{n-k}(a-1)&=\sum \limits _{k=0}^{n-1}\left( \begin{array}{lll}n\\ k\end{array}\right) b^ka^{n-k+1}G_{k}(ax) \nonumber \\&\quad \times (E_{n-k}(0)-T_{n-k}(b-1)) \end{aligned}$$
(60)
and
$$\begin{aligned}b\sum \limits _{i=0}^{a-1}(-1)^ia^nG_{n}\left(bx+\frac{b}{a}i\right)&=\sum \limits _{l=0}^{n-1}\left( \begin{array}{lll}n\\ l\end{array}\right) a^{n-l+1}E_{n-l}(0)\nonumber \\&\quad \times \sum \limits _{i=0}^{b-1}(-1)^ib^nG_l\left(ax+\frac{a}{b}i\right) \end{aligned}$$
(61)

Mixed type identities

In this section, we establish some mixed type identities involving the generalized Hermite–Bernoulli and Euler polynomials of order \(\alpha \). Throughout this section \(\alpha \) will be taken as an arbitrary real or complex parameter.

Theorem 9

For integers \(n\ge 1\), \(a\ge 1\) and \(b\ge 1\), if a is even, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^k}{a^{n-k}}{}_HB_{n-k}^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay) \nonumber \\&\quad =-\frac{n}{2}\sum \limits _{k=0}^{n-1}\left( \begin{array}{lll}{n-1}\\ k\end{array}\right) {a^{k+1}} {b^{n-k-1}}{}_HE_{n-1-k}^{(\alpha )}(ax,a^{2}z)\nonumber \\&\qquad \times \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) S_i(b-1)B_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(62)
and
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0}^{a-1}(-1)^i{}_HB_{k}^{(\alpha )}\left(bx+\frac{b}{a}i,b^{2}z\right) E_{n-k}^{(\alpha -1)}(ay) \nonumber \\&\quad =-\frac{n}{2}\sum \limits _{k=0}^{n-1}\left( \begin{array}{lll}{n-1}\\ k\end{array}\right) {b^k}{a^{n-k}}\sum \limits _{i=0}^{b-1} {}_HE_{k}^{(\alpha )}\left(ax+\frac{a}{b}i,a^{2}z\right)B_{n-k-1}^{(\alpha -1)}(by) \end{aligned}$$
(63)

Proof

Let
$$\begin{aligned}H(t)&=:\frac{2^{\alpha -1}a^{\alpha }t^{\alpha }(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}-1)^{\alpha }(e^{bt}+1)^{\alpha }}\\ & ={\left( \frac{at}{e^{at}-1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1+e^{bt}}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\& ={\left( \sum \limits _{n=0}^{\infty }{}_HB_{n}^{(\alpha )}(bx,b^2z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{i=0}^{\infty } T_i(a-1)\frac{(bt)^i}{i!}\right) }{\left( \sum \limits _{k=0}^{\infty }E_k^{(\alpha -1)}(ay)\frac{(bt)^k}{k!}\right) }\nonumber \\&\end{aligned}$$
(64)
$$\begin{aligned}H(t)={\left( \sum \limits _{n=0}^{\infty }{}_HB_{n}^{(\alpha )}(bx,b^2z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{k=0}^{\infty } \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) b^kT_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\frac{t^k}{k!}\right) } \end{aligned}$$
(65)
Since a is even, we also have
$$\begin{aligned}H(t)&=-\frac{ta}{2}{\left( \frac{2}{e^{bt}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{e^{abt}-1}{e^{at}-1}\right) }{\left( \frac{at}{e^{at}-1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\&=-\frac{ta}{2}{\left( \sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(ax,a^2z)\frac{(bt)^n}{n!}\right) }{\left( \sum \limits _{i=0}^{\infty } S_i(b-1)\frac{(at)^i}{i!}\right) }{\left( \sum \limits _{k=0}^{\infty }B_k^{(\alpha -1)}(by)\frac{(at)^k}{k!}\right) }\nonumber \\&=-\frac{ta}{2}{\left( \sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(ax,a^2z)\frac{(bt)^n}{n!}\right) }{\left( \sum \limits _{k=0}^{\infty } \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) a^kS_i(b-1)B_{k-i}^{(\alpha -1)}(by)\frac{t^k}{k!}\right) } \end{aligned}$$
(66)
Comparing coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of above Eqs. (65) and (66), yields the first identity (62).
Again, we expand H(t) as follows:
$$\begin{aligned}H(t)&={\left( \frac{at}{e^{at}-1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1+e^{bt}}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\& ={\left( \frac{at}{e^{at}-1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \sum \limits _{i=0}^{a-1}(-1)^ie^{bti}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\&={\left( \frac{at}{e^{at}-1}\right) ^{\alpha }}e^{a^2b^2zt^2}{\left( \sum \limits _{i=0}^{a-1}(-1)^ie^{(bx+\frac{b}{a}i)}at \right) }{\left( \sum \limits _{n=0}^{\infty }E_{n}^{(\alpha -1)}(ay)\frac{(bt)^n}{n!}\right) }\nonumber \\H(t)&={\left( \sum \limits _{i=0}^{a-1}(-1)^i\sum \limits _{k=0}^{\infty }{}_HB_{k}^{(\alpha )}({bx+\frac{b}{a}i;b^2z})\frac{(at)^k}{k!}\right) }{\left( \sum \limits _{n=0}^{\infty }E_{n}^{(\alpha -1)}(ay)\frac{(bt)^n}{n!}\right) } \end{aligned}$$
(67)
On similar lines, we can expand H(t) as follows:
$$\begin{aligned}H(t)&=-\frac{ta}{2}{\left( \frac{2}{e^{bt}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{e^{abt}-1}{e^{at}-1}\right) }{\left( \frac{at}{e^{at}-1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\& =-\frac{ta}{2}{\left( \frac{2}{e^{bt}+1}\right) }^{\alpha }e^{abxt+a^2b^2zt^2}{\left( \sum \limits _{i=0}^{b-1}e^{ati}\right) }{\left( \frac{at}{e^{at}-1} \right) }^{{\alpha }-1}e^{abyt}\nonumber \\H(t)&=-\frac{ta}{2}{\left( \sum \limits _{i=0}^{b-1}\sum \limits _{k=0}^{\infty }{}_HE_{k}^{(\alpha )}\left(ax+\frac{a}{b}i,a^{2}z\right)\frac{(bt)^k}{k!}\right) } {\left( \sum \limits _{n=0}^{\infty }B_{n}^{(\alpha -1)}(by)\frac{(at)^n}{n!}\right) } \end{aligned}$$
(68)
Comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S of above Eqs. (67) and (68), we get the result (63).

Remark 9

For \(z=0\) in Theorem (9), the result reduces to known result of Liu and Wang [2009, p. 3353, Theorem (3.1)].

Corollary 9

For integers \(n\ge 1\), \(a\ge 1\) and \(b\ge 1\), if a is even, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^k}{a^{n-k}}B_{n-k}^{(\alpha )}(bx)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =-\frac{n}{2}\sum \limits _{k=0}^{n-1}\left( \begin{array}{lll}{n-1}\\ k\end{array}\right) {a^{k+1}} {b^{n-k-1}}E_{n-1-k}^{(\alpha )}(ax)\nonumber \\&\qquad \times \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) S_i(b-1)B_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(69)
and
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0}^{a-1}(-1)^iB_{k}^{(\alpha )}\left(bx+\frac{b}{a}i\right) E_{n-k}^{(\alpha -1)}(ay) \nonumber \\&\quad =-\frac{n}{2}\sum \limits _{k=0}^{n-1}\left( \begin{array}{lll}{n-1}\\ k\end{array}\right) {b^k}{a^{n-k}}\sum \limits _{i=0}^{b-1} E_{k}^{(\alpha )}\left(ax+\frac{a}{b}i\right)B_{n-k-1}^{(\alpha -1)}(by) \end{aligned}$$
(70)

Theorem 10

For integers \( n\ge 1\), \(a\ge 1\) and \(b\ge 1 \), if a is odd, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^k}{a^{n-k}}{}_HB_{n-k}^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay) \nonumber \\&\quad =\sum \limits _{l=0,l\ne n-1}^{n}\left( \begin{array}{lll}n\\ l\end{array}\right) B_{n-l}{a^{n-l}}\sum \limits _{k=0,}^{l}\left( \begin{array}{lll}l\\ k\end{array}\right) {b^{n-k-1}}a^k{}_HE_{l-k}^{(\alpha )}(ax,a^{2}z)\nonumber \\&\qquad \times \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) S_i(b-1)B_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(71)
and
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0}^{a-1}(-1)^i{}_HB_{k}^{(\alpha )}\left(bx+\frac{b}{a}i,b^{2}z\right) E_{n-k}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{l=0,l\ne n-1}^{n}\left( \begin{array}{lll}n\\ l\end{array}\right) B_{n-l}{b^{n-l-1}}\sum \limits _{k=0}^{l} \left( \begin{array}{lll}l\\ k\end{array}\right) {b^k}{a^{n-k}}\nonumber \\&\qquad \times \sum \limits _{i=0}^{b-1}{}_HE_{k}^{(\alpha )}\left(ax+\frac{a}{b}i,a^{2}z\right)B_{l-k}^{(\alpha -1)}(by) \end{aligned}$$
(72)

Proof

Let
$$\begin{aligned} H(t)=:\frac{t^{\alpha }(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}-1)^{\alpha }(e^{bt}+1)^{\alpha }} \end{aligned}$$
We expand H(t) as follows:
$$\begin{aligned}H(t)&=\frac{-t}{2^{\alpha }{a^{\alpha -1}}}{\left( \frac{2}{e^{bt}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1-{(-e^{at})}^b}\right) } {\left( \frac{e^{abt}-1}{e^{at}-1}\right) }\nonumber \\&\quad \times {\left( \frac{at}{e^{at}-1}\right) ^{{\alpha }-1}}e^{abyt} \nonumber \\& =\frac{t}{2^{\alpha }{a^{\alpha -1}}}{\left( \sum \limits _{l=0}^{\infty }{}_HE_{l}^{(\alpha )}(ax,a^{2}z)\frac{(bt)^l}{l!}\right) }{\left( \sum \limits _{n=0}^ {\infty }\frac{B_n+B_n(1)}{n!}{(abt)}^{n-1}\right) }\nonumber \\&\quad \times {\left( \sum \limits _{i=0}^{\infty }S_i(b-1)\frac{(at)^i}{i!}\right) }{\left( \sum \limits _{k=0}^{\infty } B_{k}^{(\alpha -1)}(by)\frac{(at)^k}{k!}\right) } \end{aligned}$$
(73)
Equating the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of above Eqs. (65) and (73) and using the identity (7), we obtain the first identity (71).
On the other hand
$$\begin{aligned}H(t)&=\frac{-t}{2^{\alpha }{a^{\alpha -1}}}{\left( \frac{2}{e^{bt}+1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1-{(-e^{at})}^b}\right) } {\left( \frac{e^{abt}-1}{e^{at}-1}\right) }{\left( \frac{at}{e^{at}-1}\right) ^{\alpha -1}}e^{abyt}\nonumber \\ \quad &=\frac{-t}{2^{\alpha }{a^{\alpha -1}}}{\left( -\sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}{abt}^{n-1}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{\alpha }} e^{abxt+a^2b^2zt^2}\nonumber \\ &\quad \times {\left( \sum \limits _{i=0}^{b-1}e^{ati}\right) }{\left( \sum \limits _{l=0}^{\infty }B_{l}^{(\alpha -1)}(by)\frac{(at)^l}{l!}\right) }\nonumber \\ H(t)&=\frac{t}{2^{\alpha }{a^{\alpha -1}}}{\left( \sum \limits _{n=0}^{\infty }\frac{B_n+B_n(1)}{n!}{abt}^{n-1}\right) }{\left( \sum \limits _{i=0}^{b-1}\sum \limits _{k=0} ^{\infty }{}_HE_{k}^{(\alpha )}(ax+\frac{a}{b}i,a^{2}z)\frac{(bt)^k}{k!}\right) }\nonumber \\&\quad \times {\left( \sum \limits _{l=0}^{\infty }B_{l}^{(\alpha -1)}(by)\frac{(at)^l}{l!}\right) } \end{aligned}$$
(74)
Equating the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of above Eqs. (67) and (74), yields the result (72).

Remark 10

For \(z=0\) in Theorem (10), the result reduces to known result of Liu and Wang [2009, p. 3354, Theorem (3.6)].

Corollary 10

For integers \( n\ge 1\), \(a\ge 1\) and \(b\ge 1 \), if a is odd, then the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^k}{a^{n-k}}B_{n-k}^{(\alpha )}(bx)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{l=0,l\ne n-1}^{n}\left( \begin{array}{lll}n\\ l\end{array}\right) B_{n-l}{a^{n-l}}\sum \limits _{k=0,}^{l}\left( \begin{array}{lll}l\\ k\end{array}\right) {b^{n-k-1}}a^kE_{l-k}^{(\alpha )}(ax) \nonumber \\&\qquad \times \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) S_i(b-1)B_{k-i}^{(\alpha -1)}(by) \end{aligned}$$
(75)
and
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0}^{a-1}(-1)^iB_{k}^{(\alpha )}\left(bx+\frac{b}{a}i\right) E_{n-k}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{l=0,l\ne n-1}^{n}\left( \begin{array}{lll}n\\ l\end{array}\right) B_{n-l}{b^{n-l-1}}\sum \limits _{k=0}^{l} \left( \begin{array}{lll}l\\ k\end{array}\right) {b^k}{a^{n-k}} \nonumber \\&\qquad \times \sum \limits _{i=0}^{b-1}E_{k}^{(\alpha )}\left(ax+\frac{a}{b}i\right)B_{l-k}^{(\alpha -1)}(by) \end{aligned}$$
(76)

Theorem 11

For integers \( n\ge 1\), \(a\ge 1 \) and \( b\ge 1\) , the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^k}{a^{n-k}}{}_HB_{n-k}^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0} ^{a-1}(-1)^i{}_HB_{k}^{(\alpha )}\left(bx+\frac{b}{a}i,b^{2}z\right)E_{n-k}^{(\alpha -1)}(ay) \end{aligned}$$
(77)

Proof

Let
$$\begin{aligned}&H(t)=:\frac{2^{\alpha -1}a^{\alpha }t^{\alpha }(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}-1)^{\alpha }(e^{bt}+1)^{\alpha }} \nonumber \\&\quad ={\left( \sum \limits _{n=0}^{\infty }{}_HB_{n}^{(\alpha )}(bx,b^2z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{i=0}^{\infty } T_i(a-1)\frac{(bt)^i}{i!}\right) }{\left( \sum \limits _{k=0}^{\infty }E_k^{(\alpha -1)}(ay)\frac{(bt)^k}{k!}\right) }\nonumber \\&\quad ={\left( \sum \limits _{n=0}^{\infty }{}_HB_{n}^{(\alpha )}(bx,b^2z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{k=0}^{\infty } \sum \limits _{i=0}^{k}\left( \begin{array}{lll}k\\ i\end{array}\right) b^kT_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\frac{t^k}{k!}\right) } \end{aligned}$$
(78)
On the other hand
$$\begin{aligned}H(t)&={\left( \frac{at}{e^{at}-1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \frac{1-{(-e^{bt})}^a}{1+e^{bt}}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}} e^{abyt}\nonumber \\& ={\left( \frac{at}{e^{at}-1}\right) ^{\alpha }}e^{abxt+a^2b^2zt^2}{\left( \sum \limits _{i=0}^{a-1}(-1)^ie^{bti}\right) }{\left( \frac{2}{e^{bt}+1}\right) ^{{\alpha }-1}} e^{abyt}\nonumber \\& ={\left( \frac{at}{e^{at}-1}\right) ^{\alpha }}e^{a^2b^2zt^2}{\left( \sum \limits _{i=0}^{a-1}(-1)^ie^{(bx+\frac{b}{a}i)}at \right) }{\left( \sum \limits _{n=0}^{\infty }E_{n}^{(\alpha -1)}(ay)\frac{(bt)^n}{n!}\right) } \end{aligned}$$
(79)
Comparing the coefficients of \(\frac{t^n}{n!}\) in the R.H.S of above Eqs. (78) and (79), yields the desired result.

Remark 11

For \(z=0\) in Theorem (11), the result reduces to known result of Liu and Wang [2009, p. 3356, Theorem (3.9)].

Corollary 11

For integers \( n\ge 1\), \(a\ge 1 \) and \( b\ge 1\), the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^k}{a^{n-k}}B_{n-k}^{(\alpha )}(bx)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) T_i(a-1)E_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0} ^{a-1}(-1)^iB_{k}^{(\alpha )}\left(bx+\frac{b}{a}i\right)E_{n-k}^{(\alpha -1)}(ay) \end{aligned}$$
(80)

Theorem 12

For integers \(n\ge 1\), \(a\ge 1\) and \(b\ge 1\), the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^k}{a^{n-k}}{}_HE_{n-k}^{(\alpha )}(bx,b^{2}z)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) S_i(a-1)B_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0} ^{a-1}{}_HE_{k}^{(\alpha )}\left(bx+\frac{b}{a}i,b^{2}z\right)B_{n-k}^{(\alpha -1)}(ay) \end{aligned}$$
(81)

Proof

Let
$$\begin{aligned}H(t)&=:\frac{t^{\alpha }(1-(-e^{bt})^a)e^{ab(x+y)t+a^2b^2zt^2}}{(e^{at}+1)^{\alpha }(e^{bt}-1)^{\alpha }}\nonumber \\H(t)&=\frac{-t}{2^{\alpha }{b^{\alpha -1}}}{\left( \frac{2}{e^{at}+1}\right) ^{{\alpha }}}e^{abxt+a^2b^2zt^2}{\left( \frac{e^{abt}-1}{e^{bt}-1}\right) } {\left( \frac{bt}{e^{bt}-1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\& =\frac{-t}{2^{\alpha }{b^{\alpha -1}}}{\left( \sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\frac{(at)^n}{n!}\right) }{\left( \sum \limits _{i=0} ^{\infty }S_i(a-1)\frac{(bt)^i}{i!}\right) }{\left( \sum \limits _{k=0}^{\infty }B_{k}^{(\alpha -1)}(ay)\frac{(bt)^k}{k!}\right) }\nonumber \\& =\frac{-t}{2^{\alpha }{b^{\alpha -1}}}{\left( \sum \limits _{n=0}^{\infty }{}_HE_{n}^{(\alpha )}(bx,b^{2}z)\frac{(at)^n}{n!}\right) } {\left( \sum \limits _{k=0}^{\infty }\sum \limits _{i=0}^{k}b^kS_i(a-1)B_{k-i}^{(\alpha -1)}(ay)\frac{t^k}{{(k-i)!}i!}\right) } \end{aligned}$$
(82)
Another expansion of H(t) is as follows:
$$\begin{aligned}H(t)&=\frac{-t}{2^{\alpha }{b^{\alpha -1}}}{\left( \frac{2}{e^{at}+1}\right) ^{{\alpha }}}e^{abxt+a^2b^2zt^2}{\left( \frac{e^{abt}-1}{e^{bt}-1}\right) } {\left( \frac{bt}{e^{bt}-1}\right) ^{{\alpha }-1}}e^{abyt}\nonumber \\& =\frac{-t}{2^{\alpha }{b^{\alpha -1}}}{\left( \frac{2}{e^{at}+1}\right) ^{{\alpha }}}e^{abxt+a^2b^2zt^2}{\left( \sum \limits _{i=0}^{a-1}e^{bti}\right) } {\left( \sum \limits _{n=0}^{\infty }B_{n}^{(\alpha -1)}(ay)\frac{(bt)^n}{n!}\right) }\nonumber \\& =\frac{-t}{2^{\alpha }{b^{\alpha -1}}}{\left( \sum \limits _{n=0}^{\infty }B_{n}^{(\alpha -1)}(ay)\frac{(bt)^n}{n!}\right) }{\left( \sum \limits _{i=0}^{a-1} \sum \limits _{k=0}^{\infty }{}_HE_{k}^{(\alpha )}\left(bx+\frac{b}{a}i,b^2z\right)\frac{(at)^k}{k!}\right) } \end{aligned}$$
(83)
Equating the coefficients of \(\frac{t^n}{n!}\) in the R.H.S. of above Eqs. (82) and (83), yields the desired result.

Remark 12

For \(z=0\) in Theorem (12), the result reduces to known result of Liu and Wang [2009, p. 3356, Theorem (3.11)].

Corollary 12

For integers \(n\ge 1\), \(a\ge 1\) and \(b\ge 1\), the following identity holds true:
$$\begin{aligned}&\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {b^k}{a^{n-k}}E_{n-k}^{(\alpha )}(bx)\sum \limits _{i=0}^{k}\left( \begin{array} {lll}k\\ i\end{array}\right) S_i(a-1)B_{k-i}^{(\alpha -1)}(ay)\nonumber \\&\quad =\sum \limits _{k=0}^{n}\left( \begin{array}{lll}n\\ k\end{array}\right) {a^k}{b^{n-k}}\sum \limits _{i=0} ^{a-1}E_{k}^{(\alpha )}(bx+\frac{b}{a}i)B_{n-k}^{(\alpha -1)}(ay) \end{aligned}$$
(84)

Conclusion

The definition and generating function of the generalized Hermite–Bernoulli, Euler and Hermite–Genocchi polynomials plays a major role in obtaining new expansions, identities and representations. We can introduce and study a class of related generalized polynomials by defining Gould-Hopper Bernoulli, Euler and Genocchi polynomials.
$$\begin{aligned} \left( \frac{t}{e^t-1}\right) ^{\alpha }e^{xt+yt^r}=\sum \limits _{n=0}^{\infty }{}_HB_n^{(\alpha , r)}(x,y)\frac{t^n}{n!} \end{aligned}$$
(85)
The Eq. (18) may be derived from (85) for \(r = 2\).

This process can easily be extended to establish multi-variable Hermite–Bernoulli, Euler and Genocchi polynomials and Hermite Apostle type Bernoulli, Euler and Genocchi polynomials.

Declarations

Authors' contributions

The opinions of both the authors are considered in carrying out this work and they together drafted this manuscript. Both authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, Integral University

References

  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover Publications. Inc, New York,1992, Reprint of editionGoogle Scholar
  2. Andrews LC (1985) Special functions for engineers and mathematicians. Macmillan Co., New YorkGoogle Scholar
  3. Bell ET (1934) Exponential polynomials. Ann Math 35:258–277MathSciNetView ArticleMATHGoogle Scholar
  4. Dattoli G, Lorenzutta S, Cesarano C (1999) Finite sums and generalized forms of Bernoulli polynomials. Rendiconti di Mathematica 19:385–391MathSciNetMATHGoogle Scholar
  5. Dere R, Simsek Y (2015) Hermite base Bernoulli type polynomials on the Umbral algebra. Russ J Math Phys 22(1):1–5MathSciNetView ArticleMATHGoogle Scholar
  6. Erdelyi A, Magnus W, Oberhettinger F, Tricomi F (1953) Higher transcendental functions, vol 3. McGraw-Hill, New York, LondonMATHGoogle Scholar
  7. Liu H, Wang W (2009) Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums. Discrete Math 309:3346–3363MathSciNetView ArticleMATHGoogle Scholar
  8. Luke Y (1969) The special functions and their approximations, vol 2. Academic Press, New York, LondonGoogle Scholar
  9. Luo Q-M, Qi F, Debnath L (2003) Generalization of Euler numbers and polynomials. Int J Math Math Sci 61:3893–3901MathSciNetView ArticleMATHGoogle Scholar
  10. Pathan MA (2012) A new class of generalized Hermite–Bernoulli polynomials. Georg Math J 19:559–573MathSciNetMATHGoogle Scholar
  11. Pathan MA, Khan WA (2016) A new class of generalized polynomials associated with Hermite and Euler polynomials. Mediterr J Math 13:913–928MathSciNetView ArticleMATHGoogle Scholar
  12. Pathan MA, Khan WA (2015) Some implicit summation formulas and symmetric identities for the generalized Hermite–Bernoulli polynomials. Mediterr J Math 12:679–695MathSciNetView ArticleMATHGoogle Scholar
  13. Pathan MA, Khan WA (2014) Some implicit summation formulas and symmetric identities for the generalized Hermite–Euler polynomials, East–West. J Math 16(1):92–109MathSciNetMATHGoogle Scholar
  14. Simsek Y (2010) Complete sum of products of (h, q)-extension of Euler polynomials and numbers. J Differ Equ Appl 16(11):1331–1348MathSciNetView ArticleMATHGoogle Scholar
  15. Srivastava HM, Kurt B, Simsek Y (2012) Some families of Genocchi type polynomials and their interpolation functions. Integral Transform Spec Funct 23(12):919–938MathSciNetView ArticleMATHGoogle Scholar
  16. Tuenter HJ (2001) A symmetry power sum of polynomials and Bernoulli numbers. Am Math Mon 108:258–261MathSciNetView ArticleMATHGoogle Scholar
  17. Weisstein EW, “Hyperbolic cotangent” and “Hyperbolic tangent”, from math world–a wolfram web source, http://mathworld.wolfram.com

Copyright

© The Author(s) 2016