Empresa brasileira de pesquisa agropecuária (EMBRAPA) (2005). Procedimento para coleta de amostra de solos. Ministério de agricultura pecuária e desenvolvimento. Agrobiologia 2005. Accessed from http://www.agencia.cnptia.embrapa.br/Repositorio/coleta_amostras_solo_000fhtbvqw702wyiv80v17a09ztd08zh.pdf. 15 Oct 2012
Ahemad M, Khan MS (2010) Plant growth promoting activities of phosphate solubilizing Enterobacter asburiae as influenced by Fungicides. EurAsian J BioSci 4:88–95. doi:10.5053/ejobios.2010.4.0.11
Article
Google Scholar
Ahemad M, Khan MS (2011) Assessment of pesticide-tolerance and functional diversity of bacterial strains isolated from rhizospheres of different crops. Insight Microbiol 1:8–19
Article
Google Scholar
Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20. doi:10.1016/j.jksus.2013.05.001
Article
Google Scholar
Ahemad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181. doi:10.1016/j.micres.2006.04.001
Article
Google Scholar
Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. doi:10.1111/1751-7915.12117
Article
CAS
PubMed
PubMed Central
Google Scholar
Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR, Moran MA, Armbrust EV (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101. doi:10.1038/nature14488
Article
ADS
CAS
PubMed
Google Scholar
Araújo ASF, Leite LFC, Santos VB, Carneiro RFV (2009) Soil microbial activity in conventional and organic agricultural systems. Sustainability 1:268–276. doi:10.3390/su1020268
Article
Google Scholar
Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740. doi:10.1016/j.soilbio.2008.02.013
Article
CAS
Google Scholar
Azadeh BF, Sariah M, Wong MY (2010) Characterization of Burkholderia cepacia genomovar as a potential biocontrol agent of Ganoderma boninense in oil palm. Afr J Biotechnol 9:3542–3548
CAS
Google Scholar
Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778. doi:10.1093/jxb/eri197
Article
CAS
PubMed
Google Scholar
Barea AK, Pramanik K, Mandal B (2014) Response of biofertilizers and homo-brassinolide on growth, yield and oil content of sunflower (Helianthus annuus L. Afr J Agric Res 9:3494–3503. doi:10.5897/AJAR2013.8457
Google Scholar
Barraqueiro FR, Baya AM, Cormenzana AR (1976) Establecimiento de índices para el estudio de la solubilizacion de fosfatos por bacterias del suelo. ARS Pharm 17:399–406
Google Scholar
Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. doi:10.1007/s11104-013-1956-x
Article
CAS
Google Scholar
Beltrán-Esteve M, Reig-Martínez E (2014) Comparing conventional and organic citrus grower efficiency in Spain. Agric Syst 129:115–123. doi:10.1016/j.agsy.2014.05.014
Article
Google Scholar
Bevivino A, Tabacchioni S, Chiarini L, Carusi MV, Del Gallo M, Visca P (1994) Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiology 140:1069–1077. doi:10.1099/13500872-140-5-1069
Article
CAS
PubMed
Google Scholar
Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225–237. doi:10.1111/j.1574-6941.1998.tb00539.x
Article
CAS
Google Scholar
Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. doi:10.1186/1475-2859-13-66
Article
PubMed
PubMed Central
Google Scholar
Bochner BR (2009) Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33:191–205. doi:10.1111/j.1574-6976.2008.00149.x
Article
CAS
PubMed
Google Scholar
Broadbent P, Baker KF, Waterworth Y (1971) Bacteria and actinomycetes antagonistic to fungal root pathogens in australian soils. Aust J Biol Sci 24:925–944
Article
ADS
CAS
PubMed
Google Scholar
Buckling A, Wills MA, Colegrave N (2003) Adaptation limits diversification of experimental bacterial populations. Science 302:2107–2109. doi:10.1126/science.1088848
Article
ADS
CAS
PubMed
Google Scholar
Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martınez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319. doi:10.1128/AEM.00324-07
Article
CAS
PubMed
PubMed Central
Google Scholar
Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726
CAS
PubMed
PubMed Central
Google Scholar
Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87. doi:10.1016/S0038-0717(97)00096-5
Article
CAS
Google Scholar
Dai M, Hamel C, Bainard LD, Arnaud MS, Grant CA, Lupwayi NZ, Malhi SS, Lemke R (2014) Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie. Soil Biol Biochem 74:156–166. doi:10.1016/j.soilbio.2014.03.016
Article
CAS
Google Scholar
Davidson L (1988) Plant beneficial bacteria. Biotechnology 6:282–286
Article
Google Scholar
Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bactéria isolated from the roots of potato plant. Ann Agric Sci 58:195–201. doi:10.1016/j.aoas.2013.07.007
Google Scholar
Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493
PubMed
PubMed Central
Google Scholar
Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa-SPI, Brasília, p 60
Google Scholar
Ferrara FIS, Oliveira ZM, Gonzales HHS, Floh EIS, Barbosa HR (2012) Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417. doi:10.1007/s11104-011-1042-1
Article
Google Scholar
Food and Agriculture Organization (FAO) (2012) FAO. FAOSTAT. http://faostat.fao.org/site/291/default.aspx. Accessed 30 June 2014
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818. doi:10.1126/science.1185383
Article
ADS
CAS
PubMed
Google Scholar
Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195
Article
CAS
PubMed
PubMed Central
Google Scholar
Grantina L, Kenigsvalde K, Eze D, Petrina Z, Skrabule I, Rostoks N, Nikolajeva V (2011) Impact of six-year-long organic cropping on soil microorganisms and crop disease suppressiveness. Žemdirb Agricult 98:399–408
Google Scholar
Gupta M, Kiran S, Gulatic A, Singh B, Tewari R (2012) Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res 167:358–363. doi:10.1016/j.micres.2012.02.004
Article
CAS
PubMed
Google Scholar
Hayat R, Ali S, Amara U, Khalid Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. doi:10.1007/s13213-010-0117-1
Article
Google Scholar
Huang GH, Tian HH, Liu HY, Fan XW, Liang Y, Li YZ (2013) Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia Strain LD-11. Int J Phytoremediation 15:991–1009. doi:10.1080/15226514.2012.751354
Article
CAS
PubMed
Google Scholar
Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109. doi:10.1099/00221287-148-7-2097
Article
CAS
PubMed
Google Scholar
Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363. doi:10.1146/annurev.arplant.59.032607.092932
Article
CAS
PubMed
Google Scholar
Jorquera MA, Hernández MT, Rengel Z, Marschner P, Mora ML (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034. doi:10.1007/s00374-008-0288-0
Article
CAS
Google Scholar
Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58
Google Scholar
Khan AL, Waqas M, Kang S-M, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung H-Y, Lee I-J (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695
Article
CAS
PubMed
Google Scholar
Laslo É, György É, Mara G, Tamás É, Ábrahám B, Lányi S (2012) Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Prot 40:43–48. doi:10.1016/j.cropro.2012.05.002
Article
CAS
Google Scholar
Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618. doi:10.1007/s00248-010-9780-9
Article
PubMed
Google Scholar
Louden BC, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. doi:10.1128/jmbe.v12i1.249
PubMed
PubMed Central
Google Scholar
Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556
Article
CAS
PubMed
Google Scholar
Madhaiyan M, Poonguzhali S, Hari K, Saravanan VS, Sa T (2006) Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic Biochem Physiol 84:143–154. doi:10.1016/j.pestbp.2005.06.004
Article
CAS
Google Scholar
Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484. doi:10.1007/s11274-009-0038-y
Article
Google Scholar
Marinari S, Lagomarsino A, Moscatelli MC, Di Tizio A, Campiglia E (2010) Soil carbon and nitrogen mineralization kinetics in organic and conventional three-year cropping systems. Soil Tillage Res 109:61–168. doi:10.1016/j.still.2010.06.002
Article
Google Scholar
Marja R, Herzon I, Viik E, Elts J, Mänd M, Tscharntke T, Batáry P (2014) Environmentally friendly management as an intermediate strategy between organic and conventional agriculture to support biodiversity. Biol Conserv 178:146–154. doi:10.1016/j.biocon.2014.08.005
Article
Google Scholar
Martínez-Aguilar L, Díaz R, Peña-Cabriales JJ, Estrada-de los Santos P, Dunn MF, Caballero-Mellado J (2008) Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia Species. Appl Environ Microbiol 74:4574–4579. doi:10.1128/AEM.00201-08
Article
PubMed
PubMed Central
Google Scholar
Martins APL, Reissmann CB (2007) Material vegetal e as rotinas laboratoriais nos procedimentos químicoanalíticos. Scientia Agraria 8:1–17
Article
Google Scholar
Massol-Deya AA, Odelson DA, Hichey RP, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16S–23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular Microbial Ecology Manual. Kluwer Academic, Dordrecht, pp 3.3.2-1–3.3.2-8
Mendonça V, Pedrosa C, Feldberg NP, Abreu NAA, Brito APF, Ramos JD (2006) Doses of nitrogen and simple superphosphate on papaya Formosa plant growth. Ciênc. Agrotec. Lavras 30:1065–1070. doi:10.1590/S1413-70542006000600003
Article
Google Scholar
Moeskops B, Sukristiyonubowo Buchan D, Sleutel S, Herawaty L, Husen E, Saraswati R, Setyorini D, De Neve S (2010) Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl Soil Ecol 45:112–120. doi:10.1016/j.apsoil.2010.03.005
Article
Google Scholar
Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700
CAS
PubMed
PubMed Central
Google Scholar
Naher UA, Othman R, Panhwar QA (2013) Culturable total and beneficial microbial occurrences in long-term nutrient deficit wetland rice soil. Aust J Crop Sci 7:1848–1853
CAS
Google Scholar
Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. doi:10.1111/j.1574-6968.1999.tb13383.x
Article
CAS
PubMed
Google Scholar
Nery-Silva FA, Machado JC, Vilela de Resende ML, Lima LCO (2007) Inoculation methodology s of papaya fruits with fungi causing stem-end-rot. Ciênc. agrotec. Lavras 31:1374–1379. doi:10.1590/S1413-70542007000500015
Google Scholar
Oberhansli T, Defago G, Haas D (1991) Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol 137(10):2273–2279
Article
CAS
PubMed
Google Scholar
Patel KJ, Singh AK, Nareshkumar G, Archana G (2010) Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Appl Soil Ecol 44:252–261. doi:10.1016/j.apsoil.2010.01.002
Article
Google Scholar
Peeters C, Zlosnik JEA, Spilker T, Hird TJ, LiPuma JJ, Vandamme P (2013) Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 36:483–489. doi:10.1016/j.syapm.2013.06.003
Article
PubMed
Google Scholar
Peix A, Rivas R, Mateos PF, Martinez-Molina E, Rodriguez-Barrueco CE, Valazquez E (2003) Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 53:2067–2072. doi:10.1099/ijs.0.02703-0
Article
CAS
PubMed
Google Scholar
Pereg L, McMillan M (2014) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem. doi:10.1016/j.soilbio.2014.10.020
Google Scholar
Perez PG, Ye J, Wang S, Wang XL, Huang DF (2014) Analysis of the occurrence and activity of diazotrophic communities in organic and conventional horticultural soils. Appl Soil Ecol 79:37–48. doi:10.1016/j.apsoil.2014.03.006
Article
Google Scholar
Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156. doi:10.1111/j.1472-765X.1989.tb00262.x
Article
CAS
Google Scholar
Radíc T, Likar M, Hancevíc K, Bogdanovíc I, Paskovíc I (2014) Occurrence of root endophytic fungi in organic versus conventional vineyards on the Croatian coast. Agric Ecosyst Environ 192:115–121. doi:10.1016/j.agee.2014.04.008
Article
Google Scholar
Reed SC, Yang X, Thornton PE (2015) Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytol 208:324–329. doi:10.1111/nph.13521
Article
CAS
PubMed
Google Scholar
Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2
Article
CAS
Google Scholar
Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi:10.1016/S0734-9750(99)00014-2
Article
PubMed
Google Scholar
Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. doi:10.1007/s11104-006-9056-9
Article
Google Scholar
Rogers A, McDonald K, Muehlbauer MF, Hoffman A, Koenig K, Newman L, Taghavi S, Lelie D (2011) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology. GCB Bioenergy 4:364–370. doi:10.1111/j.1757-1707.2011.01119.x
Article
Google Scholar
Santos-Villalobos S, Barrera-Galicia GC, Miranda-Salcedo MA, Peña- Cabriales JJ (2012) Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World J Microbiol Biotechnol 28:2615–2623. doi:10.1007/s11274-012-1071-9
Article
Google Scholar
Sarruge JR, Haag HP (1974) Análise química em plantas. ESALQ, Piracicaba, p 56
Google Scholar
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56
Article
CAS
PubMed
Google Scholar
Shannon D, Sen AM, Johnson DB (2002) A comparative study of the microbiology of soils managed under organic and conventional regimes. Soil Use Manag 18:274–283. doi:10.1111/j.1475-2743.2002.tb00269.x
Article
Google Scholar
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587. doi:10.1186/2193-1801-2-587
Article
PubMed
PubMed Central
Google Scholar
Singh RK, Malik N, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66:375–384. doi:10.1007/s00248-013-0231-2
Article
CAS
PubMed
Google Scholar
Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol. doi:10.1155/2014/426483
Google Scholar
Srinivas T, Sridevi M, Mallaiah KV (2008) Effect of pesticides on Rhizobium and nodulation of green gram Vigna Radita (L.) Wilczek. IUP J Life Sci 2:36–44
Google Scholar
Suzuki MS, Zambolim L, Liberato JR (2007) Progress of fungal diseases and correlation with climatic variables in papaya. Summa Phytopathol 33:167–177
Article
Google Scholar
Tawiah AA, Gbedema SY, Adu F, Boamah VE, Annan K (2012) Antibiotic producing microorganisms from River Wiwi, Lake Bosomtwe and the Gulf of Guinea at Doakor Sea Beach, Ghana. BMC Microbiol 12:1–8. doi:10.1186/1471-2180-12-234
Article
Google Scholar
Trindade AV, Siqueira JO, Stürmer SL (2006) Arbuscular mycorrhizal fungi in papaya plantations of Espírito Santo and Bahia, Brazil. Braz J Microbiol 37:283–289. doi:10.1590/S1517-83822006000300016
Article
Google Scholar
Trujillo I, Díaz A, Hernández A, Heydrich M (2007) Antagonismo de cepas de Pseudomonas fluorescens Y Burkholderia cepacia contra hongos fitopatógenos delarroz y el maíz. Rev. Protección Veg. 22:41–46
Google Scholar
Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2005) Auxin production by bacteria associated with orchid roots. Microbiology 74:46–53
Article
CAS
Google Scholar
Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7:396–404. doi:10.1111/j.1462-2920.2004.00701.x
Article
PubMed
Google Scholar
van Diepeningen AD, de Vos OJ, Korthals GW, van Bruggen AHC (2006) Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl Soil Ecol 31:120–135. doi:10.1016/j.apsoil.2005.03.003
Article
Google Scholar
Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144. doi:10.1007/s00253-006-0380-z
Article
CAS
PubMed
Google Scholar
Zúñiga A, Poupin MJ, DonosoR Ledger T, Guiliani N, Gutiérrez RA, González B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant Microbe Interact 26:546–553. doi:10.1094/MPMI-10-12-0241-R
Article
PubMed
Google Scholar