The environmental challenges ahead are complex and multidimensional (Angeler et al. 2016a, b). Scientists, artists and educators play an important role in bringing about an ecologically literate culture necessary for environmentally responsibility (Hicks and King 2007). This paper aimed at reconciling artistic and scientific approaches to engage people with biodiversity issues. Visuals based on simple pixelized geometric shapes were used to demonstrate an approach that could elicit emotional reactions in people, increase awareness, facilitate learning and understanding, and ultimately critical thinking about biodiversity with an improved knowledge grounded in the ecological sciences. The approach follows Thomsen (2015) that reconceptualizes “seeing” as “questioning”, rather than believing. In this process a chain of questioning—for instance, what is biodiversity and why the need to study it? What is beta diversity and how does it relate to biodiversity? What are elements of uncertainty and surprise, and how do they manifest?—can improve the learning process and connect people more closely with biodiversity and sustainability issues (e.g., Ryan 2001).
Recognizing that current biodiversity loss resembles a 6th mass extinction in Earth’s history (Bellard et al. 2012), there is critical need to engage people with biodiversity issues (Novacek 2008). Given that with the publication of the first landmark book “The Diversity of Life” (Wilson 1992) biodiversity became the subject of school and academic courses, public journalism, television specials, and major museum exhibits, most people may have acquired basic understanding of the meaning of the word biodiversity (Novacek 2008); however, specifics of biodiversity may go unnoticed. In ecology, biodiversity is a portmanteau that encompasses many different meanings and facets of biological diversity (Magurran 2003). It includes not only the richness of plant and animal species within and across habitats and entire regions, but also variation in their abundances, their genetic diversity and variability of functional traits. These traits allow them carry out important processes like production of food and timber, decomposition of dead material, pollution and erosion control, to list a few, and these provide important ecological, aesthetic and economic values for humans (Truchy et al. 2015). This multifaceted character of biodiversity may be only known to a limited number of scientists (ecologists and environmental scientists). Scientists working in other fields (e.g., technology, economy, politics), let alone the broader public without scientific training, may be unaware of this varied meanings of biodiversity. This unawareness, together with the media and public prioritizing other problems (economy, health, terrorism) than biodiversity loss, results in a failure to recognize the implications of biodiversity issues in exacerbating many problems more familiar and more important to people (Novacek 2008).
Seppänen and Väliverronen (2003) advocated using case-by-case studies to allow the viewer deduce causes, consequences and potential remedies of environmental change. It is clear that the presentation of biodiversity can benefit from such an approach, given that the multiple meanings and components of biodiversity may overwhelm people and reinforce a decontextualization and disconnect of them with these issues. In this paper, beta diversity has been chosen as one aspect of biodiversity, which specifically assesses the difference in assemblage structure of plant and animals between habitats in a region. As is the case with the broader concept of biodiversity, beta diversity has become an umbrella term in the ecological sciences, mainly because of the different approaches ecologists have developed for quantifying compositional heterogeneity between habitats (Tuomisto 2010). Many of these approaches not only allow for analyzing species presence-absences across sites, but also explicitly account for the abundances of these species for research questions where community evenness is relevant (Anderson et al. 2011). The use of beta diversity as an umbrella concept is deemed suitable for communicating the concept because the specifics of scientific quantification approaches are irrelevant for the purpose to increase laypeople’s awareness and knowledge about its meaning. For simplicity, and to facilitate the layman’s learning process, this study has focused on how the sets of species vary across sites.
The choice of beta diversity is grounded in the fact that public environmental discourse and funding for biodiversity conservation often focuses on single species, such as charismatic megafauna (e.g., elephants, pandas, tigers), and specific habitat (rainforests) protection (Vandermeer and Perfecto 1995; Bowen-Jones and Entwistle 2002). However, species and habitat-centered views may cause substantial misunderstanding of extinction processes, and ultimately suboptimal biodiversity management because the broader interacting ecological factors (abiotic and biotic) are ignored (Hunter and Brehm 2003; Failing and Gregory 2003). For instance, by focusing only on charismatic species the role of smaller organisms that are the most specialized and the most vulnerable to extinction from human disruption are ignored (Vandermeer and Perfecto 1995).
Beta diversity focuses the meaning on regional biodiversity from an eco-centric, rather than a species- or habitat centric view, allowing people to envision and understand spatial aspects of extinctions. The visual of perfect nestedness, despite being a theoretical construct that cannot be seen in nature, has the educational value of communicating to people the ecological phenomenon of species extinctions in a spatially implicit approach. The way the loss of pixels (or species) between adjacent ecosystems (columns) is arranged comprises one among multiple ways to demonstrate and communicate extinctions associated with beta diversity (i.e., loss of species across sites). Notwithstanding, the use of pixels and their purposeful arrangement in the visuals allows giving equal weight to species. This presentation achieves neutrality regarding the perceived socio-economic value of taxa by people. That is, by down-emphasizing value-laden connotations of animals and plants, thinking about biodiversity from an eco-centric rather than species-centered perspective can be spurred.
Presenting turnover, another aspect of beta diversity, concomitantly to extinctions, further facilitates the presentation of beta diversity as an eco-centric concept. It essentially shows that other processes than only extinctions are relevant for envisioning and understanding biodiversity. The change of the sets of pixels between habitats in the visual of perfect turnover differs drastically from that of perfect nestedness, leading to the emergence of geometric shapes, a triangle (nestedness) and diagonal (turnover) respectively, that allows distinguishing both concepts instantaneously without the need of previous knowledge in the viewer. These distinct shapes provide a rapid means to demonstrate, communicate and let the viewer assimilate the multiple facets of biodiversity at large, and beta diversity in particular.
There is also added value to the visual presentations of the perfect patterns of extinctions and turnover. Visuals provide opportunities to make abstract ecological theory tangible to laypeople and potentially contribute to break with their notions that theory conforms to a monolithic logic and perception of science associated with rationalization (Locke 2001). Furthermore, the clear geometries of shapes associated with these theoretical constructs has potential to induce critical thinking not only about biodiversity per se, but about the order and structure of nature in general. Contrasted with the visuals of real animal and plant communities, the viewer can contemplate how order changes between theory and empiricism. The “metamorphosis” of shapes from theory to reality has potential to let the viewer benchmark the realistically observed order in nature against those that would exist in a hypothetically perfectly structured but unrealistic world. This metamorphosis becomes allegorical to the broader hypothetical-deductive process, the raison d’être of scientific endeavor, which is considered important for engaging the public with learning and understanding of environmental problems (Miller 2001).
The purpose of contemplating such a metamorphosis can also be scrutinized from an uncertainty viewpoint. Uncertainty is arguably a major obstacle for comprehending considerable barriers to the acceptance and understanding of environmental problems (Thomsen 2015). At first glance, the visuals of beta diversity may not be exempt from such uncertainty. The transforming geometries resulting from the metamorphosing shapes turned from clear structure embodied in perfect turnover and nestedness to forms that have been interpreted as stickman in the real examples of animals and plants in ponds. The reference to the author’s own subjective interpretation of the real examples is deliberate. It shall demonstrate that the loss of clarity of patterns of the visuals during the metamorphosis opens up for the possibility of multiple competing associations in viewers contemplating these visuals. Different ways of individual interpretation increases a deductive uncertainty and therefore ambiguity among people collectively in comprehending and envisioning ecological phenomena, exemplified by beta diversity here. While this subjectivity may hardly be entirely overcome, this study uses the resulting uncertainty as an opportunity to build common ground for further examination and comprehension by the viewer by means of a subsequent statistical analysis. In this context, uncertainty can be used to stimulate public reactions to and discourses with environmental issues (Hansen 2010).
In this study, uncertainty arising from visual examination is considered to build the prior knowledge upon which further learning can be constructed. Statistical analysis was used to integrate the prior knowledge obtained from the visualization of beta diversity with aspects of the learning process. Specifically, it can help the goal-directed nature of information processing necessary for making judgments, inducing affective reactions, and facilitating memory formation and decision making (Wyer and Srull 1986). The statistical analysis sets a common interpretational yardstick for viewers by presenting objectively identified patterns of structure in the visuals that is expressed objectively through numbers from the modeling. The approach allows deducing why structure is higher in one visual (0.26 of variance explained in visuals of animals) relative to the other (0.14 in visual of plants), and why structure in these real examples is generally low. There is a wide range of implications following from this for envisioning biodiversity that deserve closer scrutiny but this is beyond the scope of this study which targets uncertainty. The advantage of numbers infallibly reflecting structure and order in the visuals can address, and potentially partly overcome, subjective interpretation obtained from prior knowledge deduced from the examination of visuals. It can contribute to homogenize a subsequent thought processes across viewers that eventually reduces uncertainty (Poole 2009). Reducing uncertainty is a major goal for navigating through the complexities of environmental change affecting many of the intricacies of sustainability (Berkes et al. 2008). Reduced uncertainty in public understanding of biodiversity should be one way towards comprehending these complexities.
A further advantage of underpinning visual expressions of beta diversity with statistical analyses is the possibility to bolster learning by including elements of curiosity and surprise. In the example of perfect turnover, the partitioning of the entire variance to this component (that is, 1 for turnover, 0 for nestedness) seems logic. However, in the perfect nestedness example the partitioning of the variance in equal fractions may be a priori a surprise for most viewers without knowledge in mathematical calculus. This element of surprise, achieved through a scientific approach, has great value in environmental communication because surprise and novelty stimulate learning and long-term memory formation (Lisman and Grace 2005).
To further bolster the surprise effect the examples of plants and animal communities in ponds in a semiarid climate have been chosen on purpose. The impacts of climate change in dryland countries may be substantial (Alvarez-Cobelas et al. 2005). The duration, frequency and magnitude of droughts is increasing, threatening water resources, and boosting a desertification process (Reynolds et al. 2007). Ultimately this can augment the biodiversity crisis in such areas. People experience and emotionally react to heat waves, failing crops, dying cattle and water shortages for human consumption and agricultural irrigation with a sense of desperation (Thomas et al. 2007). In fact, the ponds used in this study were dry when sampled during a prolonged drought period in Spain. The dry state of ponds for several years, evident in cracked soils and lack of life, potentially reinforces people’s negative emotions through a sense of doom. However, dry and apparent lifeless ponds store a wealth of seeds, eggs and other propagules that give birth to new life, ranging from microscopic to macroscopic organisms, once harsh environmental periods are overcome; that is, when the ponds refill after drought. Therein consists the surprise element. It may foster peoples learning about the resilience of nature, and the ecological strategies of organisms and ecosystems to buffer against harsh environmental conditions. The bottom line is that the choice of examples, like ponds in a dryland country used in this study, can be used to maximally exploit the surprise element in education about biodiversity and other environmental aspects.