- Review
- Open Access
- Published:
A note on “Implicit iterative process with errors”
SpringerPlus volume 5, Article number: 329 (2016)
Abstract
In this paper, I introduce an implicit iterative process with mixed errors for two finite family of total asymptotically nonexpansive mappings in a uniformly convex Banach space and prove strong convergence theorems under some conditions. My results improved and extended many know results existing in the literature.
Background
Let E is a normed space and K be a nonempty subset of E. I also assume that \(\phi : \mathbb {R} ^{+}\rightarrow \mathbb {R} ^{+}\)strictly increasing continuous function with \(\phi (0)=0\). Let \( T:K\rightarrow K\) be a mapping. A point \(x\in K\) is called a fixed point of T if and only if \(Tx=x\). I will denote by nonexpansive if \(F\left( T\right) \) the set of fixed points of T, that is, \(F(T):=\left\{ x\in K:Tx=x\right\} \). T is said to be nonexpansive if
for all \(x, y\in K\). T is called asymptotically nonexpansive if for a sequence \(\left\{ k_{n}\right\} \subset \left[ 1,\infty \right) \) with \(k_{n}\rightarrow 1\),
for all \(x, y\in K\) and \(n\ge 1\). T is said to be total asymptotically nonexpansive (see, e.g., Albert et al. 2006) if
for all \(x, y\in K, n\ge 1\) where \(\left\{ \mu _{n}\right\} \) and \( \left\{ l_{n}\right\} \) nonnegative real sequences such that \(\mu _{n}, l_{n}\rightarrow 0\) as \(n\rightarrow \infty \). From the definition, I see that the class of total asymptotically nonexpansive mappings include the class of asymptotically nonexpansive mappings as a special case; see also Albert et al. (2006) for more details.
Proposition 1
Let K be a nonempty subset of \(E,\left\{ S_{i}\right\} _{i=1}^{N},\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be 2N total asymptotically nonexpansive mappings. Then there exist nonnegative real sequences \(\left\{ \mu _{n}\right\} \) and \(\left\{ l_{n}\right\} , n\ge 1\) with \(\mu _{n}, l_{n}\rightarrow 0\) as \(n\rightarrow \infty \) and strictly increasing continuous function \(\phi : \mathbb {R} ^{+}\rightarrow \mathbb {R} ^{+}\) with \(\phi (0)=0\) such that for all \(x, y\in K,\)
Proof
Since \(T_{i}:K\rightarrow K\) is a total asymptotically nonexpansive mappings for \(i=1,2,\ldots ,N,\) there exist nonnegative real sequences \(\left\{ \mu _{in}\right\} \), \(\left\{ l_{in}\right\} \), \(n\ge 1\) with \(\mu _{in}, l_{in}\rightarrow 0\) as \(n\rightarrow \infty \) and strictly increasing continuous function \(\phi _{i}: \mathbb {R} ^{+}\rightarrow \mathbb {R} ^{+}\) with \(\phi _{i}\left( 0\right) =0\) such that for all \(x, y\in K,\)
Setting
then I get that there exist nonnegative real sequences \(\left\{ \mu _{n}\right\} \) and \(\left\{ l_{n}\right\} , n\ge 1\) with \(\mu _{n}, l_{n}\rightarrow 0\) as \(n\rightarrow \infty \) and strictly increasing continuous function \(\phi : \mathbb {R} ^{+}\rightarrow \mathbb {R} ^{+}\) with \(\phi \left( 0\right) =0\) such that
for all \(x,y\in K,\) and each \(i=1,2,\ldots ,N.\)
In a way similar to the above, I can also prove (2).□
Recently, fixed point problems based on implicit iterative processes have been considered by many authors, (see, for example, Chang et al. 2006; Cianciaruso et al. 2010; Sun 2003; Gu 2006; Qin et al. 2008; Xu and Ori 2001). In Hao (2010) established weak and strong convergence theorems of the implicit iteration process for a finite family of uniformly Lipschitz total asymptotically nonexpansive mappings in a real Hilbert space. In Hao et al. (2012) studied weak and strong convergence theorems for common fixed points of two finite family of asymptotically nonexpansive mappings in a uniformly convex Banach space.
Note the convergence problems of an implicit (an explicit) iterative process to a common fixed point, for total asymptotically nonexpansive (or asymptotically nonexpansive) in Banach space have been obtained by a number of authors (see more details, Mukhamedov and Saburov 2010a, b, 2011, 2012a, b).
Inspired and motivated by this facts, I introduce an implicit iterative process with mixed errors for two finite family of total asymptotically nonexpansive mappings in a uniformly convex Banach space. The results of this paper can be viewed as an improvement and extension of the corresponding results of Chang et al. (2006), Cianciaruso et al. (2010), Sun (2003), Hao et al. (2012), Hao (2010) and others.
Definition 1
Let \(\left\{ S_{i}\right\} _{i=1}^{N}\), \(\left\{ T_{i}\right\} _{i=1}^{N}:E\rightarrow E\) be 2N total asymptotically nonexpansive mappings. Define the sequence \(\left\{ x_{n}\right\} \) as follows: \(x_{0}\in K,\) and
where \(n=\left( k\left( n\right) -1\right) N+i\left( n\right) \), \(i\left( n\right) \in 1,2,\ldots ,N\), \(\left\{ \alpha _{n}\right\} ,\left\{ \beta _{n}\right\} ,\left\{ \gamma _{n}\right\} \) and \(\left\{ \delta _{n}\right\} \) are four real sequences in \(\left[ 0,1\right] \) satisfying \(\alpha _{n}+\gamma _{n}\le 1\) and \(\beta _{n}+\delta _{n}\le 1\) for all \(n\ge 1,\left\{ u_{n}\right\} \) and \(\left\{ v_{n}\right\} \) are two bounded sequences.
The purpose of this paper is to study the strong convergence of implicit iterative process with mixed errors for two finite family of total asymptotically nonexpansive mappings in Banach spaces.
Preliminaries
Let E be a Banach space with dimension \(E\ge 2\). The modulus of E is the function \(\delta _{E}:\left( 0,2\right] \rightarrow \left[ 0,1\right] \) defined by
A Banach space E is uniformly convex if and only if \(\delta _{E}\left( \varepsilon \right) >0\) for all \(\varepsilon \in \left( 0,2\right] \).
Recall that a mapping \(T:K\rightarrow K\) is \(semi-compact\) (\(or hemi-compact\)) if any sequence \(\left\{ x_{n}\right\} \) in K such that \( \left\{ x_{n}-Tx_{n}\right\} \rightarrow 0\) as \(n\rightarrow \infty \) has a convergent subsequence.
Lemma 1
(Tan and Xu 1993) Let \(\left\{ a_{n}\right\}, \) \(\left\{ b_{n}\right\} \) and \(\left\{ \delta _{n}\right\} \) be sequences of nonnegative real numbers satisfying the inequality
if \(\sum _{n=1}^{\infty }b_{n}<\infty \) and \(\sum _{n=1}^{\infty }\delta _{n}<\infty \), then
-
(i)
\(\lim \limits _{n\rightarrow \infty }a_{n}\) exists;
-
(ii)
In particular, if \(\left\{ a_{n}\right\} \) has a subsequence \(\left\{ a_{n_{k}}\right\} \) converging to 0, then \(\lim \limits _{n\rightarrow \infty }a_{n}=0.\)
Lemma 2
(Schu 1991) Let E be a uniformly convex Banach space, \(\left\{ t_{n}\right\} _{n\ge 1}\subseteq \left[ b,c\right] \subset \left( 0,1\right) \), \(\left\{ x_{n}\right\} _{n\ge 1}\) and \(\left\{ y_{n}\right\} _{n\ge 1}\) be sequences in E. If \(\lim \sup _{n\rightarrow \infty }\left\| x_{n}\right\| \le a\), \(\lim \sup _{n\rightarrow \infty }\left\| y_{n}\right\| \le a\) and \(\lim _{n\rightarrow \infty }\left\| t_{n}x_{n}+\left( 1-t_{n}\right) y_{n}\right\| =a\) for some constant \(a\ge 0,\) then \(\lim _{n\rightarrow \infty }\left\| x_{n}-y_{n}\right\| =0.\)
Main results
Lemma 3
Let E be a real Banach space, let K be a nonempty,closed and convex subset of E and \(\left\{ S_{i}\right\} _{i=1}^{N}\), \(\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be 2N total asymptotically nonexpansive mappings \(\left\{ \mu _{n}\right\} \), \(\left\{ l_{n}\right\} \) defined by (1) and (2) such that
and \({\mathcal {F}}:\bigcap \nolimits _{i=1}^{N}F\left( T_{\dot{I}}\right) \cap F\left( S_{\dot{I}}\right) \ne \varnothing \). Assume that there exist M, \( M^{*}>0\) such that \(\phi (\lambda )\le M^{*}\lambda \) for all \( \lambda \ge M\), \(i\in \left\{ i=1,2,\ldots ,N\right\} .\) Let \(\left\{ u_{n}\right\} \) and \(\left\{ v_{n}\right\} \) are two bounded sequences in K. Let \(\left\{ \alpha _{n}\right\} ,\left\{ \beta _{n}\right\} ,\left\{ \gamma _{n}\right\} \) and \(\left\{ \delta _{n}\right\} \) be four real sequences in \(\left[ 0,1\right] \) satisfying the following conditions:
-
(i)
\(\alpha _{n}+\gamma _{n}\le 1\) and \(\beta _{n}+\delta _{n}\le 1\) for all \(n\ge 1;\)
-
(ii)
\(\lim \sup _{n\rightarrow \infty }\alpha _{n}<1;\)
-
(iii)
\(\sum \nolimits _{n=1}^{\infty }\gamma _{n}<\infty \), \(\sum \nolimits _{n=1}^{ \infty }\delta _{n}<\infty .\)
Starting from an arbitrary \(x_{0}\in K\), define the sequence \(\left\{ x_{n}\right\} \) by recursion (3). Then, \(\lim _{n\rightarrow \infty }\left\| x_{n}-p\right\| \) exists for all \(p\in {\mathcal {F}}.\)
Proof
Let \(p\in {\mathcal {F}}\). Since \(\left\{ u_{n}\right\} \) and \(\left\{ v_{n}\right\} \) are two bounded sequences in K, I have
Since \(S_{1},S_{2},\ldots ,S_{N}\) are total asymptotically nonexpansive mappings, it follows from (2) that
where \(\varphi _{\left( 1\right) }^{n}=\delta _{n}K\). Since \( \sum \nolimits _{n=1}^{\infty }\delta _{n}<\infty \), I can see that \( \sum \nolimits _{n=1}^{\infty }\varphi _{\left( 1\right) }^{n}<\infty \). Note that \(\phi \) is an increasing function, it follows that \(\phi \left( \lambda \right) \le \phi \left( M\right) \) whenever \(\lambda \le M\) and ( by hypothesis) \(\phi \left( \lambda \right) \le M^{*}\lambda \) if \(\lambda \ge M\). In either case, I have
for some \(M,M^{*}>0\). Thus, from (5) and (6), I have
for some constant \(R_{1}>0\). It follows from (6) and (7)
for some constants \(M_{2},R_{2}>0\). I note that
where \(\varphi _{\left( 2\right) }^{n}=\alpha _{n}\varphi _{\left( 1\right) }^{n}+\gamma _{n}K+\alpha _{n}\mu _{n}M^{*}\varphi _{\left( 1\right) }^{n}\). Since \(\sum \nolimits _{n=1}^{\infty }\gamma _{n}<\infty \), \( \sum \nolimits _{n=1}^{\infty }\varphi _{\left( 1\right) }^{n}<\infty \) , I can see that \(\sum \nolimits _{n=1}^{\infty }\varphi _{\left( 2\right) }^{n}<\infty \). This implies that
By hypothesis (ii), it follows that there exists \(\lambda <1\), such that \( \alpha _{n}\le \lambda \) for big n. It follows that
From \(\lim _{n\rightarrow \infty }\mu _{n}=0\), it derives that \( \lim _{n\rightarrow \infty }\frac{\lambda M_{2}}{1-\lambda \left( 1+M_{2}\mu _{n}\right) }=\frac{\lambda M_{2}}{1-\lambda }\). Then there exists a real constant \(L_{1}>0\) such that
It follows from the hypothesis that \(\sum _{n\ge 1}\frac{\alpha _{n}M_{2}}{ 1-\alpha _{n}\left( 1+M_{2}\mu _{n}\right) }<\infty \). Similarly, I can prove that
Besides, I can write
where a real constant \(L_{1}>0\). Thus, I obtain from it that
where \(\delta _{n}=L_{1}\mu _{n}\) and \(b_{n}=\frac{R_{2}\left( \mu _{n}+l_{n}\right) +\varphi _{\left( 2\right) }^{n}}{1-\alpha _{n}\left( 1+M_{2}\mu _{n}\right) }\) and using the condition (iii) and (11), it is easy to see that \(\sum _{n=1}^{\infty }\delta _{n}<\infty \) and \( \sum _{n=1}^{\infty }b_{n}<\infty \). In view of Lemma 1, I find that \( \lim _{n\rightarrow \infty }\left\| x_{n}-p\right\| \) exist for all \( p\in {\mathcal {F}}\). \(\square \)
Theorem 1
Let E be a real uniformly convex Banach space, let K be a nonempty,closed and convex subset of E and \(\left\{ S_{i}\right\} _{i=1}^{N}\), \(\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be 2N total asymptotically nonexpansive mappings \(\left\{ \mu _{n}\right\} \), \(\left\{ l_{n}\right\} \) defined by (1) and (2) such that
and \({\mathcal {F}}:\bigcap \nolimits _{i=1}^{N}F\left( T_{\dot{I}}\right) \cap F\left( S_{\dot{I}}\right) \ne \varnothing \). Assume that there exist M, \( M^{*}>0\) such that \(\phi (\lambda )\le M^{*}\lambda \) for all \( \lambda \ge M\), \(i\in \left\{ i=1,2,\ldots ,N\right\} .\) Let \(\left\{ u_{n}\right\} \) and \(\left\{ v_{n}\right\} \) are two bounded sequences in K. Let \(\left\{ \alpha _{n}\right\} ,\left\{ \beta _{n}\right\} ,\left\{ \gamma _{n}\right\} \) and \(\left\{ \delta _{n}\right\} \) be four real sequences in \(\left[ 0,1\right] \) satisfying the following conditions:
-
(i)
\(\alpha _{n}+\gamma _{n}\le 1\) and \(\beta _{n}+\delta _{n}\le 1\) for all \(n\ge 1;\)
-
(ii)
\(\lim \sup _{n\rightarrow \infty }\alpha _{n}<1;\)
-
(iii)
\(\sum \nolimits _{n=1}^{\infty }\gamma _{n}<\infty \), \(\sum \nolimits _{n=1}^{ \infty }\delta _{n}<\infty .\)
Then the implicit iterative sequence \(\left\{ x_{n}\right\} \) by (3) converges strongly to a common fixed point in \({\mathcal {F}}\) if and only if \( \lim \inf _{n\rightarrow \infty }d\left( x_{n},{\mathcal {F}}\right) =0\), where \(d\left( x,{\mathcal {F}}\right) \) denotes the distance of x to set \( {\mathcal {F}}\), i.e., \(d\left( x,{\mathcal {F}}\right) =\inf _{y\in {\mathcal {F}}}d\left( x,y\right) \).
Proof
It suffices to show that \(\lim \inf _{n\rightarrow \infty }d\left( x_{n},{\mathcal {F}}\right) =0\) implies that \(\left\{ x_{n}\right\} \) converges to a common fixed point of \({\mathcal {F}}.\)
Necessity. Since (12) holds for all \(p\in {\mathcal {F}}\), I obtain from it that
Lemma 1 that \(\lim _{n\rightarrow \infty }d\left( x_{n},{\mathcal {F}}\right) \) exists and so \(\lim _{n\rightarrow \infty }d\left( x_{n},{\mathcal {F}}\right) =0\).
Sufficiency. Now, I show that \(\left\{ x_{n}\right\} \) is a Cauchy sequence in E. For any positive integers \(m,n>n\ge n_{0}\), from \(1+t\le e^{t}\) for all \(t>0\) and (12), I have
where \(Q=e^{\sum _{n=1}^{\infty }\delta _{n}}\). Thus for any \(p\in {\mathcal {F}}\), I have
Taking the infimum over all \(p\in {\mathcal {F}}\), I obtain that
It follows from \(\sum \nolimits _{n=1}^{\infty }b_{n}<\infty \) and \( \lim _{n\rightarrow \infty }d\left( x_{n},{\mathcal {F}}\right) =0\) that \( \left\{ x_{n}\right\} \) is a Cauchy sequence. Since K is a closed subset of E and so it is complete. Hence, there exists a \(p\in K\) such that \( x_{n}\rightarrow p\) as \(n\rightarrow \infty \).
Finally, I have to prove that \(p\in {\mathcal {F}}\). By contradiction, i assume that p is not in \({\mathcal {F}}:\bigcap \nolimits _{i=1}^{N}F\left( T_{ \dot{I}}\right) \cap F\left( S_{\dot{I}}\right) \ne \varnothing \). Since \( {\mathcal {F}}\) is a closed set, \(d\left( p,{\mathcal {F}}\right) >0\). Thus for all \(p\in {\mathcal {F}}\), I have that
This implies that
From (14) and (15) \(\left( n\rightarrow \infty \right) \), I have that \(d\left( p,{\mathcal {F}}\right) \le 0\). This is a contradiction. Thus, \( p\in {\mathcal {F}}\). This completes the proof. \(\square \)
Lemma 4
Let E be a uniformly convex Banach space, let K be a nonempty,closed and convex subset of E and \(\left\{ S_{i}\right\} _{i=1}^{N}\), \(\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be 2N uniformly \(L_{i}-Lipschitz\) total asymptotically nonexpansive mappings \( \left\{ \mu _{n}\right\} \), \(\left\{ l_{n}\right\} \) defined by (1) and (2) such that
and \({\mathcal {F}}:\bigcap \nolimits _{i=1}^{N}F\left( T_{\dot{I}}\right) \cap F\left( S_{\dot{I}}\right) \ne \varnothing \). Assume that there exist M, \( M^{*}>0\) such that \(\phi (\lambda )\le M^{*}\lambda \) for all \( \lambda \ge M\), \(i\in \left\{ i=1,2,\ldots ,N\right\} .\) Let \(\left\{ u_{n}\right\} \) and \(\left\{ v_{n}\right\} \) are two bounded sequences in K. Let \(\left\{ \alpha _{n}\right\} ,\left\{ \beta _{n}\right\} ,\left\{ \gamma _{n}\right\} \) and \(\left\{ \delta _{n}\right\} \) be four real sequences in \(\left[ \frac{L-1}{L},a\right] \), where \(L=\max _{1\le i\le N}\left\{ L_{i}\right\} >1\) and a is some constant in \(\left( 0,1\right) \) satisfying the following conditions:
-
(i)
\(\alpha _{n}+\gamma _{n}\le 1\) and \(\beta _{n}+\delta _{n}\le 1\) for all \(n\ge 1;\)
-
(ii)
\(\lim \sup _{n\rightarrow \infty }\alpha _{n}<1;\)
-
(iii)
\(\sum \nolimits _{n=1}^{\infty }\gamma _{n}<\infty \), \(\sum \nolimits _{n=1}^{ \infty }\delta _{n}<\infty .\)
Let the sequence \(\left\{ x_{n}\right\} \) and \(\left\{ y_{n}\right\} \) be defined by (3). Then
Proof
For all \(p\in {\mathcal {F}}\), it follows from Lemma 3 that \( \lim _{n\rightarrow \infty }\left\| x_{n}-p\right\| \) exists. Let \( \lim _{n\rightarrow \infty }\left\| x_{n}-p\right\| =r\) for some \(r\ge 0\). It follows from (7) that
where \(\sum \nolimits _{n=1}^{\infty }\mu _{n}<\infty ,\sum \nolimits _{n=1}^{\infty }l_{n}<\infty \) and \(\sum \nolimits _{n=1}^{\infty }\varphi _{\left( 1\right) }^{n}<\infty \). Taking \(\lim \sup _{n\rightarrow \infty }\) in both sides, I obtain
Notice that
It follows that
and
These imply that
and I have that
Hence,
Using (19), (23), (25) and Lemma 2, I find
Notice that
It follows from (26) that
Notice that
By using (16) and (27), I obtain
It follows that
This implies that
Since \(\lim _{n\rightarrow \infty }\left\| x_{n}-p\right\| =r\) and (16), I see that
Notice that
It follows that
and
which implies that
and I have that
Hence,
Using (30), (32), (34) and Lemma 2, I find
Notice that
It follows from (16), (27) and (35) that
Notice that
In view of (35), I see from the restriction (iii) that
Notice that
It follows that (16), (26) and (37) that
Notice that
In view of (26), I see from the restriction (iii) that
Notice that
It follows from (35) and (36) that
From (39), I also have
For any positive \(n>N\), it can be rewritten as \(n=\left( k\left( n\right) -1\right) N+i\left( n\right) \), \(i\left( n\right) \in \left\{ 1,2,\ldots ,N\right\} \). Note that
On the other hand, I have \(n-N=\left( \left( k\left( n\right) -1\right) -1\right) N+i\left( n\right) =\left( \left( k\left( n\right) -1\right) -1\right) N+i\left( n-N\right) ,\) i.e.,
It follows that
and
Combining (38), (40) with (41), I see that
On the other hand, I have that
From (39) and (44), I obtain that
Consequently, for any \(j=1,2,\ldots ,N\), I see that
From (40) and (45), I arrive at
Therefore, for \(\forall i\in \left\{ 1,2,\ldots ,N\right\} \), there exists some \(e\in \left\{ 1,2,\ldots ,N\right\} \) such that \(n+e=i\left( \hbox {mod} N\right) \). It follows that
Similarly, by using the same argument as in the proof above, I have
Since
I find from (46) and (47) that
This completes the proof. \(\square \)
Theorem 2
Let E be a real uniformly convex Banach space, K be a nonempty,closed and convex subset of E. Let \(\left\{ S_{i}\right\} _{i=1}^{N}\), \(\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be 2N uniformly \(L_{i}\hbox{-}Lipschitz\) total asymptotically nonexpansive mappings \( \left\{ \mu _{n}\right\} \), \(\left\{ l_{n}\right\} \) defined by (1) and (2) such that
and \({\mathcal {F}}:\bigcap \nolimits _{i=1}^{N}F\left( T_{\dot{I}}\right) \cap F\left( S_{\dot{I}}\right) \ne \varnothing \). Assume that there exist at least a \(T_{i} \left( i\in I\right) \) which is \(semi-compact\). Assume that there exist M, \(M^{*}>0\) such that \(\phi (\lambda )\le M^{*}\lambda \) for all \(\lambda \ge M\), \(i\in \left\{ i=1,2,\ldots ,N\right\} .\) Let \(\left\{ u_{n}\right\} \) and \(\left\{ v_{n}\right\} \) are two bounded sequences in K. Let \(\left\{ \alpha _{n}\right\} ,\left\{ \beta _{n}\right\} ,\left\{ \gamma _{n}\right\} \) and \(\left\{ \delta _{n}\right\} \) be four real sequences in \(\left[ \frac{L-1}{L},a\right] \), where \( L=\max _{1\le i\le N}\left\{ L_{i}\right\} >1\) and a is some constant in \( \left( 0,1\right) \) satisfying the following conditions:
-
(i)
\(\alpha _{n}+\gamma _{n}\le 1\) and \(\beta _{n}+\delta _{n}\le 1\) for all \(n\ge 1;\)
-
(ii)
\(\lim \sup _{n\rightarrow \infty }\alpha _{n}<1;\)
-
(iii)
\(\sum \nolimits _{n=1}^{\infty }\gamma _{n}<\infty \), \(\sum \nolimits _{n=1}^{ \infty }\delta _{n}<\infty .\)
Then the sequence \(\left\{ x_{n}\right\} \) be defined by (3) converges strongly to a common fixed point of \(\left\{ T_{1},T_{2},\ldots ,T_{N},S_{1},S_{2},\ldots ,S_{N}\right\} \) in E.
Proof
Without loss of generality, I may assume that \(T_{1}\) is semicompact. It follows from (46) that
By the semicompactness of \(T_{1}\), I have there exists a subsequence \( \left\{ x_{n_{i}}\right\} \) of \(\left\{ x_{n}\right\} \) such that \( x_{n_{i}}\rightarrow q\in K\) strongly. From (46), I have
for all \(l=1,2,\ldots ,N\). Also, it follows from (48) and (50), I have
for any \(l\in I\). This implies that \(q\in {\mathcal {F}}\). From Lemma 3 , I know that \(\lim _{n\rightarrow \infty }\left\| x_{n}-q\right\| \) exists for all \(q\in {\mathcal {F}}\). It follows from \(x_{n_{i}}\rightarrow q\) that \(\lim _{n\rightarrow \infty }\left\| x_{n}-q\right\| =0\). Thus, the iterative sequence \(\left\{ x_{n}\right\} \) defined by (3) converges strongly to a common fixed point of \(\left\{ T_{1},T_{2},\ldots ,T_{N},S_{1},S_{2},\ldots ,S_{N}\right\} \) in E. This completes the proof. \(\square \)
Corollary 1
Let E be a real uniformly convex Banach space, K be a nonempty,closed and convex subset of E. Let \(\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be N uniformly \(L_{i}-Lipschitz\) total asymptotically nonexpansive mappings \(\left\{ \mu _{n}\right\} \), \(\left\{ l_{n}\right\} \) defined by (1) such that
and \({\mathcal {F}}:\bigcap \nolimits _{i=1}^{N}F\left( T_{\dot{I}}\right) \ne \varnothing \). Assume that there exist M, \(M^{*}>0\) such that \(\phi (\lambda )\le M^{*}\lambda \) for all \(\lambda \ge M\), \(i\in \left\{ i=1,2,\ldots ,N\right\} .\) Let \(\left\{ x_{n}\right\} \) be the sequence defined by
where \(\left\{ u_{n}\right\} \) and \(\left\{ v_{n}\right\} \) are two bounded sequences in K. Let \(\left\{ \alpha _{n}\right\} ,\left\{ \beta _{n}\right\} ,\left\{ \gamma _{n}\right\} \) and \(\left\{ \delta _{n}\right\} \) be four real sequences in \(\left[ \frac{L-1}{L},a\right] \), where \( L=\max _{1\le i\le N}\left\{ L_{i}\right\} >1\) and a is some constant in \( \left( 0,1\right) \) satisfying the following conditions:
-
(i)
\(\alpha _{n}+\gamma _{n}\le 1\) and \(\beta _{n}+\delta _{n}\le 1\) for all \(n\ge 1;\)
-
(ii)
\(\lim \sup _{n\rightarrow \infty }\alpha _{n}<1;\)
-
(iii)
\(\sum \nolimits _{n=1}^{\infty }\gamma _{n}<\infty \), \(\sum \nolimits _{n=1}^{ \infty }\delta _{n}<\infty .\)
Then
-
(a)
The implicit iterative sequence \(\left\{ x_{n}\right\} \) converges strongly to a common fixed point in \({\mathcal {F}}\) if and only if \(\lim \inf _{n\rightarrow \infty }d\left( x_{n},{\mathcal {F}}\right) =0\), where \( d\left( x,{\mathcal {F}}\right) \) denotes the distance of x to set \( {\mathcal {F}}\), i.e., \(d\left( x,{\mathcal {F}}\right) =\inf _{y\in {\mathcal {F}}}d\left( x,y\right) .\)
-
(b)
If one of the mappings in \(\left\{ T_{1},\ldots ,T_{N}\right\} \) is \( semi-compact\), then the sequence \(\left\{ x_{n}\right\} \) converges strongly to a common fixed point of \(\left\{ T_{1},T_{2},\ldots ,T_{N}\right\} .\)
Corollary 2
Let E be a real uniformly convex Banach space, K be a nonempty,closed and convex subset of E. Let \(\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be N uniformly \(L_{i}-Lipschitz\) total asymptotically nonexpansive mappings \(\left\{ \mu _{n}\right\} \), \(\left\{ l_{n}\right\} \) defined by (1) such that
and \({\mathcal {F}}:\bigcap \nolimits _{i=1}^{N}F\left( T_{\dot{I}}\right) \ne \varnothing \). Assume that there exist M, \(M^{*}>0\) such that \(\phi (\lambda )\le M^{*}\lambda \) for all \(\lambda \ge M\), \(i\in \left\{ i=1,2,\ldots ,N\right\} .\) Let \(\left\{ x_{n}\right\} \) be the sequence defined by
where \(\left\{ u_{n}\right\} \) is a bounded sequence in K. Let \(\left\{ \alpha _{n}\right\} \) and \(\left\{ \gamma _{n}\right\} \) be two real sequences in \(\left[ \frac{L-1}{L},a\right] \), where \(L=\max _{1\le i\le N}\left\{ L_{i}\right\} >1\) and a is some constant in \(\left( 0,1\right) \) satisfying the following conditions:
-
(i)
\(\alpha _{n}+\gamma _{n}\le 1\) and \(\beta _{n}+\delta _{n}\le 1\) for all \(n\ge 1;\)
-
(ii)
\(0<\lim \inf _{n\rightarrow \infty }\alpha _{n}<\lim \sup _{n\rightarrow \infty }\alpha _{n}<1;\)
-
(iii)
\(\sum \nolimits _{n=1}^{\infty }\gamma _{n}<\infty \).
Then
-
(a)
The implicit iterative sequence \(\left\{ x_{n}\right\} \) converges strongly to a common fixed point in \({\mathcal {F}}\) if and only if \(\lim \inf _{n\rightarrow \infty }d\left( x_{n},{\mathcal {F}}\right) =0\), where \( d\left( x,{\mathcal {F}}\right) \) denotes the distance of x to set \( {\mathcal {F}}\), i.e., \(d\left( x,{\mathcal {F}}\right) =\inf _{y\in {\mathcal {F}}}d\left( x,y\right) .\)
-
(b)
If one of the mappings in \(\left\{ T_{1},\ldots ,T_{N}\right\} \) is \( semi-compact\), then the sequence \(\left\{ x_{n}\right\} \) converges strongly to a common fixed point of \(\left\{ T_{1},T_{2},\ldots ,T_{N}\right\} .\)
Remark 1
Since total asymptotically nonexpansive mappings include asymptotically nonexpansive mappings, Theorem 2 improves and generalizes Theorem 3.7 in Cianciaruso et al. (2010) and Theorem 3.7 in Hao et al. (2012).
Conclusion 1
-
1.
My theorems and corolaries which include the corresponding results announced in Xu and Ori (2001), Sun (2003), Chang et al. (2006), Gu (2006) as special cases fundamentally improve and generalize the results of Cianciaruso et al. (2010) and Hao et al. (2012) in the following sense.
-
(i)
Extend the mappings from the class of asimptotically nonexpansive mappings to the class of total asimptotically nonexpansive mappings.
-
(ii)
Extend the mappings from \(\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be N mappings to \(\left\{ S_{i}\right\} _{i=1}^{N}\), \(\left\{ T_{i}\right\} _{i=1}^{N}:K\rightarrow K\) be 2N mappings.
-
(i)
-
2.
I considered an Ishikawa-type iterative algorithm for the class of total asimptotically nonexpansive mappings. But, my results are also available in the Mann-type iterative algorithm for the class of total asimptotically nonexpansive mappings.
Example 1
Let E is the real line with the usual norm \(\left| .\right| \), \( K=\left( -1,1\right) \). Assume that \(Tx=\sin x\) and \(Sx=\sin \left( -x\right) \) for \(x\in K\). Let \(\phi \) be a strictly increasing continuous function such that \(\phi : \mathbb {R} ^{+}\rightarrow \mathbb {R}^{+}\) with \(\phi (0)=0\). Let \(\{\mu _{n}\}_{n\ge 1}\) and \(\{l_{n}\}_{n\ge 1}\) in \( \mathbb {R} \) be two sequences defined by \(\mu _{n}=\frac{1}{n}\) and \(l_{n}=\frac{1}{n+1} \), for all \(n\ge 1\) (\(\lim _{n\rightarrow \infty }\mu _{n}=\lim _{n\rightarrow \infty }\frac{1}{n}=0\), \(\lim _{n\rightarrow \infty }l_{n}=\frac{1}{n+1}=0\)). Since \(Tx=\sin x\) for \(x\in K\), I have
For all x, \(y\in K,\) I obtain
for all \(n=1,2,\ldots \), \(\{\mu _{n}\}_{n\ge 1}\) and \(\{l_{n}\}_{n\ge 1}\) with \(\mu _{n}\), \(l_{n}\rightarrow 0\) as \(n\rightarrow \infty \) and so T is a total asymptoticaly nonexpansive mapping. Also, \(Sx=\sin \left( -x\right) \) for \(x\in K\), I have
For all x, \(y\in K,\) I obtain
for all \(n=1,2,\ldots \), \(\{\mu _{n}\}_{n\ge 1}\) and \(\{l_{n}\}_{n\ge 1}\) with \(\mu _{n}\), \(l_{n}\rightarrow 0\) as \(n\rightarrow \infty \) and so S is a total asymptoticaly nonexpansive mapping. Clearly, \(F:=F\left( T\right) \cap F\left( S\right) =\left\{ 0\right\} \). Set
for \(n\ge 1\). In order to easily calculate, I modifed my iteration scheme for \(n=1\). This scheme (53) is defined as follows:
The numerical experiment outcome obtained by using Scientific WorkPlace 5.5 show that as \(x_{0}=0\), the computation of \(y_{1}=9.0853\times 10^{-2}\). This example illustrates the efficiency of approximation of common fixed points of total asymptotically nonexpansive mappings.
Let \(\left\{ S_{i}\right\} _{i=1}^{N}\), \(\left\{ T_{i}\right\} _{i=1}^{N}:E\rightarrow E\) be 2N total asymptotically nonexpansive mappings; assuming existence of common fixed points of these operators, our theorems and method of proof easily carry over to this class of mappings using the following implicit iterative scheme \(\left\{ x_{n}\right\} \) with errors:
where \(n=\left( k\left( n\right) -1\right) N+i\left( n\right) \), \(i\left( n\right) \in 1,2,\ldots ,N\), \(\left\{ a_{n}\right\} \), \(\left\{ b_{n}\right\} \), \(\left\{ c_{n}\right\} \), \(\left\{ a_{n}^{^{\prime }}\right\} \), \(\left\{ b_{n}^{^{\prime }}\right\} \), \(\left\{ c_{n}^{^{\prime }}\right\} \) are six real sequences in \(\left[ 0,1\right] \) satisfying \(a_{n}= b_{n}=c_{n}=1=a_{n}^{^{\prime }}= b_{n}^{^{\prime }}=c_{n}^{^{\prime }}\) for all \(n\ge 1\), \(\left\{ u_{n}\right\} \) and \( \left\{ v_{n}\right\} \) are two bounded sequences.
In order not to enlarge this note unnecessarily, I only include total asymptotically nonexpansive mappings. But, in accordance with the above proof of theorem, one can easily prove in total asymptotically quasi nonexpansive mappings.
If \(S=I\), then (54) transform to implicit iterative scheme defined by Mukhamedov and Saburov (see, more details Mukhamedov and Saburov 2012a). My theorems and corolaries also improve and generalize the mappings from the class of a finite family of quasi-asimptotically nonexpansive mappings to the class of a finite family of total quasi-asimptotically nonexpansive mappings.
If S, \(T:E\rightarrow E\) be two total asymptotically nonexpansive mappings and take \(S=I\), then (54) reduce to implicit iterative scheme defined by Mukhamedov and Saburov (see, more details Mukhamedov and Saburov 2011). My theorems and corolaries also improve and generalize the mappings from the class of quasi-asimptotically nonexpansive mappings to the class of total quasi-asimptotically nonexpansive mappings.
References
Albert Ya I, Chidume CE, Zegeye H (2006) Approximating fixed points of total asymptotically nonexpansive mappings. Fixed Point Theory Appl. 10673–1–10673–20. doi:10.1155/FPTA/2006/10673
Chang SS, Tan KK, Lee HWJ, Chan CK (2006) On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings. J Math Anal Appl 313:273–283
Cianciaruso F, Marino G, Wang X (2010) Weak and strong convergence of the Ishikawa iterative process for a finite family of asymptotically nonexpansive mappings. Appl Math Comput 216:3558–3567
Gu F (2006) Convergence of implicit iterative process with errors for a finite family of asymptotically nonexpansive mappings. Acta Math Sci 26:1131–1143
Hao Y (2010) Convergence theorems for total asymptotically nonexpansive mappings. An Şt Univ Ovidius Constanta 18(1):163–180
Hao Y, Wang X, Tong A (2012) Weak and strong convergence theorems for two finite families of asymptotically nonexpansive mappings in Banach Spaces. Adv Fixed Point Theory 2(4):417–432
Mukhamedov F, Saburov M (2010a) Weak and strong convergence of an implicit iteration process for an asymptotically quasi-I-nonexpansive mapping in Banach Space. Fixed Point Theory and Appl. 2010:719631–1–719631–13. doi:10.1155/2010/719631
Mukhamedov F, Saburov M (2010b) Strong convergence of an explicit iteration process for a totally asymptotically I-nonexpansive mapping in Banach Space. Appl Math Lett 23(12):1473–1478
Mukhamedov F, Saburov M (2011) Weak convergence of an implicit iterative process with errors for an asymptotically quasi I-non-expansive mapping in Banach Space. Asian Eur J Math 4(2):309–319
Mukhamedov F, Saburov M (2012a) On convergence theorems of an implicit iterative process with errors for a finite family of asymptotically quasi I non-expansive mappings. Aust J Math Anal Appl (AJMAA) 9(1):1–17
Mukhamedov F, Saburov M (2012b) On unification of the strong convergence theorems for a finite family of total asymptotically non-expansive mappings in Banach Space. J Appl Math. 2012:281383–1–281383–21 doi:10.1155/2012/281383
Qin X, Su Y, Shang M (2008) On the convergence of implicit iteration process for a finite family of k-strictly asymptotically pseudocontractive mappings. Kochi J Math 3:67–76
Schu J (1991) Weak and strong convergence of a fixed points of asymptotically nonexpansive mappings. Bull Aust Math Soc 43:153–159
Sun ZH (2003) Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings. J Math Anal Appl 286:351–358
Tan KK, Xu HK (1993) Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J Math Anal Appl 178:301–308
Xu HK, Ori RG (2001) An implicit iteration process for nonexpansive mappings. Numer Funct Anal Optim 22:767–773
Acknowledgements
I would like to thank my supervisor Associate Professor Hukmi KIZILTUNC for his helpful comments. The author wish to thank the editor and referees for their useful comments and suggestions.
Competing interests
The author declares that she has no competing interests.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Yolacan, E. A note on “Implicit iterative process with errors”. SpringerPlus 5, 329 (2016). https://doi.org/10.1186/s40064-016-1964-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s40064-016-1964-4
Keywords
- Total asymptotically nonexpansive mappings
- Common fixed points
- Implicit iterative process with errors
Mathematics Subject Classification
- 47H09
- 47H10
- 46B20