Ajani J (2011) Carbon stock accounts: Information Paper for the United Nations Statistics Division Technical Expert Meeting on Ecosystem Accounts, London
Ajani JI, Keith H, Blakers M, Mackey BG, King HP (2013) Comprehensive carbon stock and flow accounting: a national framework to support climate change mitigation policy. Ecol Econ 89:61–72
Article
Google Scholar
Beare MH, Gregorich EG, St-Georges P (2009) Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol Biochem 41(611):621
Google Scholar
Berger TW, Neubauer C, Glatzel G (2002) Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For Ecol Manag 159:3–14
Article
Google Scholar
Binkley D (1995) The influence of tree species on forest soils: processes and patterns. Special Publication-Agronomy Society of New Zealand, pp 1–34
Chatterjee A, Lal R, Wielopolski L, Martin MZ, Ebinger MH (2009) Evaluation of different soil carbon determination methods. Crit Rev Plant Sci 28:164–178
Article
Google Scholar
Cochran RL, Collins HP, Kennedy A, Bezdicek DF (2007) Soil carbon pools and fluxes after land conversion in a semiarid shrub-steppe ecosystem. Biol Fertil Soils 43:479–489. doi:10.1007/s00374-006-0126-1
Article
Google Scholar
Dar JA, Sundarapandian S (2015) Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environ Monit Assess 187(2):1–17
Article
Google Scholar
Davidson EA, Swank WT, Perry TO (1986) Distinguishing between nitrification and denitrification sources of gaseous nitrogen-production in soil. Appl Environ Microbiol 52:1280–1286
Google Scholar
Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17(1):71–84
Article
Google Scholar
FAO (2010) Global forest resources assessment 2010. Main report. Food and Agriculture Organization of the United Nations, Rome, Italy
Finzi AC, Breemen NV, Canham CD (1989) Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl 8(2):440–446
Google Scholar
Franzluebbers AJ, Stuedemann JA (2010) Surface soil changes during twelve years of pasture management in the Southern Piedmont USA. Soil Sci Soc Am J 74:2131–2141
Article
Google Scholar
Groffman PM, Hardy JP, Fisk MC, Fahey TJ, Driscoll CT (2009) Climate variation and soil carbon and nitrogen cycling processes in a northern hardwood forest. Ecosystems 12(6):927–943
Article
Google Scholar
Halvorson JJ, Smith JL (2009) Carbon and nitrogen accumulation and microbial activity in Mount St. Helens pyroclastic substrates after 25 years. Plant Soil 315(1–2):211–228
Article
Google Scholar
IPCC (1994) Radiative forcing of climate change. The 1994 Report of the Scientific Assessment Working Group of IPCC. Summary for policymakers. World Meteorology Organization, UN Environmental Program, Geneva, Switzerland
IPCC (2007) Climate change 2007: the physical science basis. Summary for policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva. http://ipcc-wg1.ucar.edu/wg1/docs/WG1AR4_SPM_Approved_05Feb.pdf
IUCN-WCMC (1993) Nature reserves of the Himalayas and the mountains of Central Asia. Compiled by Michael J.B. Green. IUCN Gland, Switzerland
Google Scholar
Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268
Article
Google Scholar
Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81(1):88–98
Article
Google Scholar
Law Y, Lant P, Yuan Z (2011) The effect of pH on N2O production under aerobic conditions in a partial nitritation system. Water Res 45:5934–5944
Article
Google Scholar
Liao QL, Zhang XH, Li ZP, Pan GX, Smith P, Jin Y, Wu XM (2009) Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob Change Biol 15:861–875
Article
Google Scholar
Lovett GM, Weathers KC, Arthur MA (2002) Control of nitrogen loss from forested watersheds by soil carbon: nitrogen ratio and tree species composition. Ecosystems 5:712–718
Article
Google Scholar
Menyailo OV, Hungate BA, Zech W (2002) The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment. Plant Soil 242:183–196
Article
Google Scholar
Mi N, Wang SQ, Liu JY, Yu GR, Zhang WJ, Jobbaagy E (2008) Soil inorganic carbon storage pattern in China. Glob Change Biol 14:2380–2387
Article
Google Scholar
Miller C (2000) Understanding the carbon-nitrogen ratio. Acres USA. www.acresusa.com
Nguyen DH, Biala J, Grace PR, Scheer C, Rowlings DW (2014) Greenhouse gas emissions from sub-tropical agricultural soils after addition of organic by-products. SpringerPlus 3(1):491
Article
Google Scholar
Niklińska M, Klimek B (2007) Effect of temperature on the respiration rate of forest soil organic layer along an elevation gradient in the Polish Carpathians. Biol Fertil Soils 43(5):511–518
Article
Google Scholar
Oostra S, Majdi H, Olsson M (2006) Impact of tree species on soil carbon stocks and soil acidity in southern Sweden. Scand J For Res 21:364–371
Article
Google Scholar
Ouyang XJ, Zhou GY, Huang ZL, Liu JX, Zhang DQ, Li J (2008) Effect of simulated acid rain on potential carbon and nitrogen mineralization in forest soils. Pedosphere 18:503–514
Article
Google Scholar
Ovington JD (1954) Studies of the development of woodland conditions under different trees. Part II—the forest floor. J Ecol 42:71–80
Article
Google Scholar
Park JH, Matzner E (2003) Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66(3):265–286
Article
Google Scholar
Parras-Alcántara L, Lozano-García B, Galán-Espejo A (2015) Soil organic carbon along an altitudinal gradient in the Despeñaperros Natural Park, southern Spain. Solid Earth 6:125–134. doi:10.5194/se-6-125-2015
Article
Google Scholar
Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22(15–16):1193–1200
Article
Google Scholar
Ravishankara A, Daniel J, Portmann R (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125
Article
Google Scholar
Riegel JB, Bernhardt E, Swenson J (2013) Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing. PLoS One 8:e68251. doi:10.1371/journal.pone.0068251
Article
Google Scholar
Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475
Article
Google Scholar
Sheikh K (1998) Detailed Field Work Progress Report 1996–1998. Pakistan–German Research Project ‘Culture Area Karakorum’, Islamabad
Sheikh K, Ahmad T, Khan MA (2002) Use, exploitation and prospects for conservation: people and plant biodiversity of Naltar Valley, northwestern Karakorums, Pakistan. Biodivers Conserv 11(4):715–742
Article
Google Scholar
Shi Y, Baumann F, Ma Y, Song C, Uhn PK, Scholten T, He JS (2012) Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications. Biogeosciences 9:2287–2299. doi:10.5194/bg-9-2287-2012
Article
Google Scholar
Sveinbjörnsson B, Davis J, Abadie W, Butler A (1995) Soil carbon and nitrogen mineralization at different elevations in the Chugach Mountains of south-central Alaska, USA. Arct Alp Res 1:29–37
Article
Google Scholar
Tans P (2012) Monthly mean concentration CO2 at the Mauna Loa observatory. NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)
Trumbore SE, Czimczik CI (2008) An uncertain future for soil carbon. Science 321:1455–1456
Article
Google Scholar
van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738. doi:10.1038/ngeo671
Article
Google Scholar
Vesterdal L, Rosenquist L, Johansson MB (2002) Effect of afforestation on carbon sequestration in soil and biomass. In: Hansen K (ed) Planning afforestation on previously managed arable land—influence on deposition, nitrate leaching, and carbon sequestration, pp 63–88. http://www.fsl.dk/afforest/
Vesterdal L, Schmidt IK, Callesen IC, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manag 255:35–48
Article
Google Scholar
Vieira SA, Alves LF, Duarte-Neto PJ, Martins SC, Veiga LG, Scaranello MA, Martinelli LA (2011) Stocks of carbon and nitrogen and partitioning between above-and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecol Evol 1(3):421–434
Article
Google Scholar
Wang Y, Li Y, Ye X et al (2010) Profile storage of organic/inorganic carbon in soil: from forest to desert. Sci Total Environ 408:1925–1931. doi:10.1016/j.scitotenv.2010.01.015
Article
Google Scholar
Xiao Y, An K, Yang Y, Xie G, Lu C (2014) Forest carbon storage trends along altitudinal gradients in Beijing, China. J Resour Ecol 5(2):148–156
Article
Google Scholar
Zaehle S (2013) Terrestrial nitrogen–carbon cycle interactions at the global scale. Philos Trans R Soc B-Biol Sci 368:9. doi:10.1098/rstb.2013.0125
Article
Google Scholar
Zhang S, Chen D, Sun D, Wang X, Smith JL, Du G (2012) Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau, China. Biol Fertil Soils 48(4):393–400
Article
Google Scholar