Open Access

Common coupled fixed point theorems satisfying rational type contractive conditions in b-metric spaces

SpringerPlus20165:257

https://doi.org/10.1186/s40064-016-1849-6

Received: 18 November 2015

Accepted: 15 February 2016

Published: 2 March 2016

Abstract

In this article, existence and uniqueness of common coupled fixed point for a pair of mappings in the setup of complete b-metric spaces are studied. The derived result generalizes and extends some well known results from the existing literature in b-metric spaces. Appropriate example is also given.

Keywords

Complete b-metric spaceCommon fixed pointCoupled fixed pointCoupled coincidence pointRational type contractive conditions

Mathematics Subject Classification

Primary 47H10; Secondary 54H25

Background

Bakhtin (1989) and Czerwik (1993) generalized the notion of metric spaces and introduced the concept of b-metric spaces, which is also known as metric type space (Hussain et al. 2012). b-metric space solved some problems, particulary the problem of the convergence of measurable functions with respect to a measure, lead to a generalization of notation of metric. Using this concept Czerwik (1993, 1998), generalized the well known Banach contraction principle in b-metric spaces, see Czerwik (1998), Czerwik et al. (1997, 2001). Many researchers including Aydi et al. (2012), Boriceanu (2009a, b, c), Bota et al. (2011), Chugh et al. (2012), Shih Du and Karapnar (2013), Kir and Kiziltunc (2013), Olaru and Branga (2011), Olatinwo and Imoru (2008), Lina and Curar (2010) and Pacurar (2010) studied the extension of fixed point theorems in b-metric space.

Guo and lakshmikantham (1987) introduced the concept of coupled fixed point for partially ordered set. By using the concept of mixed monotone property (Gnana Bhaskar and Lakshmikantham 2006) studied the existence and uniqueness of a coupled fixed point result in partially ordered metirc space. After that many researchers studied the coupled fixed point and discussed it’s application. See Berinde (2012), Gnana Bhaskar and Lakshmikantham (2006), Guo and lakshmikantham (1987), Mustafa et al. (2013), Mustafa et al. (2014), Mustafa et al. (2014), Sintunavarat et al. (2012), Sintunavarat et al. (2013). Recently Malhotra and Bansal (2015) studied the existence and uniqueness of common coupled fixed points for a pair of mappings in complete b-metric space.

The aim of this manuscript is to study the existence and uniqueness of common coupled fixed point for a pair of mappings in the setup of complete b-metric space. The derived results generalizes some well known results from the existing literature.

Preliminaries

Throughout this paper \({{\mathbb {R}}}\) is the set of real and \({{\mathbb {R}}}^{+}\) is set of positive real numbers.

Definition 1

(Bakhtin 1989; Boriceanu 2009c) Suppose X be a non empty set and \(s\ge 1,s\in {{\mathbb {R}}}\). A function \(d:X\times X\rightarrow {{\mathbb {R}}}^{+}\) is said to be b-metric if for all \(x,y,z\in X\), the following condition are satisfied:
  1. (1)

    \(d(x,y)=0\Leftrightarrow x=y;\)

     
  2. (2)

    \(d(x,y)=d(y,x);\)

     
  3. (3)

    \(d(x,z)\le s[d(x,y)+d(y,z)].\)

     
Then the pair (Xd) with parameter s is said to be b-metric space.

Example 1

(Boriceanu 2009c) The \(l_{p}\) space, \(0<p<1, l_{p}=\{(x_{n})\in {{\mathbb {R}}}:\sum |x_{n}|^{p}<\infty \}\) and function is defined as \(d:l_{p}\times l_{p}\rightarrow {{\mathbb {R}}}\) by

\(d(x,y)=\left(\sum |x_{n}-y_{n}|^{p}\right)^{\frac{1}{p}}, x=(x_{n}), y=(y_{n})\in l_{p}\) then (Xd) is said to b-metric space with parameter \(s=2^{\frac{1}{2}}\) provided that \(d(x,z)\le 2^{\frac{1}{2}}[d(x,y)+d(y,z)]\).

Example 2

The space \(L_{p}\) with \(0<p<1\) of all real functions \(x(t), t\in [0,1]\) such that \(\int \nolimits _{0}^{1}|x(t)|^{p}<\infty\), if \(d(x,y)=[\int \nolimits _{0}^{1}|x(t)-y(t)|^{p}dt]^{\frac{1}{p}}\) for all xy \(\in L_{p}\), then d satisfy all the condition of b-metric on the \(L_{p}\) space.

Definition 2

Boriceanu (2009c) Let (Xd) be a b-metric space. Then a sequence \(\{x_{n}\}\) is said be converge to \(x\in X\) if for each \(\epsilon >0\) there exists \(i(\epsilon )\in N\), such that \(d(x_{n},x)<\epsilon\) for all \(n\ge i(\epsilon )\).

Definition 3

Boriceanu (2009c) Let (Xd) be a b-metric space. Then a sequence \(\{x_{n}\}\) is said be a Cauchy sequence if for each \(\epsilon >0\) there exists \(i(\epsilon )\in N\), such that \(d(x_{n}, x_{m})<\epsilon\) for all \(n,m\ge i(\epsilon )\).

Definition 4

Gnana Bhaskar and Lakshmikantham (2006) An element \((x,y)\in X\times X\) is said to be a coupled fixed point of \(T:X\times X\rightarrow X\) if \(x=T(x,y)\) and \(y=T(y,x)\).

Definition 5

An element \((x,y)\in X\times X\) is said to be a coupled coincidence point of \(S,T:X\times X\rightarrow X\) if \(S(x,y)=T(x,y)\) and \(S(y,x)=T(y,x)\).

Example 3

Suppose \(X={{\mathbb {R}}}\) and \(S,T:X\times X\rightarrow X\) defined as \(S(x,y)=x^{2}y^{2}\) and \(T(x,y)=(9/4)(x+y)\) for all \(x, y\in X\). Then (3,1), (1,3) and (0,0) are coupled coincidence points of ST.

Definition 6

Let \(S,T:X\times X\rightarrow X\) a point \((x,y)\in X\times X\) is said to be common fixed point of ST if
$$\begin{aligned} x=S(x,y)=T(x,y)\ \ \hbox {and}\ \ \ y=S(y,x)=T(y,x). \end{aligned}$$

Main results

This section derives some fixed point results in the setup of b-metric spaces.

Theorem 1

Let (Xd) be a complete b-metric space with parameter \(s \ge 1\) and let the mapping \(S,T: X\times X \rightarrow X\) satisfy:
$$\begin{aligned} d(S(x,y),T(u,v))& \le \alpha _{1} \frac{d(x,u)+d(y,v)}{2}\nonumber \\ & \quad+\alpha _{2}\frac{d(x,S(x,y))d(u,T(u,v))}{1+d(x,u)+d(y,v)}\nonumber \\&\quad +\alpha _{3}\frac{d(u,S(x,y))d(x,T(u,v))}{1+d(x,u)+d(y,v)}\nonumber \\&\quad +\alpha _{4}\frac{d(S(x,y),T(u,v))d(x,u)}{1+d(x,u)+d(y,v)}\nonumber \\&\quad+\alpha _{5}\frac{d(S(x,y),T(u,v))d(y,v)}{1+d(x,u)+d(y,v)}\nonumber \\&\quad+\alpha _{6}\frac{d(u,T(u,v))d(y,v)}{1+d(x,u)+d(y,v)}\nonumber \\&\quad+\alpha _{7}\frac{d(u,S(x,y)d(x,u))}{1+d(x,u)+d(y,v)}\nonumber \\&\quad+\alpha _{8}\frac{d(u,S(x,y))d(y,v)}{1+d(x,u)+d(y,v)} \end{aligned}$$
(1)
For all \(x,y,u,v,\in X\) and \(\alpha _{1},\alpha _{2},\alpha _{3},\alpha _{4},\alpha _{5},\alpha _{6},\alpha _{7},\alpha _{8}\ge 0\) with \(s\alpha _{1}+\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}<1\) and \(\alpha _{1}+\alpha _{3}+\alpha _{4}+\alpha _{5}+\alpha _{7}+\alpha _{8}<1.\) Then S and T have unique common coupled fixed point in X.□

Proof

Take two arbitrary points \(x_0, y_0\) in X, define \(x_{2k+1}= S(x_{2k},y_{2k}), y_{2k+1}=S(y_{2k},x_{2k})\), \(x_{2k+2}= T(x_{2k+1},y_{2k+1})\), \(y_{2k+2}=T(y_{2k+1}\), \(x_{2k+1})\) for \(k= 0,1,2,\ldots .\)

Consider
$$\begin{aligned} d(x_{2k+1},x_{2k+2})=d(S(x_{2k},y_{2k}),T(x_{2k+1},y_{2k+1})). \end{aligned}$$
Then by using condition (1) of Theorem 1, we have
$$\begin{aligned} d(x_{2k+1},x_{2k+2})& \le \alpha _{1}\frac{d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}{2}\\ & \quad+\alpha _{2}\frac{d(x_{2k},S(x_{2k},y_{2k})) d(x_{2k+1},T(x_{2k+1},y_{2k+1}))}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad +\alpha _{3}\frac{d(x_{2k+1},S(x_{2k},y_{2k}))d(x_{2k},T(x_{2k+1},y_{2k+1}))}{1+d(x_{2k},x_{2k+1})+ d(y_{2k},y_{2k+1})} \\ & \quad +\alpha _{4}\frac{d(S(x_{2k},y_{2k}),T(x_{2k+1},y_{2k+1}))d(x_{2k},x_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})} \\ & \quad + \alpha _{5}\frac{d(S(x_{2k},y_{2k}),T(x_{2k+1},y_{2k+1}))d(y_{2k},y_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad+\alpha _{6}\frac{d(x_{2k+1},T(x_{2k+1},y_{2k+1}))d(y_{2k},y_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad +\alpha _{7}\frac{d(x_{2k+1},S(x_{2k},y_{2k}))d(x_{2k},x_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad +\alpha _{8}\frac{d(x_{2k+1},S(x_{2k},y_{2k}))d(y_{2k},y_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & = \alpha _{1}\frac{d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}{2}\\ & \quad+\alpha _{2}\frac{d(x_{2k},x_{2k+1})d(x_{2k+1},x_{2k+2})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad +\alpha _{3}\frac{d(x_{2k+1},x_{2k+1})d(x_{2k},x_{2k+2})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\& \quad+ \alpha _{4}\frac{d(x_{2k+1},x_{2k+2})d(x_{2k},x_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad+\alpha _{5}\frac{d(x_{2k+1},x_{2k+2})d(y_{2k},y_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad+ \alpha _{6}\frac{d(x_{2k+1},x_{2k+2})d(y_{2k},y_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad+\alpha _{7}\frac{d(x_{2k+1},x_{2k+1})d(x_{2k},x_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}\\ & \quad+\alpha _{8}\frac{d(x_{2k+1},x_{2k+1})d(y_{2k},y_{2k+1})}{1+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})} \\ & \le \alpha _{1}\frac{d(x_{2k},x_{2k+1})}{2}+\alpha _{1}\frac{d(y_{2k},y_{2k+1})}{2}\\ & \quad +\alpha _{2}d(x_{2k+1},x_{2k+2})+ \alpha _{4}d(x_{2k+1},x_{2k+2})\\ &\quad +\alpha _{5}d(x_{2k+1},x_{2k+2})+\alpha _{6}d(x_{2k+1},x_{2k+2}). \end{aligned}$$
which implies that
$$\begin{aligned} (1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))d(x_{2k+1},x_{2k+2})\le \alpha _{1}\frac{d(x_{2k},x_{2k+1})}{2}+ \alpha _{1}\frac{d(y_{2k},y_{2k+1})}{2} \end{aligned}$$
$$\begin{aligned} d(x_{2k+1},x_{2k+2})& \le \alpha _{1}\frac{d(x_{2k},x_{2k+1})}{2(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))}\nonumber \\ &\quad +\alpha _{1}\frac{d(y_{2k},y_{2k+1})}{2(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))}. \end{aligned}$$
(2)
Proceeding similarly one can prove that
$$\begin{aligned} d(y_{2k+1},y_{2k+2})\le \alpha _{1}\frac{d(y_{2k},y_{2k+1})}{2(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))}+ \alpha _{1}\frac{d(x_{2k},x_{2k+1})}{2(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))}. \end{aligned}$$
(3)
Adding, (2) and (3), we get
$$\begin{aligned} d(x_{2k+1},x_{2k+2})+d(y_{2k+1},y_{2k+2})& \le \frac{\alpha _{1}}{(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))}\\ & \quad [d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})] \\ & = h[d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})].\end{aligned}$$
where
$$\begin{aligned} h=\frac{\alpha _{1}}{(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))}<1. \end{aligned}$$
Also,
$$\begin{aligned} d(x_{2k+2},x_{2k+3}) & \le \alpha _{1}\frac{d(x_{2k+1},x_{2k+2})}{2(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))}\nonumber \\&\quad+\alpha _{1}\frac{d(y_{2k+1},y_{2k+2})}{2(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))} \end{aligned}$$
(4)
$$\begin{aligned} d(y_{2k+2},y_{2k+3})& \le \alpha _{1}\frac{d(y_{2k+1},y_{2k+2})}{2(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))}\nonumber \\ &\quad +\alpha _{1}\frac{d(x_{2k+1},x_{2k+2})}{2(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))} \end{aligned}$$
(5)
Adding, (4) and (5), we get
$$\begin{aligned} d(x_{2k+2},x_{2k+3})+d(y_{2k+2},y_{2k+3}) & \le \frac{\alpha _{1}}{(1-(\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}))} \\ &\quad {[d(x_{2k+1},x_{2k+2})+d(y_{2k+1},y_{2k+2})]} \\ & = h[d(x_{2k+1},x_{2k+2})+d(y_{2k+1},y_{2k+2})]\\ & \le h^{2}[d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})]. \end{aligned}$$
Continuing this way, we have
$$\begin{aligned} d(x_{n},x_{n+1})+d(y_{n},y_{n+1}) & \le h[d(x_{n-1},x_{n})+d(y_{n-1},y_{n})]\\& \le h^{2}[d(x_{n-2},x_{n-1})+d(y_{n-2},y_{n-1})]\\ & \le \cdots \le h^{n}[d(x_{0},x_{1})+d(y_{0},y_{1})] \end{aligned}$$
If \(d(x_{n},x_{n+1})+d(y_{n},y_{n+1})=\delta _{n}\) Then \(\delta _{n}\le h\delta _{n-1}\le h^{2}\delta _{n-2}\le \cdots \le h^{n}\delta _{0}.\)
For m \(>\) n,
$$\begin{aligned}{}[d(x_{n},x_{m})+d(y_{n},y_{m})] & \le s[d(x_{n},x_{n+1})+d(y_{n},y_{n+1})] \\ & \quad +s^{2}[d(x_{n+1},x_{n+2})+d(y_{n+1},y_{n+2})]+\cdots \\&\quad+s^{m-n}[d(x_{m-1},x_{m})+d(y_{m-1},y_{m})]\\ & \le h^{n}s\delta _{0}+s^{2}h^{n+1}\delta _{0}+\cdots +s^{m-n}h^{m-1}\delta _{0} \\ & < sh^{n}[1+sh+(sh)^{2}+\cdots ]\delta _{0}\\ & = \frac{sh^{n}}{1-sh}\longrightarrow 0\hbox { as }n\longrightarrow \infty . \end{aligned}$$
Shows that \(\{x_{n}\}\) and \(\{y_{n}\}\) are Cauchy sequences in X. As X is complete b-metric space, so there exists \(x,y \in X\) such that \(x_{n} \longrightarrow x\) and \(y_{n} \longrightarrow y\) as n\(\longrightarrow \infty\).

Now we will prove that \(x=S(x,y)\) and \(y=S(y,x)\). On contrary suppose that \(x\ne S(x,y)\) and \(y\ne S(x,y)\). Then \(d(x,S(x,y))=l_{1}>0\) and \(d(y,S(x,y))=l_{2}>0\).

Consider the following and using condition (1) of Theorem 1, we get
$$\begin{aligned} l_{1}& = d(x,S(x,y))\le s[d(x,x_{2k+2})+d(x_{2k+2},S(x,y))]\\ & = sd(x,x_{2k+2})+sd(T(x_{2k+1},y_{2k+1}),S(x,y))\\ &= sd(x,x_{2k+2})+sd(S(x,y),T(x_{2k+1},y_{2k+1}))\\ & \le sd(x,x_{2k+2})+s\alpha _{1}\frac{d(x,x_{2k+1})+d(y,y_{2k+1})}{2}\\ &\quad+s\alpha _{2}\frac{d(x,S(x,y)) d(x_{2k+1},T(x_{2k+1},y_{2k+1}))}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{3}\frac{d(x_{2k+1},S(x,y))d(x,T(x_{2k+1},y_{2k+1}))}{1+d(x,x_{2k+1}) +d(y,y_{2k+1})}\\&\quad+s\alpha _{4}\frac{d(S(x,y),T(x_{2k+1},y_{2k+1}))d(x,x_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{5}\frac{d(S(x,y),T(x_{2k+1},y_{2k+1}))d(y,y_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{6}\frac{d(x_{2k+1},T(x_{2k+1},y_{2k+1}))d(y,y_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{7}\frac{d(x_{2k+1},S(x,y))d(x,x_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})} \\&\quad+s\alpha _{8}\frac{d(x_{2k+1},S(x,y))d(y,y_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&= sd(x,x_{2k+2})+s\alpha _{1}\frac{d(x,x_{2k+1})+d(y,y_{2k+1})}{2}\\&\quad+s\alpha _{2}\frac{d(x,S(x,y)) d(x_{2k+1},x_{2k+2})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{3}\frac{d(x_{2k+1},S(x,y))d(x,x_{2k+2})}{1+d(x,x_{2k+1})+ d(y,y_{2k+1})}\\&\quad+s\alpha _{4}\frac{d(S(x,y),x_{2k+2})d(x,x_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{5}\frac{d(S(x,y),x_{2k+2}))d(y,y_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{6}\frac{d(x_{2k+1},x_{2k+2})d(y,y_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{7}\frac{d(x_{2k+1},S(x,y))d(x,x_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}\\&\quad+s\alpha _{8}\frac{d(x_{2k+1},S(x,y))d(y,y_{2k+1})}{1+d(x,x_{2k+1})+d(y,y_{2k+1})}. \end{aligned}$$
Since \(\{x_{n}\}\) and \(\{y_{n}\}\) are convergent to x and y, therefore by taking limit as \(k\rightarrow \infty\) we get \(l_{1}\le 0.\) Which is contradiction, so \(d(x,S(x,y))=0\) \(\Rightarrow x=S(x,y).\)

Similarly we can prove that \(y=S(y,x)\). Also we can prove that \(x=T(x,y)\) and \(y=T(y,x)\), Thus (xy) is a common coupled fixed point of S and T.

Uniqueness

Let \((x^{*},y^{*})\in \hbox {X}\times \, X\) be second common coupled fixed point of S and T.

Then by using condition (1) of Theorem 1, we have
$$\begin{aligned} d(x,x^{*}) & = d (S(x,y),T(x^{*},y^{*}))\\ & \le \alpha _{1}\frac{d(x,x^{*})+d(y,y^{*})}{2}+\alpha _{2}\frac{d(x,S(x,y) d(x^{*},T(x^{*},y^{*}))}{1+d(x,x^{*})+d(y,y^{*})}\\ & \quad \alpha _{3}\frac{d(x^{*},S(x,y))d(x,T(x^{*},y^{*}))}{1+d(x,x^{*})+ d(y,y^{*})}+\alpha _{4}\frac{d(S(x,y),T(x^{*},y^{*}))d(x,x^{*})}{1+d(x,x^{*})+d(y,y^{*})}\\ & \quad+\alpha _{5}\frac{d(S(x,y),T(x^{*},y^{*}))d(y,y^{*})}{1+d(x,x^{*})+d(y,y^{*})} +\alpha _{6}\frac{d(x^{*},T(x^{*},y^{*}))d(y,y^{*})}{1+d(x,x^{*})+d(y,y^{*})}\\ & \quad +\alpha _{7}\frac{d(x^{*},S(x,y))d(x,x^{*})}{1+d(x,x^{*})+d(y,y^{*})} +\alpha _{8}\frac{d(x^{*},S(x,y))d(y,y^{*})}{1+d(x,x^{*})+d(y,y^{*})} \\ & = \alpha _{1}\frac{d(x,x^{*})+d(y,y^{*})}{2}+\alpha _{2}\frac{d(x,x) d(x^{*},x^{*})}{1+d(x,x^{*})+d(y,y^{*})} \\ & \quad\alpha _{3}\frac{d(x^{*},x)d(x,x^{*})}{1+d(x,x^{*})+ d(y,y^{*})}+\alpha _{4}\frac{d(x,x^{*})d(x,x^{*})}{1+d(x,x^{*})+d(y,y^{*})}\\ & \quad+\alpha _{5}\frac{d(x,x^{*})d(y,y^{*})}{1+d(x,x^{*})+d(y,y^{*})} +\alpha _{6}\frac{d(x^{*},x^{*})d(y,y^{*})}{1+d(x,x^{*})+d(y,y^{*})} \\ & \quad+\alpha _{7}\frac{d(x^{*},x)d(x,x^{*})}{1+d(x,x^{*})+d(y,y^{*})} +\alpha _{8}\frac{d(x^{*},x)d(y,y^{*})}{1+d(x,x^{*})+d(y,y^{*})}\\ & \le \alpha _{1}\frac{d(x,x^{*})}{2}+\alpha _{1}\frac{d(y,y^{*})}{2}+\alpha _{3}d(x,x^{*})+\alpha _{4}d(x,x^{*})\\&\quad+\alpha _{5}d(x,x^{*})+\alpha _{7}d(x,x^{*})+\alpha _{8}d(x,x^{*}). \end{aligned}$$
Thus
$$\begin{aligned}&\left( 1-\frac{\alpha _{1}}{2}-\alpha _{3}-\alpha _{4}-\alpha _{5}-\alpha _{7}- \alpha _{8}\right) d(x,x^{*})\le \alpha _{1}\frac{d(y,y^{*})}{2}\\&\frac{(2-\alpha _{1}-2\alpha _{3}-2\alpha _{4} -2\alpha _{5}-2\alpha _{7}-2\alpha _{8})}{2} d(x,x^{*})\le \alpha _{1}\frac{d(y,y^{*})}{2} \end{aligned}$$
$$\begin{aligned} d(x,x^{*})\le \frac{\alpha _{1}}{(2-\alpha _{1}-2\alpha _{3}-2\alpha _{4}- 2\alpha _{5}-2\alpha _{7}-2\alpha _{8})}d(y,y^{*}). \end{aligned}$$
(6)
Similarly,
$$\begin{aligned} d(y,y^{*})\le \frac{\alpha _{1}}{(2-\alpha _{1}-2\alpha _{3}-2 \alpha _{4}-2\alpha _{5}-2\alpha _{7}-2\alpha _{8})}d(x,x^{*}). \end{aligned}$$
(7)
Adding, (6) and (7), we get
$$\begin{aligned} d(x,x^{*})+d(y,y^{*}) & \le \frac{\alpha _{1}}{(2-\alpha _{1}-2 \alpha _{3}-2\alpha _{4}-2\alpha _{5}-2\alpha _{7}-2\alpha _{8})} [d(y,y^{*})+d(x,x^{*})] \\ & \quad \left[ 1-\frac{\alpha _{1}}{(2-\alpha _{1}-2\alpha _{3}-2\alpha _{4}-2\alpha _{5}-2\alpha _{7}-2\alpha _{8})}\right] [d(y,y^{*})+d(x,x^{*})]\le 0\\ &\quad \frac{2(1-\alpha _{1}-\alpha _{3}-\alpha _{4}-\alpha _{5}-\alpha _{7}-\alpha _{8})}{2-\alpha _{1}-2\alpha _{3}-2\alpha _{4}- 2\alpha _{5}-2\alpha _{7}-2\alpha _{8}}[d(x,x^{*})+d(y,y^{*})]\le 0. \end{aligned}$$
Since \(\alpha _{1}+\alpha _{3}+\alpha _{4}+\alpha _{5}+\alpha _{7}+\alpha _{8}<1.\)
Therefore,
$$\begin{aligned} \frac{2(1-\alpha _{1}-\alpha _{3}-\alpha _{4}-\alpha _{5}-\alpha _{7} -\alpha _{8})}{2-\alpha _{1}-2\alpha _{3}-2\alpha _{4}- 2\alpha _{5}-2\alpha _{7}-2\alpha _{8}}>0. \end{aligned}$$
Hence
$$\begin{aligned}{}[d(x,x^{*})+d(y,y^{*})]\le 0. \end{aligned}$$
Which implies that \(x=x^{*}\) and \(y=y^{*} \Rightarrow (x,y)=(x^{*},y^{*})\).

Thus, S and T have unique common coupled fixed point.

Theorem 1 yields the following corollary.

Corollary 1

Let (Xd) be a complete b-metric space with parameter s \(\ge\) 1 and let the mapping \(T: X\times X \rightarrow X\) mapping satisfy:
$$\begin{aligned} d(T(x,y),T(u,v)) & \le \alpha _{1} \frac{d(x,u)+d(y,v)}{2}+\alpha _{2}\frac{d(x,T(x,y))d(u,T(u,v))}{1+d(x,u)+d(y,v)}\\&\quad+\alpha _{3}\frac{d(u,T(x,y))d(x,T(u,v))}{1+d(x,u)+d(y,v)}\\&\quad+\alpha _{4}\frac{d(T(x,y),T(u,v))d(x,u)}{1+d(x,u)+d(y,v)}\\&\quad+\alpha _{5}\frac{d(T(x,y),T(u,v))d(y,v)}{1+d(x,u)+d(y,v)}\\&\quad+\alpha _{6}\frac{d(u,T(u,v))d(y,v)}{1+d(x,u)+d(y,v)}\\ & \quad+\alpha _{7}\frac{d(u,T(x,y)d(x,u))}{1+d(x,u)+d(y,v)}\\ &\quad +\alpha _{8}\frac{d(u,T(x,y))d(y,v)}{1+d(x,u)+d(y,v)} \end{aligned}$$
for all \(x,y,u,v,\in X\) and \(\alpha _{1},\alpha _{2},\alpha _{3},\alpha _{4},\alpha _{5},\alpha _{6},\alpha _{7},\alpha _{8}\ge 0\) with \(s\alpha _{1}+\alpha _{2}+\alpha _{4}+\alpha _{5}+\alpha _{6}<1\) and \(\alpha _{1}+\alpha _{3}+\alpha _{4}+\alpha _{5}+\alpha _{7}+\alpha _{8}<1.\) Then T has unique common coupled fixed point in X.

Proof

The proof follows from Theorem 1 by taking \(S=T\).□

Theorem 2

Let (Xd) be a complete b metric space with parameter \(s\ge 1\) and let the mapping \(S,T:X\times X\longrightarrow X\) satisfy:
$$\begin{aligned} d(S(x,y),T(u,v)) &\le \alpha \frac{(d(x,u))+d(y,v)}{2}\nonumber \\&\quad+\beta \frac{d(x,S(x,y))d(u,T(u,v))}{1+s[d(x,T(u,v))+d(u,S(x,y))+d(x,u))+d(y,v)]}. \end{aligned}$$
(8)
For all \(x,y,u,v\,\in\) X and \(\alpha ,\beta\) are non-negative real numbers with \(s(\alpha +\beta )<1\). Then S and T have unique common coupled fixed point.

Proof

Take two arbitrary points \(x_0, y_0\) in X. Define \(x_{2k+1}=S(x_{2k},y_{2k}), y_{2k+1}=S(y_{2k},x_{2k}), x_{2k+2}=T(x_{2k+1},y_{2k+1})\) and \(y_{2k+2}=T(y_{2k+1},x_{2k+1})\) for \(k=0,1,2,\ldots\).

Consider
$$\begin{aligned} d(x_{2k+1},x_{2k+2})=d(S(x_{2k},y_{2k}),T(x_{2k+1},y_{2k+1})). \end{aligned}$$
Then by using condition (8) of Theorem 2, we have
$$\begin{aligned} d(x_{2k+1},x_{2k+2}) & \le \alpha \frac{d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}{2}\\&\quad+\beta \frac{d(x_{2k},S(x_{2k},y_{2k}))d(x_{2k+1},T(x_{2k+1},y_{2k+1}))}{1+s[d(x_{2k},T(x_{2k+1},y_{2k+1}))+d(x_{2k+1},S(x_{2k},y_{2k}))+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})]}\\ &= \alpha \frac{d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})}{2}\\&\quad+\beta \frac{d(x_{2k},x_{2k+1})d(x_{2k+1},x_{2k+2})}{1+s[d(x_{2k},x_{2k+2})+d(x_{2k+1},x_{2k+1})+d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})]}\\ &= \alpha \frac{d(x_{2k},x_{2k+1})}{2}+\alpha \frac{d(y_{2k},y_{2k+1})}{2}\\&\quad+\beta \frac{d(x_{2k},x_{2k+1})d(x_{2k+1},x_{2k+2})}{1+s[d(x_{2k+1},x_{2k+2})+d(y_{2k},y_{2k+1})]}\\ &\le \alpha \frac{d(x_{2k},x_{2k+1})}{2}+\alpha \frac{d(y_{2k},y_{2k+1})}{2}+\beta d(x_{2k},x_{2k+1}) \end{aligned}$$
which implies that
$$\begin{aligned} d(x_{2k+1},x_{2k+2})\le \frac{\alpha +2\beta }{2}d(x_{2k},x_{2k+1}) +\frac{\alpha }{2}d(y_{2k},y_{2k+1}). \end{aligned}$$
(9)
Similarly we can prove
$$\begin{aligned} d(y_{2k+1},y_{2k+2})\le \frac{\alpha +2\beta }{2}d(y_{2k},y_{2k+1}) +\frac{\alpha }{2}d(x_{2k},x_{2k+1}). \end{aligned}$$
(10)
Adding (9) and (10), we get
$$\begin{aligned}{}[d(x_{2k+1},x_{2k+2})+d(y_{2k+1},y_{2k+2})] \le (\alpha +\beta )[d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})]. \end{aligned}$$
Also
$$\begin{aligned} d(x_{2k+2},x_{2k+3})& = d(T(x_{2k+1},y_{2k+1}),S(x_{2k+2},y_{2k+2}))\\ & = d(S(x_{2k+2},y_{2k+2}),T(x_{2k+1},y_{2k+1}))\\ & \le \alpha \frac{d(x_{2k+2},x_{2k+1})+d(y_{2k+2},y_{2k+1})}{2}\\ & \quad+ \beta \frac{d(x_{2k+2},S(x_{2k+2},y_{2k+2}))d(x_{2k+1},T(x_{2k+1},y_{2k+1}))}{1+s[d(x_{2k+1},T(x_{2k+1},y_{2k+1}))+d(x_{2k+2},S(x_{2k+2},y_{2k+2}))+d(x_{2k+2},x_{2k+1})+d(y_{2k+2},y_{2k+1})]}\\ &= \alpha \frac{d(x_{2k+2},x_{2k+1})+d(y_{2k+2},y_{2k+1})}{2}\\&\quad+\beta \frac{d(x_{2k+2},x_{2k+3})d(x_{2k+1},x_{2k+2})}{1+s[d(x_{2k+1},x_{2k+2})+d(x_{2k+2},x_{2k+3})+d(x_{2k+2},x_{2k+1})+d(y_{2k+2},y_{2k+1})]}\\&\quad \Rightarrow d(x_{2k+2},x_{2k+3})\le \alpha \frac{d(x_{2k+2},x_{2k+2})}{2}+\alpha \frac{d(y_{2k+2},y_{2k+2})}{2}\\&\quad+ \beta \frac{d(x_{2k+2},x_{2k+3})d(x_{2k+1},x_{2k+2})}{1+s[d(x_{2k+1},x_{2k+3})+d(x_{2k+2},x_{2k+1})+d(y_{2k+2},y_{2k+1})]}\\ &= \alpha \frac{d(x_{2k+2},x_{2k+1})}{2}+\alpha \frac{d(y_{2k+2},y_{2k+1})}{2}+\beta \frac{d(x_{2k+2},x_{2k+3})d(x_{2k+1},x_{2k+2})}{1+s[d(x_{2k+2},x_{2k+3})+d(y_{2k+2},y_{2k+1})]}\\ \quad d(x_{2k+2},x_{2k+3}) & \le \alpha \frac{d(x_{2k+2},x_{2k+1})}{2}+\alpha \frac{d(y_{2k+2},y_{2k+1})}{2}+\beta d(x_{2k+1},x_{2k+2}) \end{aligned}$$
$$\begin{aligned} d(x_{2k+2},x_{2k+3})\le \frac{(\alpha +2\beta )}{2}{d(x_{2k+1},x_{2k+2})}+\alpha \frac{d(y_{2k+1},y_{2k+2})}{2} \end{aligned}$$
(11)
$$\begin{aligned} d(y_{2k+2},y_{2k+3})\le \frac{(\alpha +2\beta )}{2}{d(y_{2k+1},y_{2k+2})}+\alpha \frac{d(x_{2k+1},x_{2k+2})}{2}. \end{aligned}$$
(12)
Adding, (11) and (12), we get
$$\begin{aligned}{}[d(x_{2k+2},x_{2k+3})+d(y_{2k+2},y_{2k+3})] & \le (\alpha +\beta ) [d(x_{2k+1},x_{2k+2})+d(y_{2k+1},y_{2k+2})]\\ & \le (\alpha +\beta )^{2}[d(x_{2k},x_{2k+1})+d(y_{2k},y_{2k+1})] \end{aligned}$$
continuing the same process, we get
$$\begin{aligned} d(x_{n},x_{n+1})+d(y_{n},y_{n+1}) & \le (\alpha +\beta )[d(x_{n-1},x_{n})+d(y_{n-1},y_{n})]\\ & \le (\alpha +\beta )^{2}[d(x_{n-2},x_{n-1})+d(y_{n-2},y_{n-1})]\\ & \le \cdots \le (\alpha +\beta )^{n}[d(x_{0},x_{1})+d(y_{0},y_{1})] \end{aligned}$$
where \(h=\alpha +\beta <1\).

Now if \(d(x_{n},x_{n+1})+d(y_{n},y_{n+1})=\delta _{n}\). Then \(\delta _{n}\le h\delta _{n-1}\le \cdots \le h^{n}\delta _{0}\)

so for \(m>n\), we have
$$\begin{aligned} d(x_{n},x_{m})+d(y_{n},y_{m}) & \le s[d(x_{n},x_{n+1})+d(y_{n},y_{n+1})]\\&\quad+\cdots +s^{m-n}[d(x_{m-1},x_{m})+d(y_{m-1},y_{m})]\\ & \le sh^{n}\delta _{0}+s^{2}h^{n+1}\delta _{0}+\cdots + s^{m-n}h^{m-1}\delta _{0}\\ &< sh^{n}[1+(sh)+(sh)^{2}+\cdots ]\delta _{0}\\& = \frac{sh^{n}}{1-sh}\delta _{0}\longrightarrow 0\hbox { as } n\longrightarrow \infty . \end{aligned}$$
Therefore, \(\{x_{n}\)} and \(\{y_{n}\}\) are Cauchy sequences in X. Since X is complete b-metric space, there exists \(x,y \in\) X such that \(x_{n}\longrightarrow x\) and \(y_{n}\longrightarrow \, y\) as n\(\longrightarrow \infty\).
Now we will show that \(x=S(x,y)\) and \(y=S(y,x)\). Suppose on contrary that \(x\ne S(x,y)\) and \(y\ne S(x,y)\), so that \(d(x,s(x,y))=l_{1}>0\) and \(d(y,s(x,y))=l_{2}>0\) consider the following and using condition (8) of Theorem 2, we get
$$\begin{aligned} l_{1} & = d(x,s(x,y))\le s[d(x,x_{2k+2})+d(x_{2k+2},S(x,y))]\\ & = sd(x,x_{2k+2})+sd(S(x,y),x_{2k+2})\\ & = sd(x,x_{2k+2})+sd(S(x,y),T(x_{2k+1},y_{2k+1}))\\ & \le sd(x,x_{2k+2})+s\alpha \frac{d(x,x_{2k+1})+d(y,y_{2k+1})}{2}\\ & \quad +s\beta \frac{d(x,S(x,y))d(x_{2k+1},T(x_{2k+1},y_{2k+1}))}{1+s[d(x,T(x_{2k+1},y_{2k+1}))+d(u,S(x,y)+d(x,x_{2k+1})+d(y,y_{2k+1})]}\\ & =sd(x,x_{2k+2})+s\alpha \frac{d(x,x_{2k+1})+d(y,y_{2k+1})}{2}\\&\quad+ s\beta \frac{d(x,S(x,y))d(x_{2k+1},x_{2k+2})}{1+s[d(x,x_{2k+2})+d(u,S(x,y))+d(x,x_{2k+1})+d(y,y_{2k+1})]}. \end{aligned}$$
Taking limit \(k\rightarrow \infty\) we get \(l_{1}\le 0\).

Therefore \(d(x,S(x,y))=0\). Which implies that \(x=S(x,y)\)

Similarly we can prove that \(y=S(y,x), x=T(x,y)\) and \(y=T(y,x)\).

Hence (xy) is a common coupled fixed point of S and T.□

Uniqueness

Let \((x^{*},y^{*})\in\) X\(\times\) X be another common coupled fixed point of S and T.

Using condition (8) of Theorem 2 here, we get
$$\begin{aligned} d(x,x^{*}) & = d(S(x,y),T(x^{*},x^{*}))\le \alpha \frac{d(x,x^{*})+d(y,y^{*})}{2}\\&\quad+ \beta \frac{d(x,S(x,y))d(x^{*},T(x^{*},y^{*}))}{1+s[d(x,T(x^{*},y^{*}))+d(x^{*},S(x,y))+d(x,x^{*})+d(y,y^{*})]}\\ &\le \alpha \frac{d(x,x^{*})+d(y,y^{*})}{2}+\beta \frac{d(x,x)d(x^{*},x^{*})}{1+s[d(x,x^{*})+d(x^{*},x)+d(x,x^{*})+d(y,y^{*})]}\\ & = \alpha \frac{d(x,x^{*})}{2}+\alpha \frac{d(y,y^{*})}{2}+\beta \frac{d(x,x)d(x^{*},x^{*})}{1+s[3d(x,x^{*})+d(y,y^{*})]}. \end{aligned}$$
Therefore,
$$\begin{aligned} d(x,x^{*})& \le \alpha \frac{d(x,x^{*})}{2}+\alpha \frac{d(y,y^{*})}{2}\Rightarrow d(x,x^{*})\left[ 1-\frac{\alpha }{2}\right] \le \alpha \frac{d(y,y^{*})}{2}\\& \quad \Rightarrow d(x,x^{*})\left[ \frac{2-\alpha }{2}\right] \le \alpha \frac{d(y,y^{*})}{2} \end{aligned}$$
$$\begin{aligned} d(x,x^{*})\le \frac{\alpha }{2-\alpha }d(y,y^{*}). \end{aligned}$$
(13)
Similarly, we can prove that
$$\begin{aligned} d(y,y^{*})\le \frac{\alpha }{2-\alpha }d(x,x^{*}). \end{aligned}$$
(14)
Adding, (13) and (14), we get
$$\begin{aligned} d(x,x^{*})+d(y,y^{*})) & \le \frac{\alpha }{2-\alpha }[d(x,x^{*})+d(y,y^{*})]\\ &\quad \Rightarrow \left( 1-\frac{\alpha }{2-\alpha }\right) [d(x,x^{*})+d(y,y^{*})]\le 0 \end{aligned}$$
\(d(x,x^{*})+d(y,y^{*})\le 0\), which implies that \(x=x^{*}\) and \(y=y^{*} \Rightarrow (x,y)=(x^{*},y^{*})\).

Hence, S and T have unique common coupled fixed point.

Corollary 2

Let (xd) be a complete b metric space with parameter \(s\ge 1\) and let the mapping \(T:X\times X\Rightarrow X\) satisfy:
$$\begin{aligned} d(T(x,y),T(u,v)) & \le \alpha \frac{(d(x,u))+d(y,v)}{2}\\& \quad+\beta \frac{d(x,T(x,y))d(u,T(u,v))}{1+s[d(x,T(u,v)) +d(u,T(x,y))+d(x,u)+d(y,v)]} \end{aligned}$$
For all x,y,u,v \(\in\) X and \(\alpha ,\beta\) are non-negative real numbers with \(s(\alpha +\beta )<1\). Then T has a unique common coupled fixed point.
Remarks
  • If \(\alpha _{i}=0\) for \(i=4,5,6,7,8\) in Theorem 1, then we get the result of Malhotra and Bansal (2015).

  • If we take \(S=T\) and \(\alpha _{i}=0\) for \(i=4,5,6,7,8\) in Theorem 1, then we get the corollary of Malhotra and Bansal (2015).

Example 4

Suppose \(X=[0,1]\). Defined the function \(d:X\times X\rightarrow {{\mathbb {R}}}\) by \(d(x,y)=\frac{2}{3}(x-y)^{2}\,\forall x,y\in X\). Clearly (Xd) is b-metric space with parameter \(s=2\).

If we define \(S,T:X\times X\rightarrow X\) by \(S(x,y)=\frac{x+y}{2},T(x,y)=\frac{x+y}{3}\) for each \(x, y \in X\). Then it can be proved simply that the maps S and T satisfy the conditions of Theorem 1 with \(\alpha _{1}=\frac{1}{12},\alpha _{2}=\frac{1}{15}, \alpha _{3}=\frac{1}{6},\alpha _{4}=\frac{1}{9},\alpha _{5}=\frac{2}{15}, \alpha _{6}=\frac{1}{18},\alpha _{7}=\frac{5}{24},\alpha _{8}=\frac{5}{36}\). Hence (0,0) is a unique common coupled fixed point of S and T.

Conclusion

The derived results generalize and extend some results of Malhotra and Bansal (2015) in the setting of b-metric spaces.

Declarations

Authors' contributions

MS, SH and PSK contributed equally to the writing of this manuscript. All authors read and approved the final version.

Acknowledgements

The authors are grateful to the editor and anonymous reviewers for their, valuable comments and remarks to improve this manuscript. The authors are also grateful to Springerplus for granting full fee waiver.

Competing interest

The authors declare that they have no competing interests.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, University of Malakand
(2)
Department of Mathematics, National Institute of Technology-Andhra Pradesh

References

  1. Aydi H, Bota MF, Karapinar E, Mitrovic S (2012) A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl 2012:8View ArticleGoogle Scholar
  2. Bakhtin IA (1989) The contraction mapping principle in quasimetric spaces. Funtional Anal 30:26–37Google Scholar
  3. Berinde V (2012) Coupled fixed point theorems for \(\varphi\)-contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal Theory Methods Appl 75(6):3218–3228View ArticleGoogle Scholar
  4. Boriceanu M (2009) Fixed point theory on spaces with vector-valued b-metrics. Demonstr Math XLI I(4):285–301Google Scholar
  5. Boriceanu M (2009) Strict fixed point theorems for multivalued operators in b-metric spaces. Int J Mod Math 4(2):285–301Google Scholar
  6. Boriceanu M (2009) Fixd point theory for multivalued generalized contraction on a set with two b-metrices. Studia Univ Babes-Bolyani Math LIV(3):1–14Google Scholar
  7. Bota M, Molnar A, Varga C (2011) On ekeland’s variational principle in b-metric spaces. Fixed Point Theory 12(2):21–28Google Scholar
  8. Chugh R, kumar V, Kadian T (2012) Some fixed point theorems for multivalued mappings in generalized b-metric spaces. Int J Math Arch 3(3):1198–1210Google Scholar
  9. Czerwik S (1993) Contraction mappings in b-metric spaces. Acta Math Inform Univ Ostrav 1:5–11Google Scholar
  10. Czerwik S (1998) Non-linear set-valud contraction mappings in b-metric spaces. Atti Sem Math Fis Univ Modena 46:263–276Google Scholar
  11. Czerwik S, Dlutek K, Singh SL (1997) Round-off stability of iteration procedure for operatos in b-metric spaces. J Nat Phys Sci 11:87–94Google Scholar
  12. Czerwik S, Dlutek K, Singh SL (2001) Round-offstability of iteration procedure for set valued operatos in b-metric spaces. J Nat Phys Sci 15:1–2Google Scholar
  13. Gnana Bhaskar T, Lakshmikantham V (2006) Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal TMA 65:1379–1393View ArticleGoogle Scholar
  14. Guo D, Lakshmikantham V (1987) Coupled fixed points of non-linear operators with applications. Nonlinear Anal Theory Method Appl 11:623–632View ArticleGoogle Scholar
  15. Hussain N, Doric D, Kadelburg Z, Radonovic S (2012) suzuki-type fixed point result in metic type spaces. Fixed Point Theory Appl 2012:12View ArticleGoogle Scholar
  16. Kir M, Kiziltunc H (2013) on some well known fixed point theorems in b-metric spaces. Turk J Anal Number Theory 1(1):1316Google Scholar
  17. Lina Md, Curar P (2010) A fixed point result for \(\phi\)-contractions on b-metric spaces without the boundedness assumption. Fascicyli Mathematici 43:125–137Google Scholar
  18. Malhotra N, Bansal B (2015) Some common coupled fixed point theorems for generalised contaction in b-metric space. J Nonlinear Sci Appl 8:8–16Google Scholar
  19. Mustafa Z, Rezaei Roshan J, Parvaneh V, Kadelburg Z (2013) Some common fixed point results in ordered partial bmetric space. J Inequal Appl 2013:562View ArticleGoogle Scholar
  20. Mustafa Z, Rezaei Roshan J, Parvaneh V, Kadelburg Z (2014) Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces. J Inequal Appl 2014:46View ArticleGoogle Scholar
  21. Mustafa Z, Parvaneh V, Roshan JR, Kadelburg Z (2014) b2-Metric spaces and some fixed point theorems. Fixed Point Theory Appl 2014(1):144View ArticleGoogle Scholar
  22. Olatinwo MO, Imoru CO (2008) a generalisation of some results on multi-valued weakly Picard mappings in b-metric space. Fasciculi-Mathematici 40:45–56Google Scholar
  23. Olaru IM, Branga A (2011) Common fixed point results in b-k-metric spaces. Gen Math 19(4):51–59Google Scholar
  24. Pacurar M (2010) Sequences of almost contractions and fixed pointsin b-metric spaces. Analele Universit de Vest Timisoara Seria Matematic Informatic XLVIII(3):125–137Google Scholar
  25. Shih Du W, Karapnar E (2013) A note on cone b-metric and its related results: generalizations or equivalence. Fixed Point Theory Appl 2013:210View ArticleGoogle Scholar
  26. Sintunavarat W, Kumam P, Cho YS (2012) Coupled fixed points theorems of nonlinear contractions without mixed monotone property. Fixed Point Theory Appl 2012:170View ArticleGoogle Scholar
  27. Sintunavarat W, Radenovic S, Golbovic Z, Kuman P (2013) Coupled fixed points theorems for F-invariant set. Appl Math Inf Sci 7(1):247–255View ArticleGoogle Scholar

Copyright

© Sarwar et al. 2016