Skip to main content

More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings

Abstract

Our aim in this article is to incorporate the notion of “strongly s-convex function” and prove a new integral identity. Some new inequalities of Simpson type for strongly s-convex function utilizing integral identity and Holder’s inequality are considered.

Background

The following definition is well known in the literature as convex function:

Let \(f:I\subseteq R\rightarrow R\) be a function defined on the interval I of real numbers. Then f is called convex, if \(f\left( {\lambda x+\left( {1-\lambda } \right) y} \right) \le \lambda f\left( x \right) +\left( {1-\lambda } \right) f\left( y \right) ,\) for all \(x,y\in I\) and \(\lambda \in \left[ {0,1} \right] .\) Geometrically, this means that if P, Q and R are three distinct points on graph of f with Q between P and R, then Q is on or below chord PR.

Hudzik and Maligrada (1994) defined s-convex function as: A function \(f:\left[ {0,\infty } \right) \rightarrow R\) is said to be s-convex function in the first sense, if \(f\left( {\mu x+\nu y} \right) \le \mu ^{s} f\left( x \right) +\nu ^{s} f\left( y \right)\), for all \(x,y\in \left[ {0,\infty } \right)\) and \(\mu ,\nu \ge 0,\) with \(\mu ^{s} + \nu ^{s} = 1\). We denote this by \(K_\alpha ^1\), for some fixed \(s \in (0, 1]\). Also \(f:\left[ {0,\infty } \right) \rightarrow R\) is said to be s-convex function in the second sense, if above condition holds for all \(x,y\in \left[ {0,\infty } \right)\) and \(\mu ,\nu \ge 0,\) with \(\mu + \nu = 1\).

The following is very important and well known in the literature, as Simpson’s inequality:

$$\begin{aligned} \left| {\int \limits _a^b {f(x)dx} -\frac{(b-a)}{3}\left[ {\frac{f(a)+f(b)}{2}+2f\left( {\frac{a+b}{2}} \right) } \right] } \right| \le \frac{1}{2880}\left\| {f^{\left( 4 \right) }} \right\| _\infty \left( {b-a} \right) ^5, \end{aligned}$$
(1)

where the mapping \(f:[a,b]\rightarrow R\) is supposed to be a four times continuously differentiable on the interval \(\left( {a,b} \right)\) and having the fourth derivative bounded on \(\left( {a,b} \right) ,\) that is

$$\begin{aligned} \left\| {f^{\left( 4 \right) }} \right\| _\infty =\sup { }_{x\in \left( {a,b} \right) }\left| {f^{\left( 4 \right) }\left( x \right) } \right| <\infty . \end{aligned}$$

Dragomir et al. (2000) proved that: Let \(f:[a, b] \rightarrow R\) be a differentiable function on \(I^0\) (interior of I) \(a,b\in I\) with \(a<b.\) If the mapping \(\left| {{f}'} \right|\) is convex on \(\left[ {a,b} \right] ,\) then we have the following inequality:

$$\begin{aligned} \left| {\frac{f\left( a \right) +f\left( b \right) }{2}-\frac{1}{b-a}\int _a^b {f\left( x \right) dx} } \right| \le \frac{\left( {b-a} \right) \left( {\left| {{f}'\left( a \right) } \right| +\left| {{f}'\left( b \right) } \right| } \right) }{8}. \end{aligned}$$
(2)

Sarikaya et al. (2010) showed that: Let \(f: [a, b]\rightarrow R\) be a differentiable function on \(I^0\)(interior of I) such that \(f^{'} \in L_{1}[a, b]\), where \(a,b\in I\) with \(a<b.\) If the mapping \(\left| {{f}'} \right|\) is s-convex on \(\left[ {a,b} \right] ,\) for some fixed \(s\in \left( {0,1} \right] ,\) then we have the following inequality

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f(a)+4f\left( {\frac{a+b}{2}} \right) +f(b)} \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \nonumber \\&\quad \le \frac{\left( {s-4} \right) 6^{s+1}+2\times 5^{s+2}-2\times 3^{s+2}+2}{6^{s+2}\left( {s+1} \right) \left( {s+2} \right) }\left( {b-a} \right) \left( {\left| {{f}'\left( a \right) } \right| +\left| {{f}'\left( b \right) } \right| } \right) . \end{aligned}$$
(3)

Alomari et al. (2011) established that: Let \(f:I\subset R\rightarrow R\) be a differentiable function on \(I^0\) (interior of I)\(a,b\in I\) with \(a<b.\) If the mapping \(\left| {{f}'} \right|\) is s-convex on \(\left[ {a,b} \right] ,\) for some \(s\in \left( {0,1} \right] ,\) then we have the following inequality:

$$\begin{aligned}&\left| {f\left( {\frac{a+b}{2}} \right) -\frac{1}{b-a}\int _a^b {f\left( x \right) dx} } \right| \nonumber \\&\quad \le \frac{b-a}{4\left( {s+1} \right) \left( {s+2} \right) }\left\{ {\left| {{f}'\left( a \right) } \right| +\left| {{f}'\left( b \right) } \right| +2\left( {s+1} \right) \left| {f^{'}\left( {\frac{a+b}{2}} \right) } \right| } \right\} \nonumber \\&\quad \le \frac{\left( {2^{2-s}+1} \right) \left( {b-a} \right) }{4\left( {s+1} \right) \left( {s+2} \right) }\left[ {\left| {{f}'\left( a \right) } \right| +\left| {{f}'\left( b \right) } \right| } \right] . \end{aligned}$$
(4)

For utilizing different kinds of convexities, additional findings relating to the Simpson’s type inequality, readers are directed to Dragomir et al. (2000), Qaisar et al. (2013), Hussain and Qaisar (2014), Dragomir (1999), Wang et al. (2013), Xi and Qi (2013) and Pearce and Pecari’c (2000).

Main results

To prove our main result, we need the following definition and lemma.

Definition 1

(Polyak 1996) Let \(f:I\subseteq R\rightarrow R\) is said to be strongly s-convex with modulus \(c>0\) and for some fixed \(s\in \left( {0,1} \right]\), if

$$\begin{aligned} f\left( {\lambda x+\left( {1-\lambda } \right) y} \right) \le \lambda ^{s} f\left( x \right) +\left( {1-\lambda } \right) ^{s}f\left( y \right) -c\lambda \left( {1-\lambda } \right) \left( {x-y} \right) ^2, \end{aligned}$$

for all \(x,y\in I\) and \(\lambda \in \left[ {0,1} \right] .\)

Observation 2

It is clear that, any strongly s-convex function is a strong convex function but the converse is not true in general.

Now we prove the following lemma:

Lemma 3

Let \(f: I = \left[ {a,b} \right] \subset R\rightarrow R\) be such that \({f}'\) is absolutely continuous and \({f}''\in L_1 \left( {\left[ {a,b} \right] } \right) .\) Then the following inequality holds:

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \le \frac{\left( {b-a} \right) ^2}{96} \nonumber \\&\quad \times \int \limits _0^1 {\psi \left( {1-\psi } \right) \left[ {{f}''\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) +{f}''\left( {\frac{1+\psi }{4}a+\frac{3-\psi }{4}b} \right) +{f}''\left( {\frac{\psi }{4}a+\frac{4-\psi }{4}b} \right) } \right] } d\psi . \end{aligned}$$
(5)

Proof

Using integrating by parts, we have

$$\begin{aligned}&\int \limits _0^1 {\psi \left( {1-\psi } \right) {f}''\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) d\psi } \\&\quad =-\frac{4}{b-a}\left[ {\psi \left( {1-\psi } \right) \left. {{f}'\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) } \right| _0^1 -\int \limits _0^1 {\left( {1-2\psi } \right) {f}'\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) d\psi } } \right] \\&\quad =-\frac{16}{\left( {b-a} \right) ^2}\left[ {\left( {1-2\psi } \right) \left. {f\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) } \right| _0^1 +2\int \limits _0^1 {f\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) d\psi } } \right] \\&\quad =\frac{16}{\left( {b-a} \right) ^2}\left[ {f\left( a \right) +f\left( {\frac{3a+b}{4}} \right) -\frac{96}{\left( {b-a} \right) ^3}\int \limits _a^{{\left( {3a+b} \right) } /4} {f\left( x \right) dx} } \right] . \\ \end{aligned}$$

Analogously,

$$\begin{aligned}&\int \limits _0^1 {\psi \left( {1-\psi } \right) {f}''\left( {\frac{1+\psi }{4}a+\frac{3-\psi }{4}b} \right) d\psi } \\&\quad =\frac{16}{\left( {b-a} \right) ^2}\left[ {f\left( {\frac{3a+b}{4}} \right) +f\left( {\frac{a+3b}{4}} \right) } \right] -\frac{96}{\left( {b-a} \right) ^3}\int \limits _{{\left( {3a+b} \right) } / 4}^{{\left( {a+3b} \right) }/4} {f\left( x \right) dx}. \\ \end{aligned}$$

And

$$\begin{aligned}&\int \limits _0^1 {\psi \left( {1-\psi } \right) {f}''\left( {\frac{\psi }{4}a+\frac{4-\psi }{4}b} \right) d\psi } \\&\quad =\frac{16}{\left( {b-a} \right) ^2}\left[ {f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{96}{\left( {b-a} \right) ^3}\int \limits _{{\left( {a+3b} \right) } /4}^b {f\left( x \right) dx}. \end{aligned}$$

This proves as required.

Theorem 4

Let \(f: I = \left[ {a,b} \right] \subset R\rightarrow R\) be such that \({f}'\) is absolutely continuous and \({f}''\in L_1 \left( {\left[ {a,b} \right] } \right) .\) If the mapping \(\left| {{f}''} \right|\) is strongly s-convex on \(\left[ {a,b} \right] ,\) for \(q\ge 1\) and for some fixed \(s\in \left( {0,1} \right]\) , then we have the following inequality:

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{6^{1 / q}\left( {b-a} \right) ^2}{576}\left\{ {\begin{array}{l} \left[ {\begin{array}{l} \frac{\left( {s -5} \right) 4^{s +2}+\left( {s +9} \right) 3^{s +2}}{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( a \right) } \right| ^q+\frac{1}{\left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( b \right) } \right| ^q \\ -\frac{17c\left( {b-a} \right) ^2}{960} \\ \end{array}} \right] ^{1 /q} \\ +\left[ {\begin{array}{l} \frac{\left( {s -1} \right) 2^{s +2}+s +5}{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( a \right) } \right| ^q+\frac{\left( {s -3} \right) 3^{s +2}+\left( {s +7} \right) 2^{s +2}}{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( b \right) } \right| ^q \\ -\frac{37c\left( {b-a} \right) ^2}{960} \\ \end{array}} \right] ^{1 / q} \\ +\left[ {\frac{1}{\left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( a \right) } \right| ^q+\frac{\left( {s -5} \right) 4^{s +2}+\left( {s +9} \right) 3^{s +2}}{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( b \right) } \right| ^q-\frac{17c\left( {b-a} \right) ^2}{960}} \right] ^{1/q} \end{array}} \right\} .\\ \end{aligned}$$

Proof

Using Lemma 3 and strongly s-convexity of \(\left| {{f}''} \right| ^q\), we have

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\begin{array}{l} \int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) } \right| } d\psi \\ +\int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{1+\psi }{4}a+\frac{3-\psi }{4}b} \right) } \right| } d\psi +\int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{\psi }{4}a+\frac{4-\psi }{4}b} \right) } \right| } d\psi \\ \end{array}} \right] \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\int \limits _0^1 {\psi \left( {1-\psi } \right) } d\psi } \right] ^{1-1 / q}\left\{ {\begin{array}{l} \left[ {\int \limits _0^1 {\psi \left( {1-\psi } \right) \left( {\begin{array}{l} \left( {\frac{3+\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{1-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\psi \left( {1-\psi } \right) ^2\left( {3+\psi } \right) d\psi } \\ \end{array}} \right) } } \right] ^{1 /q} \\ +\left[ {\int \limits _0^1 {\psi \left( {1-\psi } \right) \left( {\begin{array}{l} \left( {\frac{1+\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{3-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\psi \left( {1-\psi ^2} \right) \left( {3-\psi } \right) d\psi } \\ \end{array}} \right) } } \right] ^{1 / q} \\ +\left[ {\int \limits _0^1 {\psi \left( {1-\psi } \right) \left( {\begin{array}{l} \left( {\frac{\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{4-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\psi ^2\left( {1-\psi } \right) \left( {4-\psi } \right) d\psi } \\ \end{array}} \right) } } \right] ^{1 /q} \\ \end{array}} \right\} \\&\quad =\frac{6^{1 / q}\left( {b-a} \right) ^2}{576}\left\{ {\begin{array}{l} \left[ {\begin{array}{l} \frac{\left( {s -5} \right) 4^{s +2}+\left( {s +9} \right) 3^{s +2}}{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( a \right) } \right| ^q+\frac{1}{\left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( b \right) } \right| ^q \\ -\frac{17c\left( {b-a} \right) ^2}{960} \\ \end{array}} \right] ^{1 /q} \\ +\left[ {\begin{array}{l} \frac{\left( {s -1} \right) 2^{s +2}+s +5}{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( a \right) } \right| ^q+\frac{\left( {s -3} \right) 3^{s +2}+\left( {s +7} \right) 2^{s +2}}{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( b \right) } \right| ^q \\ -\frac{37c\left( {b-a} \right) ^2}{960} \\ \end{array}} \right] ^{1 /q} \\ +\left[ {\frac{1}{\left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( a \right) } \right| ^q+\frac{\left( {s -5} \right) 4^{s +2}+\left( {s +9} \right) 3^{s +2}}{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left| {{f}''\left( b \right) } \right| ^q-\frac{17c\left( {b-a} \right) ^2}{960}} \right] ^{1 / q} \\ \end{array}} \right\} . \end{aligned}$$

Corollary 5

Under the conditions of Theorem  4,

  1. 1.

    If \(q = 1\), then

    $$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\frac{\left( {s -3} \right) 4^{s +2}+\left( {2s +6} \right) \left( {3^{s +2}+1} \right) }{\left( {s +1} \right) \left( {s +2} \right) \left( {s +3} \right) 4^s }\left( {\left| {{f}''\left( a \right) } \right| +\left| {{f}''\left( b \right) } \right| } \right) -\frac{71c\left( {b-a} \right) ^2}{960}} \right] . \end{aligned}$$
  2. 2.

    If \(q = 1\) and \(s = 1\), then

    $$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\left( {\left| {{f}''\left( a \right) } \right| +\left| {{f}''\left( b \right) } \right| } \right) -\frac{71c\left( {b-a} \right) ^2}{960}} \right] . \end{aligned}$$

Theorem 6

Let f be defined as in Theorem 4 and the mapping \(\left| {{f}''} \right| ^q\) is strongly s-convex on \(\left[ {a,b} \right] ,\) for \(q>1\) and for some fixed \(s\in \left( {0,1} \right]\) , then we have the following inequality:

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {B\left( {\frac{2q-1}{q-1},\frac{2q-1}{q-1}} \right) } \right] ^{1-1 /q}\left[ {\left( {\frac{1}{4^s \left( {s +1} \right) }} \right) } \right] ^{1/q} \\&\qquad \times \, \left\{ {\begin{array}{l} \left[ {\left( {4^{s +1}-3^{s +1}} \right) \left| {{f}''\left( a \right) } \right| ^q+\left| {{f}''\left( b \right) } \right| ^q-\frac{5c\left( {b-a} \right) ^2\left( {s +1} \right) 4^s }{48}} \right] ^{1/ q} \\ +\left[ {\left( {2^{s +1}-1} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {3^{s +1}-2^{s +1}} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{11c\left( {b-a} \right) ^2\left( {s +1} \right) 4^s }{48}} \right] ^{1 /q} \\ +\left[ {\left| {{f}''\left( a \right) } \right| ^q+\left( {4^{s +1}-3^{s +1}} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{5c\left( {b-a} \right) ^2\left( {s +1} \right) 4^s }{48}} \right] ^{1 /q} \\ \end{array}} \right\} , \end{aligned}$$

where \(B\left( {\alpha ,\beta } \right)\) is the classical Beta function which may be defined by

$$\begin{aligned} B\left( {\alpha ,\beta } \right) =\int \limits _0^1 {\psi ^{\alpha -1}\left( {1-\psi } \right) ^{\beta -1}} d\psi ,\quad s ,\beta >0. \end{aligned}$$

Proof

Using Lemma 3, strong s-convexity of \(\left| {{f}''} \right| ^q\) and Holder’s inequality, we have

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\begin{array}{l} \int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) } \right| } d\psi \\ +\int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{1+\psi }{4}a+\frac{3-\psi }{4}b} \right) } \right| } d\psi +\int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{\psi }{4}a+\frac{4-\psi }{4}b} \right) } \right| } d\psi \\ \end{array}} \right] \\&\quad \begin{array}{l} \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\int \limits _0^1 {\left[ {\psi \left( {1-\psi } \right) } \right] } ^{q / {\left( {q-1} \right) }}d\psi } \right] ^{1-1 / q}\left\{ {\begin{array}{l} \left[ {\left( {\begin{array}{l} \int \limits _0^1 {\left( {\left( {\frac{3+\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{1-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\left( {1-\psi } \right) \left( {3+\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1 /q} \\ +\left[ {\left( {\begin{array}{l} \int \limits _0^1 {\left( {\left( {\frac{1+\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{3-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\left( {1-\psi } \right) \left( {3-\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1 /q} \\ +\left[ {\left( {\begin{array}{l} \int \limits _0^1 {\left( {\left( {\frac{\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{4-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\psi \left( {4-\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1/q} \\ \end{array}} \right\} \\ \end{array}\\&\qquad \times \begin{array}{l} \left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\ \le \frac{\left( {b-a} \right) ^2}{96}\left[ {B\left( {\frac{2q-1}{q-1},\frac{2q-1}{q-1}} \right) } \right] ^{1-1/q}\left[ {\left( {\frac{1}{4^s \left( {s +1} \right) }} \right) } \right] ^{1/q} \\ \end{array}\\&\qquad \times \, \left\{ {\begin{array}{l} \left[ {\left( {4^{s +1}-3^{s +1}} \right) \left| {{f}''\left( a \right) } \right| ^q+\left| {{f}''\left( b \right) } \right| ^q-\frac{5c\left( {b-a} \right) ^2\left( {s +1} \right) 4^s }{48}} \right] ^{1/q} \\ +\left[ {\left( {2^{s +1}-1} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {3^{s +1}-2^{s +1}} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{11c\left( {b-a} \right) ^2\left( {s +1} \right) 4^s }{48}} \right] ^{1 /q} \\ +\left[ {\left| {{f}''\left( a \right) } \right| ^q+\left( {4^{s +1}-3^{s +1}} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{5c\left( {b-a} \right) ^2\left( {s +1} \right) 4^s }{48}} \right] ^{1 /q} \end{array}} \right\} . \end{aligned}$$

This completes the proof.

Theorem 7

Let f be defined as in Theorem  4 and the mapping \(\left| {{f}''} \right| ^q\) is strongly s-convex on \(\left[ {a,b} \right] ,\) for \(q>1\) and for some fixed \(s\in \left( {0,1} \right]\) , then we have the following inequality:

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\frac{\left( {q-1} \right) ^2}{\left( {2q-1} \right) \left( {3q-2} \right) }} \right] ^{1-1 / q}\left[ {\left( {\frac{1}{4^s \left( {s +1} \right) \left( {s +2} \right) }} \right) } \right] ^{1/ q} \\&\qquad \times \,\left\{ {\begin{array}{l} \left[ {\left( {\left( {s -2} \right) 4^{s +1}+3^{s +2}} \right) \left| {{f}''\left( a \right) } \right| ^q+\left| {{f}''\left( b \right) } \right| ^q-\frac{7c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1/ q} \\ +\left[ {\left( {2^{s +1}s +1} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {3^{s +2}-2^{s +1}\left( {s +4} \right) } \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{23c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1 / q} \\ +\left[ {\left( {s +1} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {4^{s +2}-3^{s +1}\left( {s +5} \right) } \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{13c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1/ q} \\ \end{array}} \right\} . \\ \end{aligned}$$

Proof

Using Lemma 3, Holder’s inequality and strongly s- convexity of \(\left| {{f}''} \right| ^q\), we have

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\begin{array}{l} \int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) } \right| } d\psi \\ +\int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{1+\psi }{4}a+\frac{3-\psi }{4}b} \right) } \right| } d\psi +\int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{\psi }{4}a+\frac{4-\psi }{4}b} \right) } \right| } d\psi \\ \end{array}} \right] \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\int \limits _0^1 {\left[ {\psi \left( {1-\psi } \right) } \right] } ^{q / {\left( {q-1} \right) }}d\psi } \right] ^{1-1/ q}\left\{ {\begin{array}{l} \left[ {\left( {\begin{array}{l} \int \limits _0^1 {\psi \left( {\left( {\frac{3+\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{1-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\psi \left( {1-\psi } \right) \left( {3+\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1 / q} \\ +\left[ {\left( {\begin{array}{l} \int \limits _0^1 {\psi \left( {\left( {\frac{1+\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{3-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\psi \left( {1+\psi } \right) \left( {3-\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1 / q} \\ +\left[ {\left( {\begin{array}{l} \int \limits _0^1 {\psi \left( {\left( {\frac{\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{4-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\psi ^2\left( {4-\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1 / q} \\ \end{array}} \right\} . \\ \end{aligned}$$

or

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\le \frac{\left( {b-a} \right) ^2}{96}\left[ {\frac{\left( {q-1} \right) ^2}{\left( {2q-1} \right) \left( {3q-2} \right) }} \right] ^{1-1 / q}\left[ {\left( {\frac{1}{4^s \left( {s +1} \right) \left( {s +2} \right) }} \right) } \right] ^{1/q} \\&\quad \times \, \left\{ {\begin{array}{l} \left[ {\left( {\left( {s -2} \right) 4^{s +1}+3^{s +2}} \right) \left| {{f}''\left( a \right) } \right| ^q+\left| {{f}''\left( b \right) } \right| ^q-\frac{7c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1 / q} \\ +\left[ {\left( {2^{s +1}s +1} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {3^{s +2}-2^{s +1}\left( {s +4} \right) } \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{23c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1/ q} \\ +\left[ {\left( {s +1} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {4^{s +2}-3^{s +1}\left( {s +5} \right) } \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{13c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1 / q} \\ \end{array}} \right\} \end{aligned}$$

This completes the proof.

Theorem 8

Let f be defined as in Theorem 4 and the mapping \(\left| {{f}''} \right| ^q\) is strongly s-convex on \(\left[ {a,b} \right] ,\) for \(q>1\) and for some fixed \(s\in \left( {0,1} \right]\) , then we have the following inequality:

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\frac{\left( {q-1} \right) ^2}{\left( {2q-1} \right) \left( {3q-2} \right) }} \right] ^{1-1/ q}\left[ {\left( {\frac{1}{4^s \left( {s +1} \right) \left( {s +2} \right) }} \right) } \right] ^{1 /q} \\&\qquad \times \, \left\{ {\begin{array}{l} \left[ {\left( {4^{s +2}-\left( {s +5} \right) 3^{s +1}} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {s +1} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{13c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1/q} \\ +\left[ {\left( {2^{s +2}-s -3} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {3^{s +1}\left( {s -1} \right) -2^{s +2}} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{21c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1/q} \\ +\left[ {\left| {{f}''\left( a \right) } \right| ^q+\left( {\left( {s -2} \right) 4^{s +1}+3^{s +2}} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{7c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1/ q} \\ \end{array}} \right\} . \end{aligned}$$

Proof

Using Lemma 3, Holder inequality and strongly s- convexity of \(\left| {{f}''} \right|\), we have

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\begin{array}{l} \int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{3+\psi }{4}a+\frac{1-\psi }{4}b} \right) } \right| } d\psi \\ +\int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{1+\psi }{4}a+\frac{3-\psi }{4}b} \right) } \right| } d\psi +\int \limits _0^1 {\psi \left( {1-\psi } \right) \left| {{f}''\left( {\frac{\psi }{4}a+\frac{4-\psi }{4}b} \right) } \right| } d\psi \\ \end{array}} \right] \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\int \limits _0^1 {\left( {1-\psi } \right) } \psi ^{q /{\left( {q-1} \right) }}d\psi } \right] ^{1-1 / q}\left\{ {\begin{array}{l} \left[ {\left( {\begin{array}{l} \int \limits _0^1 {\left( {1-\psi } \right) \left( {\left( {\frac{3+\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{1-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\left( {1-\psi } \right) ^2\left( {3+\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1 / q} \\ +\left[ {\left( {\begin{array}{l} \int \limits _0^1 {\left( {1-\psi } \right) \left( {\left( {\frac{1+\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{3-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\left( {1-\psi ^2} \right) \left( {3-\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1 / q} \\ +\left[ {\left( {\begin{array}{l} \int \limits _0^1 {\left( {1-\psi } \right) \left( {\left( {\frac{\psi }{4}} \right) ^s \left| {{f}''\left( a \right) } \right| ^q+\left( {\frac{4-\psi }{4}} \right) ^s \left| {{f}''\left( b \right) } \right| ^q} \right) } \\ -\frac{c\left( {b-a} \right) ^2}{16}\int \limits _0^1 {\psi \left( {1-\psi } \right) \left( {4-\psi } \right) d\psi } \\ \end{array}} \right) } \right] ^{1 / q} \\ \end{array}} \right\} . \\ \end{aligned}$$

or

$$\begin{aligned}&\left| {\frac{1}{6}\left[ {f\left( a \right) +2f\left( {\frac{3a+b}{4}} \right) +2f\left( {\frac{a+3b}{4}} \right) +f\left( b \right) } \right] -\frac{1}{b-a}\int \limits _a^b {f(x)dx} } \right| \\&\quad \le \frac{\left( {b-a} \right) ^2}{96}\left[ {\frac{\left( {q-1} \right) ^2}{\left( {2q-1} \right) \left( {3q-2} \right) }} \right] ^{1-1/ q}\left[ {\left( {\frac{1}{4^s \left( {s +1} \right) \left( {s +2} \right) }} \right) } \right] ^{1/ q} \\&\qquad \times \, \left\{ {\begin{array}{l} \left[ {\left( {4^{s +2}-\left( {s +5} \right) 3^{s +1}} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {s +1} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{13c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1 / q} \\ +\left[ {\left( {2^{s +2}-s -3} \right) \left| {{f}''\left( a \right) } \right| ^q+\left( {3^{s +1}\left( {s -1} \right) -2^{s +2}} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{21c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1/ q} \\ +\left[ {\left| {{f}''\left( a \right) } \right| ^q+\left( {\left( {s -2} \right) 4^{s +1}+3^{s +2}} \right) \left| {{f}''\left( b \right) } \right| ^q-\frac{7c\left( {b-a} \right) ^2\left( {s +1} \right) \left( {s +2} \right) 4^s }{192}} \right] ^{1 /q} \\ \end{array}} \right\} . \end{aligned}$$

This completes the proof. \(\square\)

Conclusion

We incorporated notion of “strongly s-convex function” and proved a new integral identity. Some new inequalities of Simpson type for strongly s-convex function utilizing integral identity and Holder’s inequality are also considered. These results give better estimates as presented earlier in the literature.

References

  • Alomari MW, Darus M, Kirmaci US (2011) Some inequalities of Hermite–Hadamard type for s-convex functions. Acta Math Sci Ser B Engl Ed 31(1.2):1643–1652. doi:10.1016/S0252-9602(11)60350-0

    Article  Google Scholar 

  • Alomari M, Darus M, Dragomir SS (2009) New inequalities of simpsons type for s-convex functions with applications. RGMIA Res Rep Coll 12(4):Art 9. http://www.staff.vu.edu.au/RGMIA/v12n4.asp

  • Angulo H, Giménez J, Moros AM, Nikodem K (2011) On strongly h-convex functions. Ann Funct Anal 2(2):85–91

    Article  Google Scholar 

  • Dragomir SS (1999) On Simpson’s quadrature formula for Lipschitzian mappings and applications. Soochow J Math 2:175–180

    Google Scholar 

  • Dragomir SS, Agarwal RP, Cerone P (2000) On Simpson’s inequality and applications. J Inequal Appl 5(6):533–579

    Google Scholar 

  • Hudzik H, Maligrada L (1994) Some remarks on s-convex functions. Aequ Math 48:100–111

    Article  Google Scholar 

  • Hussain S, Qaisar S (2014) Generalization of Simpson’s type inequality through preinvexity and prequasiinvexity. Punjab Univ J Math 46(2):1–9

    Google Scholar 

  • Liu Z (2005) An inequality of Simpson type. Pro R Soc London Ser A 461:2155–2158

    Article  Google Scholar 

  • Pearce CEM, Pecari’c J (2000) Inequalities for differentable mappings with application to special means and quadrature formulae. Appl Math Lett 13(2):51–55

    Article  Google Scholar 

  • Polyak BT (1996) Existence theorems and convergence of minimizing sequences in extremum problems with restictions. Soviet Math Dokl 7:72–75

    Google Scholar 

  • Qaisar S, He C, Hussain S (2013) A generalization of simpson’s type inequality for differentiable functions using \((\alpha, m)\)-convex function and applications. J Inequal Appl 158:13. doi:10.1186/1029-242X-2013-158

    Google Scholar 

  • Qaisar S, He C, Hussain S (2014) New integral inequlities through invexity with applications. Int J Anal Appl 5(2):115–122

    Google Scholar 

  • Qi F, Xi BY (2013) Some integral inequalities of Simpson type for GA-\(\varepsilon\)-convex functions. Georgian Math J 20(1–2):775–788. doi:10.1515/gmj-2013-0043

    Google Scholar 

  • Sarikaya MZ, Set E, Ozdemir ME (2010) On new inequalities of Simpson’s type for s-convex functions. Comput Math Appl 60(8):2191–2199. doi:10.1016/j.camwa.2010.07.033

    Article  Google Scholar 

  • Wang Y, Wang SH, Qi F (2013) Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex. Facta Univ Ser Math Inform 28(2):151–159

    Google Scholar 

  • Xi BY, Qi F (2013) Integral inequalities of Simpson type for logarithmically convex functions. Adv Stud Contemp Math (Kyungshang) 23(1–2):559–566

    Google Scholar 

Download references

Authors’ contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Acknowledgements

There authors are thankful to the reviewers for their fruitful comments towards the improvement of the paper.

Competing interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabir Hussain.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Qaisar, S. More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. SpringerPlus 5, 77 (2016). https://doi.org/10.1186/s40064-016-1683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s40064-016-1683-x

Keywords

Mathematics Subject Classification