# Solution of nonlinear higher-index Hessenberg DAEs by Adomian polynomials and differential transform method

- Brahim Benhammouda
^{1}Email author

**Received: **7 October 2015

**Accepted: **19 October 2015

**Published: **29 October 2015

## Abstract

The solution of higher-index Hessenberg differential-algebraic equations (DAEs) is of great importance since this type of DAEs often arises in applications. Higher-index DAEs are known to be numerically and analytically difficult to solve. In this paper, we present a new analytical method for the solution of two classes of higher-index Hessenberg DAEs. The method is based on Adomian polynomials and the differential transform method (DTM). First, the DTM is applied to the DAE where the differential transforms of nonlinear terms are calculated using Adomian polynomials. Then, based on the index condition, the resulting recursion system is transformed into a nonsingular linear algebraic system. This system is then solved to obtain the coefficients of the power series solution. The main advantage of the proposed technique is that it does not require an index reduction nor a linearization. Two test problems are solved to demonstrate the effectiveness of the method. In addition, to extend the domain of convergence of the approximate series solution, we propose a post-treatment with Laplace-Padé resummation method.

### Keywords

Differential-algebraic equations Adomian polynomials Differential transform method Padé approximants Hessenberg DAEs## Background

Differential-algebraic equations (DAEs) are used to describe many physical problems. These types of equations arise for instance in the modelling of electrical networks, optimal control, mechanical systems, incompressible fluids and chemical process simulations. An important quantity that characterizes DAEs and which plays a key role in the treatment of these equations is the index. There are various definitions for the index of a DAE (Martinson and Barton 2000; Günther and Wagner 2001; Rang and Angermann 2005; Kunkel and Mehrmann 1996) but the most used one is the differentiation index. It is defined as the minimum number of times that all or part of the DAE must be differentiated with respect to time, in order to obtain an ordinary differential equation (Martinson and Barton 2000). Higher-index DAEs (differentiation index greater than one) arise naturally in many important application problems. For instance, they model constrained multibody systems (Simeon 1993, 1996; Benhammouda and Vazquez-Leal 2015), vehicle system dynamics (Simeon et al. 1991, 1994), space shuttle simulation (Brenan 1983) and incompressible fluids. Unfortunately, these DAEs are known to be difficult to solve, even with numerical methods, due to their complex structure. One reason for this; solutions of higher-index DAEs are constrained for all time by some hidden algebraic equations. As a consequence, initial conditions cannot be prescribed arbitrarily for all solution components as they have to fulfill the constraint equations. Therefore, to start the numerical integration, we need to compute some consistent initial conditions. That is to determine those initial conditions which satisfy all the constraints in the system. Using inconsistent initial conditions or poor estimates can cause the solution of the DAE to drift off the constraints manifold and lead to a non physical solution. Since numerical integration methods have difficulties in solving higher-index DAEs, these problems are usually dealt with by first transforming them to ordinary differential systems (index-zero) or index-one DAEs before applying numerical integration methods. This procedure, known as index-reduction, can be very expensive and may change the properties of the solution of the original problem. Therefore, since important application problems in science and engineering often lead to higher-index DAEs, new techniques are needed to solve these DAEs efficiently.

Over the past decades, significant progress has occurred in the solution of DAEs. Some of these works have focused on the numerical solution and include backward differentiation formula (Brenan 1983), Runge Kutta method (Hairer et al. 1989), pseudospectral method (Hosseini 2005) and finite differences method (Wu and White 2004). One can find other methods for the solution of DAEs like blended implicit methods (Brugnano et al. 2006), implicit Euler (Sand 2002), Chebyshev polynomials (Husein and Jaradat 2008), and arbitrary order Krylov deferred correction methods (Huang et al. 2007).

In recent years, some analytical approximation methods have been developed to solve DAEs. Among such techniques one can find the Adomian decomposition method (ADM) (Hosseini 2006; Celik et al. 2006), the homotopy perturbation method (HPM) (Soltanian et al. 2010; Salehi et al. 2012), the variational iteration method (VIM) (Karta and Celik 2012), the homotopy analysis method (HAM) (Awawdeh et al. 2009), the Padé method (Celik and Bayram 2003) and the differential transform method (DTM) (Benhammouda and Vazquez-Leal 2015; Liu and Song 2007; Ayaz 2004). The ADM, Adomian polynomials and DTM were also applied to solve many other problems. The ADM, for example, was used in computing solutions of algebraic equations (Adomian and Rach 1985; Fatoorehchi et al. 2014a, b, 2015; Fatoorehchi and Abolghasemi 2014a, b; Fatoorehchi et al. 2015b, d, c). The ADM and Adomian polynomials were applied to various problems in engineering fields (Fatoorehchi et al. 2015f, g, c; Fatoorehchi and Abolghasemi 2015, 2013b). Recently, the DTM was used as a new tool to compute Laplace transforms to solve many problems (Fatoorehchi et al. 2015a; Fatoorehchi and Abolghasemi 2012).

In this work, we present a new procedure for solving nonlinear higher-index Hessenberg DAEs. The method is based on Adomian polynomials (Rach 1984, 2008; Wazwaz 2000; Duan 2010a, b, 2011) and the DTM (Odibat et al. 2010; Lal and Ahlawat 2015; El-Zahar 2013; Fatoorehchi and Abolghasemi 2013a; Gökdoğan et al. 2012; Benhammouda et al. 2014). The DTM is first applied to the DAE where the differential transforms of nonlinear terms are found using Adomian polynomials to obtain a recursion system for the power series coefficients. Based on the index condition, a nonsingular linear recursion system is then derived and solved. It is important to note that the developed procedure does not require an index-reduction nor a linearization. Also it does not depend on complicated tools like perturbation parameters, trial functions, or Lagrangian multipliers as required for perturbation method, HPM or VIM. To enlarge the domain of convergence of the truncated power series, we apply a post-treatment based on Laplace-Padé resummation method (Benhammouda et al. 2014; Torabi and Yaghoobi 2011; Raftari and Yildirim 2011; Bararnia et al. 2012; George A Baker et al. 1996; Vazquez-Leal et al. 2012; Vazquez-Leal and Guerrero 2014; Khan et al. 2013; Benhammouda et al. 2014).

Two examples of nonlinear higher-index Hessenberg DAEs are solved to demonstrate the effectiveness of the proposed method. Finally, our procedure is straightforward and can be programmed in Maple or Mathematica.

This paper is organized as follows: in "Differential transform method", we review the DTM. Next, in "Padé approximant", "Laplace-Padé resummation method" and "Adomian polynomials and their relation with DTM" we give the basic concepts of Padé approximants, Laplace-Pad é resummation method and Adomian polynomials and their relation with DTM. In "Solution of higher-index Hessenberg DAEs by Adomian polynomials and DTM", we present our analytical method for the solution of nonlinear higher-index Hessenberg DAEs. Then in "Cases study", we apply the developed method to solve two nonlinear higher-index Hessenberg DAEs. Finally, a discussion and a conclusion are given in "Discussion" and "Conclusion", respectively.

## Differential transform method

For convenience of the reader, we will review the DTM (Odibat et al. 2010; Lal and Ahlawat 2015; El-Zahar 2013; Fatoorehchi and Abolghasemi 2013a; Gökdoğan et al. 2012) and show how this method is used to solve ordinary differential equations.

###
**Definition 2.1**

*u*(

*t*) is analytical with respect to

*t*in the domain of interest, then

*u*(

*t*).

###
**Definition 2.2**

*m*is the approximation order of the solution. The exact solution of problem (4–5) is then given by (6).

*u*(

*t*) and

*v*(

*t*) respectively, then the main operations of DTM are shown in Table 1.

Main operations of DTM

Function | Differential transform |
---|---|

\(\alpha u(t)\pm \beta v(t)\) | \(\alpha U_{k}\pm \beta V_{k}\) |

| \({{\sum _{r=0}^{k}}}U_{r}V_{k-r}\) |

\(\dfrac{d^{n}}{dt^{n}}[u(t) ]\) | \(k\left( k-1\right) \ldots \left( k+1-n\right) U_{k}\), \(k\ge n\) |

\(e^{\lambda t}\) | \(\dfrac{\lambda ^{k}e^{\lambda t_{0}}}{k!}\) |

\(\sin \left( \omega t\right)\) | \(\dfrac{\omega ^{k}}{k!}\sin \left( \omega t_{0}+\dfrac{\pi k}{2}\right)\) |

\(\cos \left( \omega t\right)\) | \(\dfrac{\omega ^{k}}{k!}\cos \left( \omega t_{0}+\dfrac{\pi k}{2}\right)\) |

- 1.
Apply the differential transform to initial condition (5).

- 2.
Apply the differential transform to the differential equation ( 4) to obtain a recursion equation for the unknowns \(U_{0}\), \(U_{1}\), \(U_{2}\), \(\ldots\)

- 3.
Use the transformed initial condition (7) and the recursion equation (8) to determine the unknowns \(U_{0}\), \(U_{1}\), \(U_{2}\), \(\ldots\)

- 4.
Use the differential inverse transform formula (9) to obtain an approximate solution for initial-value problem (4– 5).

## Padé approximant

*u*(

*t*) with Maclaurin’s expansion

*L*,

*M*] which we denote by \([L/M]_{u}\left( t\right)\) is defined by George A Baker et al. (1996)

Note that for a fixed value of \(L+M+1\), the error (12) is smallest when the numerator and denominator of (11) have the same degree or when the numerator has degree one higher than the denominator.

## Laplace-Padé resummation method

Several approximate methods provide power series solutions (polynomial). Nevertheless, sometimes, this type of solutions lack large domains of convergence. Therefore, Laplace-Padé resummation method is used in literature to enlarge the domain of convergence of solutions or to find the exact solutions.

- 1.
First, Laplace transformation is applied to power series (9).

- 2.
Next,

*s*is substituted by 1/*t*in the resulting equation. - 3.
After that, we convert the transformed series into a meromorphic function by forming its Padé approximant of order [

*N*/*M*].*N*and*M*are arbitrarily chosen, but they should be smaller than the order of the power series. In this step, the Padé approximant extends the domain of the truncated series solution to obtain better accuracy and convergence. - 4.
Then,

*t*is substituted by 1/*s*. - 5.
Finally, by using the inverse Laplace

*s*transformation, we obtain the exact or an approximate solution.

## Adomian polynomials and their relation with DTM

*N*(

*u*) in a differential equation is decomposed in terms of Adomian polynomials \(A_{n}\) (Rach 2008, 1984; Wazwaz 2000; Duan 2010a, b, 2011) as

*m*-variable case is proposed in (Duan 2011)

In the coming sections, we make use of (19) and (20 ) to show how to solve nonlinear higher-index Hessenberg DAEs.

## Solution of higher-index Hessenberg DAEs by Adomian polynomials and DTM

In this section, we present our method for solving nonlinear higher-index Hessenberg differential-algebraic equations (DAEs). The technique is based on Adomian polynomials and the differential transform method (DTM). To solve the DAE, we first apply the DTM to it, where Adomian polynomials are used to compute the differential transforms of the nonlinear terms. The resulting recursion equations are rearranged in a nonsingular linear algebraic system for the coefficients of the power series solution. Two classes of nonlinear higher-index Hessenberg DAEs are solved.

### Higher-index nonlinear Hessenberg DAEs

*m*\(\ge 1\) and \(u\in \mathbb {R}^{n_{u}}\), \(v\in \mathbb {R}^{n_{v}}\), \(g:\mathbb { R}^{n_{u}}\longrightarrow \mathbb {R}^{n_{v}},\) \(f:\mathbb {R}^{n_{u}}\times \mathbb {R}^{n_{v}}\longrightarrow \mathbb {R}^{n_{u}}\).

*g*, \(v\left( t\right)\) is the Lagrange multipliers vector and \(f(u\left( t\right) )\) is the generalized forces vector.

### Index-three nonlinear Hessenberg DAEs

Let us assume that *f*, *g* and *h* are sufficiently smooth and that the Jacobian \(\partial g/\partial u\) has full row rank [i.e. rank \(\left( \partial g/\partial u\right) =n_{w}\)] for \(t\ge 0.\)

## Cases study

In this section, we will demonstrate the effectiveness of proposed technique through two nonlinear higher-index Hessenberg DAEs.

### Example 1

*L*/

*M*]

*t*-Padé approximants of (75) with

*L*\(\ge 1\) and

*M*\(\ge 1\) and \(L+M\le 4\) yield

### Example 2

## Discussion

Higher-index differential-algebraic equations (DAEs) still require new numerical and analytical methods to solve them efficiently. Such problems are known to be difficult to solve both numerically and analytically. In this paper, we introduced a new analytical method to solve nonlinear higher-index Hessenberg DAEs. The method is based on Adomian polynomials and the differential transform method (DTM). Two classes of nonlinear higher-index Hessenberg DAEs were treated by this method. The method has successfully handled these two classes of DAEs without the need for a preprocessing step of index-reduction. The method transformed the DAEs into easily solvable linear algebraic systems for the coefficient of the power series solution. For each class, one test problem was solved. The examples show that Adomian polynomials combined with the DTM are powerful tools to obtain the exact solutions or approximate solutions of nonlinear higher-index Hessenberg DAEs. To improve the power series solution, a Laplace-Padé post-treatement is applied to the truncated series leading to the exact solution.

## Conclusion

This work presents the analytical solution of two classes of nonlinear higher-index Hessenberg DAEs using Adomian polynomials and the DTM. Procedures for solving these two classes of DAEs are presented. For each class, the technique was tested on one nonlinear higher-index Hessenberg problem. The results obtained show that the method can be applied to solve nonlinear higher-index Hessenberg DAEs efficiently obtaining the exact solution or an approximate solution. On the one hand, it is important to note that these types of DAEs are difficult to solve both numerically and analytically. On the other hand, the presented technique based on Adomian polynomials and the DTM in combination with Laplace-Padé resummation method was able to obtain the exact solution of nonlinear higher-index Hessenberg DAEs. The use of Adomian polynomials allowed us to obtain an algorithm for the method and also to compute the differential transforms of highly nonlinear terms. The technique is based on a straightforward procedure that can be programmed in Maple or Mathematica to simulate large problems. Finally, future work is needed to apply the proposed technique to higher-index partial differential-algebraic equations and other nonlinear higher-index DAEs. Our method can be combined with the multi-stage DTM to calculate accurate approximate solutions to these problems.

## Declarations

### Competing interests

The author declares that there is no conflict of interests regarding the publication of this paper.

**Open Access**This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

## Authors’ Affiliations

## References

- Adomian G, Rach R (1985) On the solution of algebraic equations by the decomposition method. 105(1):141–166. doi:https://doi.org/10.1016/0022-247X(85)90102-7 Google Scholar
- Awawdeh F, Jaradat HM, Alsayyed O (2009) Solving system of DAEs by homotopy analysis method. Chaos Solitons Fractals 42:1422–1427View ArticleGoogle Scholar
- Ayaz F (2004) Applications of differential transform method to differential algebraic equations. Appl Math Comput 152:649–657View ArticleGoogle Scholar
- Baker GA, Graves-Morris PR (1996) Padé approximants, vol 59. Cambridge University Press, CambridgeView ArticleGoogle Scholar
- Bararnia H, Ghasemi E, Soleimani S, Ghotbi AR, Ganji DD (2012) Solution of the Falkner-Skan wedge flow by HPM-Padé method. Adv Eng Softw 43:44–52View ArticleGoogle Scholar
- Benhammouda B, Vazquez-Leal H, Hernandez-Martinez L (2014) Modified differential transform method for solving the model of pollution for a system of lakes. Discrete Dynam Nat Soc 2014:12. doi:https://doi.org/10.1155/2014/645726 (Article ID 645726)Google Scholar
- Benhammouda B, Vazquez-Leal H, Sarmiento-Reyes A (2014) Modified Reduced Differential Transform Method for Partial Differential-Algebraic Equations. J Appl Math 2014:9. doi:https://doi.org/10.1155/2014/279481 (Article ID 279481)View ArticleGoogle Scholar
- Benhammouda B, Vazquez-Leal H (2015) Analytical Solution of a Nonlinear Index-Three DAEs System Modelling a Slider-Crank Mechanism. Discrete Dyn Nat Soc 2015 doi:https://doi.org/10.1155/2015/206473 (Article ID 206473, 14 pages)
- Brenan KE (1983) Stability and convergence of difference approximations for higher index differential-algebraic systems with applications in trajectory control, Ph.D. thesis, Department of Mathematics, University of California, Los AngelesGoogle Scholar
- Brugnano L, Magherini C, Mugnai F (2006) Blended implicit methods for the numerical solution of DAE problems. J Comput Appl Math 189:34–50View ArticleGoogle Scholar
- Celik E, Bayram M (2003) On the numerical solution of differential-algebraic equations by Padé series. Appl Math Comput 137:151–160View ArticleGoogle Scholar
- Celik E, Bayram M, Yeloglu T (2006) Solution of differential-algebraic equations (DAEs) by adomian decomposition method. Int J Pure Appl Math Sci 3:93–100Google Scholar
- Duan JS (2010a) Recurrence triangle for Adomian polynomials. Appl Math Comput 216:1235–1241. doi:https://doi.org/10.1016/j.amc.2010.02.015 View ArticleGoogle Scholar
- Duan JS (2010b) An efficient algorithm for the multivariable Adomian polynomials. Appl Math Comput 217:2456–2467. doi:https://doi.org/10.1016/j.amc.2010.07.046 View ArticleGoogle Scholar
- Duan JS (2011) Convenient analytic recurrence algorithms for the Adomian polynomials. Appl Math Comput 217:6337–6348. doi:https://doi.org/10.1016/j.amc.2011.01.007 View ArticleGoogle Scholar
- El-Zahar ER (2013) Approximate analytical solutions of singularly perturbed fourth order boundary value problems using differential transform method. J King Saud Univers Sci 25(3):257–265View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H (2012) Computation of analytical Laplace transforms by the differential transform method. Math Comput Model 56(7):145–151View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H (2013a) Improving the differential transform method: A novel technique to obtain the differential transforms of nonlinearities by the adomian polynomials. Appl Math Modell 37(8):6008–6017View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H (2013b) A more realistic approach toward the differential equation governing the glass transition phenomenon. Intermetallics 32:35–38. doi:https://doi.org/10.1016/j.intermet.2012.07.031 View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H (2014a) Approximating the minimum reflux ratio of multicomponent distillation column based on the Adomian method. J Taiwan Inst Chem Eng 45(3):880–886. doi:https://doi.org/10.1016/j.jtice.2013.09.032 View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H (2014b) An explicit analytic solution of the Thomas-Fermi equation by the improved differential transform method. Acta Physics Polonica A 125(5):1083–1087View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H, Rach R (2014a) An accurate explicit form of the Hankinson–Thomas–Phillips correlation for prediction of the natural gas compressibility factor. J Petrol Sci Eng 117(1):46–53View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H, Rach R, Assar M (2014b) An improved algorithm for calculation of natural gas compressibility for via the hall-Yarborough equation of state. Can J Chem Eng 92(12):2211–2217. doi:https://doi.org/10.1002/cjce.22054 View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H (2015) Series solution of nonlinear differential equations by a novel extension of the Laplace transform method. Int J Comput Math 92(11):1–31. doi:https://doi.org/10.1080/00207160.2015.1045421 View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H, Magesh N (2015a) The Differential Transform Method as a New Computational Tool for Laplace Transforms. Nat Acad Sci Lett 38(2):157–160View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H, Rach R (2015b) A new parametric algorithm for isothermal flash calculations by the Adomian decomposition of Michaelis-Menten type nonlinearties. Fluid Phase Equilibria 395:44–50. doi:https://doi.org/10.1016/j.fluid.2015.03.024 View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H, Zarghami R (2015c) Analytical approximate solutions for a general nonlinear resistor-nonlinear capacitor circuit model. Appl Math Modell. doi:https://doi.org/10.1016/j.apm.2015.01.038
- Fatoorehchi H, Gutman I, Abolghasemi H (2015d) A combined technique for computation of energy-effects of cycles in conjugated molecules. J Math Chem 53:1113–1125. doi:https://doi.org/10.1007/s10910-015-0473-y View ArticleGoogle Scholar
- Fatoorehchi H, Rach R, Tavakoli O, Abolghasemi H (2015e) An efficient numerical scheme to solve a quintic equation of state for supercritical fluids. Chem Eng Commun 202(3):402–407. doi:https://doi.org/10.1080/00986445.2013.843529 View ArticleGoogle Scholar
- Fatoorehchi H, Zarghami R, Abolghasemi H, Rach R (2015f) Chaos control in the cerium-catalyzed Belousov–Zhabotinsky reaction using recurrence quantification analysis measures. Chaos Solitons Fractals 76:121–129. doi:https://doi.org/10.1016/j.chaos.2015.03.019 View ArticleGoogle Scholar
- Fatoorehchi H, Zarghami R, Abolghasemi H, Rach R (2015g) Feedback control strategies for a cerium-catalyzed Belousov–Zhabotinsky chemical reaction system. Can J Chem Eng 93(7):1212–1221. doi:https://doi.org/10.1002/cjce.22213 View ArticleGoogle Scholar
- Fatoorehchi H, Abolghasemi H, Zarghami R, Rach R, von Freeden S (2015h) A novel and computationally efficient algorithm for stability analysis of multi input-multi output process control systems. Korean J Chem Eng 32(9):1733–1743. doi:https://doi.org/10.1007/s11814-014-0385-8 View ArticleGoogle Scholar
- Gökdoğan A, Merdan M, Yildirim A (2012) The modified algorithm for the differential transform method to solution of genesio systems. Commun Nonlinear Sci Numer Simul 17(1):45–51View ArticleGoogle Scholar
- Günther M, Wagner Y (2001) Index concepts for linear mixed systems of differential-algebraic and hyperbolic-type equations. SIAM J Sci Comput 22:1610–1629View ArticleGoogle Scholar
- Hairer E, Lubich C, Roche M (1989) The numerical solution of differential-algebraic systems by Runge–Kutta methods. Springer-Verlag, Berlin HeidelbergGoogle Scholar
- Hosseini MM (2005) Pseudospectral method for numerical solution of DAEs with an error estimation. Appl Math Comput 170:115–124View ArticleGoogle Scholar
- Hosseini MM (2006) Adomian decomposition method for solution of differential-algebraic equations. J Comput Appl Math 197:495–501View ArticleGoogle Scholar
- Huang J, Jia J, Minion M (2007) Arbitrary order Krylov deferred correction methods for differential algebraic equations. J Comput Phys 221:739–760View ArticleGoogle Scholar
- Jaradat HMM (2008) Numerical solution of linear differential-algebraic equations using Chebyshev polynomials. Int Math Forum 39:1933–1943Google Scholar
- Karta M, Celik E (2012) On the numerical solution of differential-algebraic equations with Hessenberg Index-3. Discrete Dyn Nat Soc 2012:1–12 (Article ID 147240201)View ArticleGoogle Scholar
- Khan Y, Yildirim A, Jimenez-Fernandez VM, Herrera-May AL, Castaneda-Sheissa R, Cervantes-Perez J, Filobello-Nino U, Vazquez-Leal H (2013) Using perturbation methods and laplace-padé approximation to solve nonlinear problems. Miskolc Math Notes 14(1):89–10Google Scholar
- Kunkel P, Mehrmann V (1996) A new class of discretization methods for the solution of differential-algebraic equations. SIAM J Numer Anal 5:1941–1961View ArticleGoogle Scholar
- Lal R, Ahlawat N (2015) Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method. Europ J Mechan A Solids 52:85–94View ArticleGoogle Scholar
- Liu H, Song Y (2007) Differential transform method applied to high index differential-algebraic equations. Appl Math Comput 184:748–753View ArticleGoogle Scholar
- Martinson WS, Barton PI (2000) A differentiation index for partial differential-algebraic equations. SIAM J Sci Comput 21(6):2295–2315View ArticleGoogle Scholar
- Odibat ZM, Bertelle C, Aziz-Alaoui MA, Duchamp GHE (2010) A multi-step differential transform method and application to non-chaotic or chaotic systems. Comput Math Appl 59(4):1462–1472View ArticleGoogle Scholar
- Rach R (1984) A convenient computational form for the Adomian polynomials. J Math Anal Appl 102:415–419. doi:https://doi.org/10.1016/0022-247X(84)90181-1 View ArticleGoogle Scholar
- Rach R (2008) A new definition of the Adomian polynomials. Kybernetes 37:910–955. doi:https://doi.org/10.1108/03684920810884342 View ArticleGoogle Scholar
- Raftari B, Yildirim A (2011) Series solution of a nonlinear ODE arising in magnetohydrodynamic by HPM-Padé technique. Comput Math Appl 61:1676–1681View ArticleGoogle Scholar
- Rang J, Angermann L (2005) Perturbation Index of Linear Partial Differential-algebraic Equations. Appl Numer Math 53:437–456View ArticleGoogle Scholar
- Salehi F, Asadi MA, Hosseini MM (2012) Solving system of DAEs by modified homotopy perturbation method. J Comput Sci Compt Math 2(6):1–5Google Scholar
- Sand J (2002) On implicit Euler for high-order high-index DAEs. Appl Numer Math 42:411–424View ArticleGoogle Scholar
- Simeon B (1993) An extended descriptor form for the numerical integration of multibody systems. Appl Numer Math. 13:209–220View ArticleGoogle Scholar
- Simeon B (1996) Modelling a flexible slider crank mechanism by a mixed system of DAEs and PDEs. Math Model Syst 2(1):1–18View ArticleGoogle Scholar
- Simeon B, Führer C, Rentrop P (1991) Differential-algebraic equations in vehicle system dynamics. Surveys Math Ind 1:1–37Google Scholar
- Simeon B, Grupp F, Führer C, Rentrop P (1994) A nonlinear truck model and its treatment as a multibody system. J Comput Appl Math 50:523–532View ArticleGoogle Scholar
- Soltanian F, Dehghan M, Karbassi SM (2010) Solution of the differential-algebraic equations via homotopy method and their engineering applications. Int J Compt Math 87(9):1950–1974View ArticleGoogle Scholar
- Torabi M, Yaghoobi H (2011) Novel solution for acceleration motion of a vertically falling spherical particle by HPM-Padé approximant. Adv Powder Technol 22:674–677View ArticleGoogle Scholar
- Vazquez-Leal H, Guerrero F (2014) Application of series method with Padé and Laplace-Padé resummation methods to solve a model for the evolution of smoking habit in Spain. Comput Math Appl 33(1):181–192View ArticleGoogle Scholar
- Vazquez-Leal H, Sarmiento-Reyes A, Khan Y, Filobello-Nino U, Diaz-Sanchez A (2012) Rational biparameter homotopy perturbation method and laplace-padé coupled version. J Appl Math 2012:1–12Google Scholar
- Wazwaz AM (2000) A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl Math Comput 111:53–69. doi:https://doi.org/10.1016/S0096-3003(99)00063-6 View ArticleGoogle Scholar
- Wu B, White RE (2004) One implementation variant of the finite difference method for solving ODEs/DAEs. Comput Chem Eng 28:303–309View ArticleGoogle Scholar