# The McDonald exponentiated gamma distribution and its statistical properties

- Abdulhakim A Al-Babtain
^{1}Email author, - Faton Merovci
^{2}Email author and - Ibrahim Elbatal
^{3}Email author

**4**:2

https://doi.org/10.1186/2193-1801-4-2

© Al-babtain et al.; licensee Springer. 2015

**Received: **20 November 2014

**Accepted: **15 December 2014

**Published: **12 February 2015

## Abstract

### Abstract

In this paper, we propose a five-parameter lifetime model called the McDonald exponentiated gamma distribution to extend beta exponentiated gamma, Kumaraswamy exponentiated gamma and exponentiated gamma, among several other models. We provide a comprehensive mathematical treatment of this distribution. We derive the moment generating function and the rth moment. We discuss estimation of the parameters by maximum likelihood and provide the information matrix.

### AMS Subject Classification

Primary 62N05; secondary 90B25

## Keywords

## 1 Introduction

*λ*and

*θ*are scale and shape parameters respectively. The corresponding probability density function (pdf) is given by

Shawky and Bakoban 2008 discussed the exponentiated gamma distribution as an important model of life time models and derived Bayesian and non-Bayesian estimators of the shape parameter, reliability and failure rate functions in the case of complete and type-II censored samples. Also order statistics from exponentiated gamma distribution and associated inference was discussed by Shawky and Bakoban 2009. Ghanizadeh, et al. 2011, dealt with the estimation of parameters of the exponentiated gamma (EG) distribution with presence of *k* outliers. The maximum likelihood and moment estimators were derived. These estimators are compared empirically using Monte Carlo simulation. Singh et al. 2011b proposed Bayes estimators of the parameter of the exponentiated gamma distribution and associated reliability function under general entropy loss function for a censored sample. The proposed estimators were compared with the corresponding Bayes estimators obtained under squared error loss function and maximum likelihood estimators through their simulated risks. Khan and Kumar 2011established the explicit expressions and some recurrence relations for single and product moments of lower generalized order statistics from exponentiated gamma distribution. Sing et al. 2011a where proposed Bayes estimators of the parameter of the exponentiated gamma distribution and associated reliability function under general entropy loss function for a censored sample. Feroze ans Aslam 2012 introduced Bayesian analysis of exponentiated gamma distribution under type II censored samples. Recently, Nasiri et al. 2013 discussed Classical and Bayesian estimation of parameters on the generalized exponentiated gamma distribution.

## 2 Mc-Donald generalized distribution

*G*(

*x*). The probability density function (pdf)

*f*(

*x*) of the new class of distributions called the Mc-Donald generalized distributions (denoted with the prefix "Mc" for short) is defined by

*a*> 0,

*b*> 0 and

*c*> 0 are additional shape parameters. (See Corderio et al. (2012) for additional details). Note that

*g*(

*x*) is the pdf of parent distribution, . Introduction of this additional shape parameters is specially to introduce skewness. Also, this allows us to vary tail weight. It is important to note that for

*c*= 1 we obtain a sub-model of this generalization which is a beta generalization (see Eugene et al. 2002) and for

*a*= 1, we have the Kumaraswamy (Kw), [Kumaraswamy generalized distributions (see Cordeiro and Castro 2011)). For random variable

*X*with density function (2), we write

*X*∼

*M*

*c*-

*G*. The probability density function (3) will be most tractable when

*G*(

*x*) and

*g*(

*x*) have simple analytic expressions. The corresponding cumulative function for this generalization is given by

is the well-known hypergeometric functions which are well established in the literature (see, Gradshteyn and Ryzhik 2000). Some mathematical properties of the cdf *F*(*x*) for any Mc-G distribution defined from a parent *G*(*x*) in Equation 5, could, in principle, follow from the properties of the hypergeometric function, which are well established in the literature (Gradshteyn and Ryzhik 2000 Sec. 9.1). One important benefit of this class is its ability to skewed data that cannot properly be fitted by many other existing distributions. Mc- G family of densities allows for higher levels of flexibility of its tails and has a lot of applications in various fields including economics, finance, reliability, engineering, biology and medicine.

respectively. Recently Cordeiro et al. 2012 presented results on the McDonald normal distribution. Cordeiro et al. 2012 proposed McDonald Weibull distribution, Merovci and Elbatal 2013 proposed McDonald modified Weibull distribution, Elbatal et al. 2014 proposed McDonald generalized linear failure rate Distribution, Elbatal and Merovci 2014 introduced McDonald Pareto distribution and Marciano et al. 2012 obtained the statistical properties of the *Mc* - Γ and applied the model to reliability data. In this paper we introduce a new class of distribution, called McDonald exponentiated gamma (*McEG*) distribution which extends the exponentiated gamma model and has several other models as special cases. since it has more shape parameters, yielding a large variety of forms. It can also be useful for testing the goodness of fit of its sub-models.

The outline of this paper is as follows. In Section 2, the McDonald exponentiated gamma (*MceG*) and related family distributions are introduced. The series expansion for the density, hazard and reverse hazard functions, and other properties are presented in Section 3. Section 4 provides expansions for the cumulative and density functions. In Section 5, we present the statistical properties, in particular moments, moment generating function. The distribution of the order statistics is expressed in Section 6. Section 7 provides least squares and weighted least squares estimators. Maximum likelihood estimates of the parameters index to the distribution are discussed in Section 8. Section 9 provides applications to real data sets. Section 10 ends with some conclusions.

## 3 McDonald exponentiated gamma distribution

*McEG*) distribution. Using

*G*(

*x*) and

*g*(

*x*) in (3) to be the cdf and pdf of (1) and (2). The pdf of the

*McEG*distribution is given by

*λ*,

*θ*,

*a*,

*b*and

*c*, respectively.

respectively.

## 4 Expansions for the cumulative and density functions

*McEG*cdf and pdf. distribution depending if the parameter

*b*> 0 is real non- integer or integer. First, if |

*z*| < 1 and

*b*> 0 is real non- integer, we have in this subsection, we present some representations of cdf and pdf of (

*McEG*) Equations 7 and (8) are straightforward to compute using any software with algebraic facilities. The mathematical relation given below will be useful in this subsection. If

*b*is a positive real non integer and |

*z*| ≤ 1,then

for *b* > 0 is an integer. Where
are constants such that
and *G*(*x*,*λ*,*θ**c*(*a* + *j*)) is a finite mixture of exponentiated gamma distribution with *λ* and *θ**c*(*a* + *j*) are scale and shape parameters respectively. The graphs below are the pdf, cdf, survival function, *h*(*x*), and *τ*(*x*) of the *McEG* distribution for different values of parameters *λ*,*θ*,*a*,*b* and *c*.

## 5 Statistical properties

This section is devoted to studying statistical properties of the (*McEG*) distribution, specifically quantile function, moments and moment generating function

### 5.1 Quantile function and simulation

*F*(

*x*

_{ q }) =

*P*(

*X*≤

*x*

_{ q }) where (

*x*

_{ q })

_{(McEG)}=

*F*

^{-1}(

*u*),is given by the following relation

### 5.2 Moments

In this subsection we discuss the *r*_{
th
} moment for (*McEG*) distribution. Moments are necessary and important in any statistical analysis, especially in applications. It can be used to study the most important features and characteristics of a distribution (e.g., tendency, dispersion, skewness and kurtosis). We use the results presented earlier, which was obtained by expanding the pdf.

**Theorem 3.1.**If

*X*has

*McEG*(

*φ*,

*x*),

*φ*= (

*λ*,

*θ*,

*a*,

*b*,

*c*) then the

*r*

_{ th }moment of

*X*is given by the following

**Proof.**Let

*X*be a random variable with density function (7). The

*r*

_{ th }ordinary moment of the (

*McEG*) distribution is given by

*McEG*) distribution, the measures of skewness

*A*(

*φ*) and kurtosis

*k*(

*φ*) of the (

*McEG*) distribution can obtained as

## 5.3 Moment generating function

In this subsection we derived the moment generating function of (*McEG*) distribution.

**Theorem 3.2.**If

*X*has (

*McEG*) distribution, then the moment generating function

*M*

_{ X }(

*t*) has the following form

which completes the proof.

## 6 Conditional moments, residual life and reversed failure rate function

*McEG*) distribution is given by

*t*≥ 0, the residual life is the period beyond t until the time of failure and defined by the conditional random variable

*X*-

*t*|

*X*>

*t*. In reliability, it is well known that the mean residual life function and ratio of two consecutive moments of residual life determine the distribution uniquely (Gupta and Gupta, 1983). Therefore, we obtain the

*r*

^{ th }-order moment of the residual life via the general formula

*x*-

*t*)

^{ r }and substituting

*f*(

*x*,

*φ*) given by (7) into the above formula gives

*McEG*distribution is given by

*t*-

*X*|

*X*≤

*t*which denotes the time elapsed from the failure of a component given that its life is less than or equal to t. This random variable may also be called the inactivity time (or time since failure); for more details you may see (Kundu and Nanda, 2010; Nanda, Singh, Misra, and Paul, 2003). Also, in reliability, the mean reversed residual life and ratio of two consecutive moments of reversed residual life characterize the distribution uniquely. the reversed failure (or reversed hazard) rate function is given by Equation 11. The

*r*

^{ th }-order moment of the reversed residual life can be obtained by the well known formula

*t*-

*x*)

^{ r }and substituting

*f*(

*x*,

*φ*) given by (2.1) into the above formula gives

*McEG*distribution is given by

Using *m*(*t*)and *m*_{2}(*t*) we obtain the variance of the reversed residual life of the *McEG* distribution, and hence the coefficient of variation of the reversed residual life of the *McEG* distribution can be easily obtained.

## 7 Distribution of the order statistics

In this section, we derive closed form expressions for the pdfs of the *r*_{
th
} order statistic of the (*McEG*) distribution, also, the measures of skewness and kurtosis of the distribution of the *r*_{
th
} order statistic in a sample of size *n* for different choices of *n*;*r* are presented in this section. Let *X*_{1},*X*_{2},…,*X*_{
n
} be a simple random sample from (*McEG*) distribution with pdf and cdf given by (7) and (9), respectively.

*X*

_{1},

*X*

_{2},…,

*X*

_{ n }denote the order statistics obtained from this sample. We now give the probability density function of

*X*

_{r:n}, say

*f*

_{r:n}(

*x*,

*φ*) and the moments of

*X*

_{r:n},

*r*= 1,2,…,

*n*. Therefore, the measures of skewness and kurtosis of the distribution of the

*X*

_{r:n}are presented. The probability density function of

*X*

_{r:n}is given by

*F*(

*x*,

*φ*) and

*f*(

*x*,

*φ*) are the cdf and pdf of the (

*McEG*) distribution given by (7), (8), respectively, and since 0<

*F*(

*x*,

*φ*) < 1, for

*x*> 0, by using the binomial series expansion of [1 -

*F*(

*x*,

*φ*)]

^{n-r}, given by

substituting from (7) and (8) into (37), we can express the *k*_{
th
} ordinary moment of the *r*_{
th
} order statistics *X*_{r:n} say
as a liner combination of the *k*_{
th
} moments of the (*McEG*) distribution with different shape parameters. Therefore, the measures of skewness and kurtosis of the distribution of *X*_{r:n} can be calculated.

## 8 Estimation and inference

*McEG*) distribution from complete samples only. Let

*X*

_{1},

*X*

_{2},…,

*X*

_{ n }be a random sample of size

*n*from

*McEG*(

*λ*,

*θ*,

*a*,

*b*,

*c*).The likelihood function for the vector of parameters

*φ*= (

*λ*,

*θ*,

*a*,

*b*,

*c*) can be written as

The elements of Hessian matrix is given in the Appendix.

*γ*)

*%*confidence intervals for

*λ*,

*θ*,

*a*,

*b*and

*c*are determined respectively as

where *z*_{
γ
} is the upper 100*γ*_{
the
} percentile of the standard normal distribution.

We can compute the maximized unrestricted and restricted log-likelihood functions to construct the likelihood ratio (LR) test statistic for testing on some the McEG sub-models. For example, we can use the LR test statistic to check whether the McEG distribution for a given data set is statistically *superior* to the EG distribution. In any case, hypothesis tests of the type *H*_{0}:*φ* = *φ*_{0} versus *H*_{0}:*φ* ≠ *φ*_{0} can be performed using a LR test. In this case, the LR test statistic for testing *H*_{0} versus *H*_{1} is
, where
and
are the MLEs under *H*_{1} and *H*_{0}, respectively. The statistic *ω* is asymptotically (as *n* → *∞*) distributed as
, where *k* is the length of the parameter vector *θ* of interest. The LR test rejects *H*_{0} if
, where
denotes the upper 100*γ**%* quantile of the
distribution.

## 9 Application

The LR test statistic to test the hypotheses *H*_{0}:*a* = *b* = *c* = 1 versus *H*_{1}:*a* ≠ 1 ∨ *b* ≠ 1 ∨ *c* ≠ 1 is
, so we reject the null hypothesis.

*ℓ*, AIC (Akaike information criterion)and CAIC (corrected Akaike information criterion) for the data set. The better distribution corresponds to smaller -2

*ℓ*, AIC and CAIC values:

where *k* is the number of parameters in the statistical model, *n* the sample size and *ℓ* is the maximized value of the log-likelihood function under the considered model. Also, here for calculating the values of KS we use the sample estimates of *θ*,*α*,*a*,*b* and *c*. Table 1 shows the MLEs under both distributions, Table 2 shows the values of -2*ℓ*, AIC and CAIC values. The values in Table 2 indicate that the McEG distribution leads to a better fit than the EG distribution.

A density plot compares the fitted densities of the models with the empirical histogram of the observed data (Figure 5). The fitted density for the McEG model is closer to the empirical histogram than the fits of the EG model.

**Estimated parameters of the EG and McEG distribution for the data set**

**Criteria for comparison**

Model | KS | -2ℓ | AIC | CAIC |
---|---|---|---|---|

EG | 0.211 | 60.161 | 64.161 | 64.361 |

KEG | 0.146 | 31.925 | 39.925 | 40.615 |

McEG | 0.139 | 29.704 | 39.704 | 40.578 |

## 10 Simulated data

*n*. The simulation process consists the following steps:

- 1.
Set

*n*, and Θ = (*λ*,*θ*,*a*,*b*,*c*). - 2.
Set initial value

*x*^{0}for the random starting. - 3.
Set

*j*= 1. - 4.
Generate

*U*∼*Uniform*(0,1). - 5.
Update

*x*^{0}by using the Newton’s formula such as

- 6.
If ∣

*x*^{0}-*x*^{⋆}∣ ≤*ε*, (very small,*ε*> 0 tolerance limit). Then,*x*^{⋆}will be the desired sample from*F*(*x*). - 7.
If ∣

*x*^{0}-*x*^{⋆}∣ >*ε*, then, set*x*^{0}=*x*^{⋆}and go to step 5. - 8.
Repeat steps 4-7, for

*j*= 1,2,…,*n*and obtained*x*_{1},*x*_{2},…,*x*_{ n }.

*λ*= 0.1,

*θ*= 0.5,

*a*= 0.3,

*b*= 4 and

*c*= 5. The simulated sample is given by

*λ*,

*θ*,

*a*,

*b*,

*c*) are

respectively. The asymptotic confidence intervals for (*λ*,*θ*,*a*,*b*,*c*) are obtained as (0 ∼ 0.278), (0 ∼ 13.295), (0 ∼ 0.444), (0 ∼ 8.342) and (0 ∼ 21.30274044) respectively.

## 11 Conclusion

Here we propose a new model, the so-called the McEG distribution which extends the EG distribution in the analysis of data with real support. An obvious reason for generalizing a standard distribution is because the generalized form provides larger flexibility in modeling real data. We derive expansions for the moments and for the moment generating function. The estimation of parameters is approached by the method of maximum likelihood, also the information matrix is derived. We consider the likelihood ratio statistic to compare the model with its baseline model. An application of the McEG distribution to real data show that the new distribution can be used quite effectively to provide better fits than EG distribution.

## Appendix

## Declarations

### Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Center.

## Authors’ Affiliations

## References

- Cordeiro GM, de Castro M:
**A new family of generalized distributions.***J Stat Comput Simul*2011,**81**(7)**:**883–898. 10.1080/00949650903530745MathSciNetView ArticleMATHGoogle Scholar - Cordeiro GM, Cintra RJ, Rêgo LC, Ortega EMM:
**The McDonald normal distribution.***Pak J Stat Oper Res*2012,**8**(3)**:**301–329.MathSciNetView ArticleGoogle Scholar - Corderio GM, Hashimoto EM, Ortega EMM:
**The McDonald-Weibull model, statistics.***Statistics*2012,**48**(2)**:**256–278.View ArticleGoogle Scholar - Eugene N, Lee C, Famoye F:
**Beta-normal distribution and its applications.***Commun Stat Theory Methods*2002,**31:**497–512. 10.1081/STA-120003130MathSciNetView ArticleMATHGoogle Scholar - Elbatal I, Merovci F, Marzouk W:
**McDonald generalized linear failure rate distribution.***Pak J Stat Oper Res*2014,**10**(3)**:**267–288.MathSciNetView ArticleGoogle Scholar - Elbatal I, Merovci F:
**A note on a generalization of the exponentiated pareto distribution.***Econ Qual Control*2014,**29**(1)**:**77–87.View ArticleMATHGoogle Scholar - Feroze N, Aslam M:
**Bayesian analysis of exponentiated gamma distribution under type II censored samples.***Sci J Pure Appl Sci*2012,**1**(1)**:**30–39.Google Scholar - Ghanizadeh A, Pazira H, Lotfi R:
**Classical estimations of the exponentiated gamma distribution parameters with presence of k outliers.***Aust J Basic Appl Sci*2011,**5**(3)**:**571–579.Google Scholar - Gupta RC, Gupta PL, Gupta RD:
**Modeling failure time data by Lehman alternatives.***Commun Statistics-Theory Methods*1998,**27**(4)**:**887–904. 10.1080/03610929808832134MathSciNetView ArticleMATHGoogle Scholar - Gradshteyn IS, Ryzhik IM:
*Table of integrals, series, and products*. Academic Press, San Diego; 2000.MATHGoogle Scholar - Khan RU, Kumar D:
**Lower generalized order statistics from exponentiated gamma distribution and its characterization.***ProbStat Forum*2011,**4:**25–38.MathSciNetMATHGoogle Scholar - Marciano FW, Nascimento ADC, Santos-Neto M, Cordeiro GM:
**The Mc-**Gamma**distribution and its statistical properties: an application to reliability data.***Int J Stat Probability*2012,**1**(1)**:**53–71.View ArticleGoogle Scholar - Merovci F, Elbatal I:
**The McDonald modified weibull distribution: properties and applications.***arXiv preprint arXiv*2013, 1309.2961.Google Scholar - Nasiri P, Lotfi R, Veisipour H:
**Classical and Bayesian estimation of parameters on the generalized exponentiated gamma distribution.***Sci Res Essays*2013,**8**(8)**:**309–314.Google Scholar - Singh SK, Singh U, Kumar D:
**Bayesian estimation of the exponentiated gamma parameter and reliability function under assymetric loss function.***REVSTAT–Stat J*2011,**9**(3)**:**247–260.MATHGoogle Scholar - Singh U, Kumar D, Singh, SK:
**Bayesian estimation of the exponentiated gamma parameter and reliability function under asymmetric loss function.***REVSTAT – Stat J*2011,**9**(3)**:**247–260.MathSciNetMATHGoogle Scholar - Shawky AI, Bakoban RA:
**Bayesian and non-Bayesian estimations on the exponentiated gamma distribution.***Appl Math Sci*2008,**2**(51)**:**2521–2530.MathSciNetMATHGoogle Scholar - Shawky AI, Bakoban RA:
**Order statistics from exponentiated gamma distribution and associated inference.***Int J Contemp Math Sci*2009,**4**(2)**:**71–91.MathSciNetMATHGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.