Open Access

Oscillation theorems for second order nonlinear forced differential equations

  • Ambarka A Salhin1Email author,
  • Ummul Khair Salma Din1,
  • Rokiah Rozita Ahmad1 and
  • Mohd Salmi Md Noorani1
SpringerPlus20143:300

https://doi.org/10.1186/2193-1801-3-300

Received: 4 April 2014

Accepted: 16 May 2014

Published: 18 June 2014

Abstract

In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature.

Keywords

Oscillation Forced nonlinear differential equations of second order

Introduction

We consider the oscillation behavior of solutions of second order forced nonlinear differential equation
r t ψ x t f x t α 1 f x t + q t g x t = H t , x t , x t , t [ t 0 , ) ,
(1.1)
and
r t ψ x t f x t + q t g x t = H t , x t , x t , t [ t 0 , ) ,
(1.2)

where r, qC([t0, ∞), ), and f, ψ, gC(, ) and H is a continuous function on [t0, ∞) × 2,

α is a positive real number. Throughout the paper, it is assumed that the following conditions are satisfied:

(A1) r(t) > 0, t ≥ 0;

(A2) xg(x) > 0, gC1(for x ≠ 0;

(A3) H t , x , y g x p t t t 0 , ; x , y and x 0 .

We restrict our attention only to the solutions of the differential equations (1.1) and (1.2) that exist on some ray [t0, ∞), where t0 ≥ t, to may depend on the particular solutions. Such a solution is said to be oscillatory if it has arbitrarily large zeros, and otherwise, it is said to be nonoscillatory. Equations (1.1) and (1.2) are called oscillatory if all its solutions are oscillatory.

The problem of finding oscillation criteria for second order nonlinear ordinary differential equations, which involve the average of integral of the alternating coefficient, has received the attention of many authors because in the fact there are many physical systems are modeled by second order nonlinear ordinary differential equations; for example, the so called Emden – Fowler equation arises in the study of gas dynamics and fluid mechanics. This equation appears also in the study of relativistic mechanics, nuclear physics and in the study of chemically reacting systems.

The oscillatory theory as a part of the qualitative theory of differential equations has been developed rapidly in the last decades, and there has been a great deal of work on the oscillatory behavior of differential equations; see e.g. (Agarwal et al. 2010; Beqiri and Koci 2012; Bihari 1963; Elabbasy and Elsharabasy 1997; Elabbasy and Elhaddad 2007; Grace et al. 1984, 1988; Grace and Lalli 1987, 1989, 1990; Grace 1989, 1990, 1992; Greaf and Spikes 1986; Graef et al. 1978; Lee and Yeh 2007; Kamenev 1978; Kartsatos 1968; Li and Agarwal 2000; Meng 1996; Nagabuchi and Yamamoto 1988; Ohriska and Zulova 2004; Ouyang et al. 2009; Philos 1983, 1984, 1985; Remili 2010; Salhin 2014; Tiryaki and Basci 2008; Tiryaki 2009; Temtek and Tiryaki 2013; Yan 1986; Yibing et al. 2013a, [b]; Zhang and Wang 2010).

Remili (2010), studied the equation
r t x t + Q t , x = H t , x t , x t ,
(1.3)
and derived some oscillation criteria for the equation (1.3), where new results with additional suitable weighted function are investigated. Zhang and Wang (2010), studied the following equation
r t ψ x t x t + Q t , x = H t , x t , x t .
(1.4)
Temtek and Tiryaki (2013) obtained several new oscillation results for the equation
r t ψ x t x t α 1 x t + Q t , x = H t , x t , x t ,
(1.5)

and its special cases by using generalized Riccati transformation and well known techniques.

In this paper, we continue in this direction the study of oscillatory properties of equations (1.1) and (1.2). The purpose of this paper is to improve and extend the above mentioned results. Our results are more general than the previous results. The relevance of our results becomes clear due to some carefully selected examples.

Main results

In this section we prove our main results.

Theorem 2.1. Suppose that, conditions (A1) – (A3) hold, and
g x ψ x g x α 1 1 α k > 0 for all x
(2.1)
0 < k 1 f y y k 2 for all y = x t 0 .
(2.2)
Let ρ be a positive continuously differentiable function over [T, ∞) such that ρ(t) ≥ 0 over [T0, ∞); 
lim t T 0 t 1 ρ s r s 1 α ds = ,
(2.3)
lim t sup T 0 t Z s ds = ,
(2.4)
where
Z s = ρ s q s p s λr s ρ s ρ s α + 1 and λ = α α + 1 k k 1 α + 1 ,

Then all solutions of equation (1.1) are oscillatory.

Proof. Let x(t) be a non-oscillatory solution on [T, ∞), T ≥ T0 of the equation (1.1). We assume that x(t) is positive on [T, ∞), T ≥ t0. A similar argument holds for the case when x(t) is negative. Let
w t = ρ t r t ψ x t f x t α 1 f x t g x t , t T 0 .
(2.5)
Then differentiating (2.5), (1.1) and take in account assumptions (A1) - (A3), (2.2) we have
w t ρ t q t p t + ρ t ρ t w t 1 k 2 ρ t r t ψ x t f x t α 1 f 2 x t g x g 2 x .
(2.6)
In view of (2.1) we conclude that
w t ρ t q t p t + ρ t ρ t w t k k 2 w t α + 1 α ρ t r t 1 α .
(2.7)
By using the extremum of one variable function it can be proved that
DX E X α α + 1 α α α + 1 α + 1 D α + 1 E α , D 0 , E > 0 , X 0 .
Now, by applying this inequality we have
w t ρ ( t ) [ q ( t ) p ( t ) ] + λ r t ρ t α + 1 ρ t α = ρ t q t p t λr t ρ t ρ t α + 1 .
(2.8)
Integrating (2.8) from T to t, we get
w t w T T t ρ s q s p s λr s ρ s ρ s α + 1 ds , t T T 0 .
(2.9)

Taking the limit for both sides of (2.9) and using (2.4), we find w(t) → − ∞. Hence, there exists T1 ≥ T such that f(x(t)) < 0 x(t) < 0, t ≥ T1.

Condition (2.4) also implies that T ρ s q s p s ds = , and there exists T2 ≥ T1such that

T 1 T 2 ρ s q s p s ds = 0 and T 2 t ρ s q s p s ds 0 , t T 2 .

Multiplying Eq. (1.1) by ρ(t) and integrating by parts on [T2, t], we have
ρ t r t ψ x t f x t α ρ t g x t q t p t .
Now, integrating by parts, we get
ρ t r t ψ x t f x t α + C T 2 T 2 t ρ s r s ψ x s f x s α ds T 2 t ρ s g x s q s p s ds ,
where
C T 2 = ρ T 2 r T 2 ψ x T 2 f x T 2 α g x T 2 > 0 .
ρ t r t ψ x t f x t α C T 2 + g ( x ( t ) ) T 2 t ρ s q s p s ds T 2 t x s g x s T 2 s ρ u q u p u duds + T 2 t ρ s r s ψ x s f x s α ds C T 2 , t T 1 .
Therefore,
ρ t r t ψ x t f x t α C T 2
From (2.1) and (2.2), we find
ψ ( x t ) f x t α C T 2 r t ρ t , ψ x t 1 α f x t C T 2 r s ρ s 1 α , T 2 t k 2 ψ x s 1 α x s ds T 2 t C T 2 r s ρ s 1 α ds , x T 2 x t k 2 ψ y 1 α dy T 2 t C T 2 r s ρ s 1 α ds .

From (2.3) and 0 < x(t) ≤ x(T2), this implies that x T 2 x t k 2 ψ y 1 α dy is lower bounded, but the right side of it tends to mines infinity. Then, this is a contradiction.

Example 2.2. Consider the following differential equation
1 t ( 13 x t + x t x t 2 + 1 + t + sin t t x t = 2 x 8 sin t cos x t + 1 x 7 + 1 t 3 , t π 2 ,

Evidently, if we take p t = 2 t 3 , ρ t = t and α = 2 . Then all conditions of Theorem 2.1 are satisfied, hence, all the solutions are oscillatory.

Theorem 2.3. If (A1) – (A3), conditions (2.1) – (2.3) hold, and
T 0 ρ s q s p s ds < ,
(2.10)
lim t inf T t Z s ds 0 for all large T ,
(2.11)
lim t T 0 t 1 ρ s r s s Z u d 1 α ds = ,
(2.12)
and
± ϵ ± ψ y g y 1 α dy < for every ϵ > 0 .
(2.13)

Thus all solutions of Eq. (1.1) are oscillatory.

Proof. Let x(t) be a non-oscillatory solution on [T, ∞), T ≥ T0 of Eq. (1.1). Let us assume that x(t) is positive on [T, ∞) and consider the following three cases for the behavior of x(t).

Case 1: x(t) > 0 for T1 ≥ T for some t ≥ T1; then from (2.10), we obtain
T 1 t Z s ds r T 1 ρ T 1 ψ x T 1 f x T 1 α 1 f x T 1 g x T 1 ρ t r t ψ x t f x t α g x t .
From (2.1) and (2.2), we obtain
1 r t ρ t T 1 t Z s ds ψ x t f x t α g x t
Hence, for all t ≥ T1
1 r t ρ t T 1 Z s ds 1 / α ψ x t 1 / α f x t g x t 1 / α T 1 t 1 r s ρ s s Z u du 1 / α ds k 1 T 1 t ψ x s 1 / α x s g x s 1 / α ds , k 1 x T 1 ψ y g y 1 / α dy .
Using (2.13), we obtain
T 1 t 1 r s ρ s s Z u du 1 α ds < ,

which contradicts to the condition (2.13).

Case 2: If x(t) is oscillatory, then there exists a sequence {α n } → ∞ on [T, ∞) such that x(α n ) < 0. Let us assume that N is sufficiently large so that
α N Z s ds 0 .
Then, from (2.1), (2.2) and (2.7), we have
C α N α N t Z s ds ρ t r t ψ x t f x t α g x t C α N + α N t Z s ds ρ t r t ψ x t f x t α g x t
Thus
lim t inf ρ t r t ψ x t f x t α g x t C α N + lim t inf α N t Z s ds > 0 ,

which contradicts to the assume that x(t) oscillates.

Case 3: Let x(t) < 0 for t ≥ T1. Condition (2.11) implies that for any t0 ≥ T1 such that

t ρ s q s p s ds 0 for all t ≥ T1.

The remaining part of the proof is similar to that of Theorem 2.1 then will be omitted.

Example 2.4. Let us consider the following equation
t x 4 t x 4 t + 1 7 x t + x t 5 x t 4 + 1 + 1 t 3 x 3 t = x 3 cos x sin 2 x t t 4 , t > 1 ,

Evidently, if we take p t = 1 t 4 , ρ t = t and α = 1 . Then the equation given in Example 2.2 is oscillatory by Theorem 2.2.

Remark 2.1. Condition (2.10) implies that T Z s 0 and lim inf t T Z s ds = T Z s ds ; hence (2.11) takes the form of T Z s 0 , for all large T.

Remark 2.2. when α = 1, ψ(x(t)) = 1 and f(x′(t)) = x′(t), Theorem 2.1 and 2.2 reduce to Theorem 1 and 2 Remili (2010) and Theorems 2.1 and 2.3 are obtained by analogy with Theorems 2.1 and 2.2 from (Temtek and Tiryaki 2013).

Theorem 2.5. Assume that
f y by for all y and for some constant b > 0 ,
(2.14)
0 < 0 ± ϵ ψ u g u du < for all ϵ > 0 .
(2.15)
Furthermore, assume that there exist a constant A such that
lim t sup R t = A < ,
(2.16)
where R t = t 0 t ds r s , and
lim t sup t 0 t 1 r s t 0 s q u p u duds = .
(2.17)

Then the differentia Eq. (1.2) is oscillatory.

Proof. Without loss of generality, let assume that there exists a solution x(t) of (1.2) such that x(t) > 0 on [T, ∞) for some T ≥ t0. A similar argument holds also for the case when x(t) < 0. Let w(t) be defined by the Riccati Transformation
w t = r t ψ x t f x t g x t , t T .
Derivation this equality we have
w t = r t ψ x t f x t g x t r t ψ x t f x t g x t x t g 2 x t .
This, and (1.2) imply
w t p t q t t T .
Integrating this inequality from T to t( ≥ T), we obtain
w t w T T t q s p s ds
By condition (2.14), we get
b r t ψ x t x t g x t r t ψ x t f x t g x t w T T t q s p s ds , b > 0
Integrating the above inequality multiplied by 1 r t from T to t( ≥ T), we have
b T t ψ x s x s g x s ds T t ψ x s f x s g x s ds w T R ( t ) T t 1 r s T s q u p u duds .
From condition (2.16) and (2.17), we get that
θ t = T t ψ x s x s g x s ds as t .
Now, if x(t) ≥ x(T) for large t then θ(t) ≥ 0, which is a contradiction. Hence for large t, x(t) ≤ x(T), so
θ t = x t x T ψ u g u du > 0 x T ψ u g u du > ,

which is again a contradiction. This completes proof the Theorem 2.3.

Theorems 2.6. Suppose that conditions (2.14), (2.15) and (2.16) hold. Furthermore, suppose that, there exist a function ρ : [t0, ∞) → (0, ∞) such that ρ′(t) ≥ 0 for all t ≥ t0, and
lim t sup t 0 t 1 ρ s r s t 0 s ρ u q u p u du ds = .
(2.18)

Then the differential equation (1.2) is oscillatory.

Proof. Without loss of generality, let assume that there exists a solution x(t) of (1.2) such that x(t) > 0 on [T, ∞) for some T ≥ t0. Let w(t) be defined by the Riccati Transformation
w t = ρ t r t ψ x t f x t g x t , t T .
Derivation this equality we have
w t = ρ t r t ψ x t f x t g x t + ρ t r t ψ x t f x t g x t ρ t r t ψ x t f x t g x t x t g 2 x t .
This, and (1.2) imply
w t ρ t q t p t + ρ t ρ t w t .
Hence for all t ≥ T, we obtain
T t ρ s q s p s ds T t ρ s d ds w s ρ s ds .
(2.19)
By the Bonnet’s Theorem that for each t ≥ T, there exist a T0 [T, t] such that
T t ρ s d ds w s ρ s ds = ρ t T 0 t d ds w s ρ s ds = ρ t w t ρ t + ρ t w T 0 ρ T 0
T t ρ s d ds w s ρ s ds = w t + t ; B = w T 0 ρ T 0 .
(2.20)
By (2.19) and (2.20) we get
T t ρ s q s p s ds = w t + t .
(2.21)
Integrating the above inequality multiplied by 1 r t ρ t from T to t( ≥ T), we obtain
b T t ψ x s x s g x s ds T t ψ x s f x s g x s ds BR t T t 1 r s ρ s T s ρ u q u p u du ds .
From (2.16) and (2.18), we have
θ t = T t ψ x s x s g x s ds as t .
Now, if x(t) ≥ x(T) for large t, then θ(t) ≥ 0, which is a contradiction. Hence for large t, x(t) ≤ x(T), so
θ t = x t x T ψ u g u du > 0 x T ψ u g u du > ,

which is again a contradiction. This completes proof the Theorem 2.6.

Example 2.7. Consider the differential equation
e t x 4 t x 4 t + 1 x t + e 2 t + sin t x 3 t = x 7 t sin t 1 + x 4 t 2 x t 2 x t 2 + 1 , t 0 .
Here,
r t = e t , q ( t ) = e 2 t + sin t , ψ ( x ( t ) ) = x 4 t x 4 t + 1 , g ( x ) = x 3 , H ( t , x ( t ) , x ( t ) ) = x 7 t sin t 1 + x 4 t 2 x t 2 x t 2 + 1 , H t , x t , x t g x = x 7 t sin t 1 + x 4 t 2 x t 2 x t 2 + 1 × 1 x 3 sin t = p t .
So, can note that
lim t sup R t = lim t sup t 0 t ds e s < , 0 ± ϵ u u 2 2 + 1 du = 1 2 tan 1 ϵ 2 < .
Let us take ρ(t) = 1 we have
t 0 t 1 r s ρ s t 0 s ρ u q u p u du ds = T t 1 e s T s e 2 u + sin u sin u du ds = ,

then, Theorem 2.4 ensures that every solution of the equation given oscillates.

Declarations

Acknowledgement

This research has been completed with the support of these grants: DIP-2012-31, FRGS/2/2013/SG04/UKM/02/3 and FRGS/1/2012/SG04/UKM/01/1.

Authors’ Affiliations

(1)
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

References

  1. Agarwal RP, Avramescu C, Mustafa OG: On the oscillation theory of a second-order strictly sublinear differential equation. Can Math Bull 2010, 53(2):193-203. 10.4153/CMB-2010-001-2View ArticleGoogle Scholar
  2. Beqiri XH, Koci E: Oscillation criteria for second order nonlinear differential equations. British Journal of Science 2012, 6(2):73-80.Google Scholar
  3. Bihari I: An oscillation theorem concerning the half linear differential equation of the Second order. Magyar Tud Akad Mat Kutato Int Kozl 1963, 8: 275-280.Google Scholar
  4. Elabbasy EM, Elhaddad WW: Oscillation of second order nonlinear differential equations with damping term. Electron J Qual Theor Differ Equat 2007, 25: 1-19.View ArticleGoogle Scholar
  5. Elabbasy EM, Elsharabasy MA: Oscillation properties for second order nonlinear differential equations. Kyungpook Math J 1997, 37: 211-220.Google Scholar
  6. Grace SR: Oscillation theorems for second order nonlinear differential equations with damping. Math Nachr 1989, 141: 117-127. 10.1002/mana.19891410114View ArticleGoogle Scholar
  7. Grace SR: Oscillation criteria for second order differential equations with damping. J Austral Math Soc (Series A) 1990, 49: 43-54. 10.1017/S1446788700030226View ArticleGoogle Scholar
  8. Grace SR: Oscillation theorems for nonlinear differential equations of second order. Math Anal And Appl 1992, 171: 220-241. 10.1016/0022-247X(92)90386-RView ArticleGoogle Scholar
  9. Grace SR, Lalli BS: On the second order nonlinear oscillations. Bull Inst Math Acad Sinica 1987, 15(no. 3):297-309.Google Scholar
  10. Grace SR, Lalli BS: Oscillation theorems for second order nonlinear differential equations with a damping term, Comment. Math Univ Carolinae 1989, 30(4):691-697.Google Scholar
  11. Grace SR, Lalli BS: Integral averaging technique for the oscillation of second order nonlinear differential equations. J Math Anal Appl 1990, 149: 277-311. 10.1016/0022-247X(90)90301-UView ArticleGoogle Scholar
  12. Grace SR, Lalli BS, Yeh CC: Oscillation theorems for nonlinear second order differential equations with a nonlinear damping term. SIAM J Math Anal 1984, 15: 1082-1093. 10.1137/0515084View ArticleGoogle Scholar
  13. Grace SR, Lalli BS, Yeh CC: Addendum: Oscillation theorems for nonlinear second order differential equations with a nonlinear damping term. SIAM J Math Anal 1988, 19(5):1252-1253. 10.1137/0519089View ArticleGoogle Scholar
  14. Graef JR, Rankin SM, Spikes PW: Oscillation theorems for perturbed non-linear differential equation. J Math Anal Appl 1978, 65: 375-390. 10.1016/0022-247X(78)90189-0View ArticleGoogle Scholar
  15. Greaf JR, Spikes PW: On the oscillatory behaviour of solutions of second order nonlinear differential equation. Czech Math J 1986, 36: 275-284.Google Scholar
  16. Kamenev IV: Integral criterion for oscillation of linear differential equations of second order. Math Zametki 1978, 23: 249-251.Google Scholar
  17. Kartsatos AG: On oscillation of nonlinear equations of second order. J Math Anal Appl 1968, 24: 665-668. 10.1016/0022-247X(68)90019-XView ArticleGoogle Scholar
  18. Lee CF, Yeh CC: An Oscillation theorems. Appl Math Lett 2007, 20: 238-240. 10.1016/j.aml.2006.04.005View ArticleGoogle Scholar
  19. Li WT, Agarwal RP: Interval oscillation criteria for second order nonlinear equations with damping. Computers Math Applic 2000, 40: 217-230. 10.1016/S0898-1221(00)00155-3View ArticleGoogle Scholar
  20. Meng FW: An oscillation theorem for second order superlinear differential equations. Ind J Pure Appl Math 1996, 27: 651-658.Google Scholar
  21. Nagabuchi Y, Yamamoto M: Some oscillation criteria for second order nonlinear ordinary differential equations with damping. Proc Japan Acad 1988, 64: 282-285.View ArticleGoogle Scholar
  22. Ohriska J, Zulova A: Oscillation criteria for second order nonlinear differential equation. IM Preprint Series A 2004, 10: 1-11.Google Scholar
  23. Ouyang Z, Zhong J, Zou S: Oscillation criteria for a class of second-order nonlinear differential equations with damping term. Abstr Appl Anal 2009, 2009: 1-12.View ArticleGoogle Scholar
  24. Philos CHG: Oscillation of sublinear differential equations of second order. Nonlinear Anal 1983, 7(10):1071-1080. 10.1016/0362-546X(83)90016-0View ArticleGoogle Scholar
  25. Philos CHG: On second order sublinear oscillation. Aequations Math 1984, 27: 242-254. 10.1007/BF02192675View ArticleGoogle Scholar
  26. Philos CHG: Integral averages and second order superlinear oscillation. Math Nachr 1985, 120: 127-138. 10.1002/mana.19851200112View ArticleGoogle Scholar
  27. Remili M: Oscillation criteria for second order nonlinear perturbed differential equations. Electron J Qual Theor Differ Equat 2010, 25: 1-11.View ArticleGoogle Scholar
  28. Salhin AA: Oscillation criteria of second order nonlinear differential equations with variable Coefficients. Discret Dyn Nat Soc 2014, 2014: 1-9.Google Scholar
  29. Temtek P, Tiryaki A: Oscillation criteria for a certain second-order nonlinear perturbed differential equations. Journal of Inequalities and Applications 2013, 524: 1-12.Google Scholar
  30. Tiryaki A: Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments. Electron J Qual Theor Differ Equat 2009, 61: 1-11.View ArticleGoogle Scholar
  31. Tiryaki A, Basci Y: Oscillation theorems for certain even-order nonlinear damped differential equations. Rocky Mt J Math 2008, 38(3):1011-1035. 10.1216/RMJ-2008-38-3-1011View ArticleGoogle Scholar
  32. Yan J: Oscillation theorems for second order linear differential equations with damping. Proc Amer Math Soc 1986, 98(2):276-282. 10.1090/S0002-9939-1986-0854033-4View ArticleGoogle Scholar
  33. Yibing S, Zhenlai H, Shurong S, Chao Z: Interval Oscillation Criteria for Second-Order Nonlinear Forced Dynamic Equations with Damping on Time Scales. Abstr Appl Anal 2013, 2013: 1-11.Google Scholar
  34. Yibing S, Zhenlai H, Shurong S, Chao Z: Fite-Wintner-Leighton-Type Oscillation Criteria for Second-Order Differential Equations with Nonlinear Damping. Abstr Appl Anal 2013, 1–10: 2012.Google Scholar
  35. Zhang Q, Wang L: Oscillatory behavior of solutions for a class of second-order nonlinear differential equation with perturbation. Acta Appl Math 2010, 110: 885-893. 10.1007/s10440-009-9483-8View ArticleGoogle Scholar

Copyright

© Salhin et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.