Alatalo JM: Gender lability in trioecious Silene acaulis (Caryophyllaceae). Nord J Bot 1997, 17: 181-183. doi:10.1111/j.1756-1051.1997.tb00307.x 10.1111/j.1756-1051.1997.tb00307.x
Article
Google Scholar
Alatalo J: Climate Change: Impacts on structure and biodiversity of subarctic plant communities. Dissertation: Göteborg University; 1998.
Google Scholar
Alatalo JM, Molau U: Effect of altitude on the sex ratio in populations of Silene acaulis (Caryophyllaceae). Nord J Bot 1995, 15: 251-256. doi:10.1111/j.1756-1051.1995.tb00150.x 10.1111/j.1756-1051.1995.tb00150.x
Article
Google Scholar
Alatalo JM, Molau U: Pollen viability and limitation of seed production in a population of the circumpolar cushion plant, Silene acaulis (Caryophyllaceae). Nord J Bot 2001, 21: 365-372. Doi: 10.1111/j.1756-1051.2001.tb00780.x 10.1111/j.1756-1051.2001.tb00780.x
Article
Google Scholar
Alatalo JM, Totland Ø: Response to simulated climatic change in an alpine and subarctic pollen‒risk strategist, Silene acaulis. Glob Chang Biol 1997, 3: 74-79. doi:10.1111/j.1365-2486.1997.gcb133.x 10.1111/j.1365-2486.1997.gcb133.x
Article
Google Scholar
Antonsson H, Björk RRG, Molau U: Nurse plant effect of the cushion plant Silene acaulis (L.) Jacq. in an alpine environment in the subarctic Scandes, Sweden. Plant Ecol Divers 2009, 2: 17-25. 10.1080/17550870902926504
Article
Google Scholar
Arft AM, Walker MDM, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA: Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol Monogr 1999, 69: 491-511. doi:10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2
Google Scholar
Arroyo M, Cavieres L: Positive associations between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes. Plant Ecol 2003, 169: 121-129. 10.1023/A:1026281405115
Article
Google Scholar
Bokhorst S, Huiskes A, Convey P, van Bodegom PM, Aerts R: Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem 2008, 40: 1547-1556. 10.1016/j.soilbio.2008.01.017
Article
Google Scholar
Butterfield BJ, Cavieres LA, Callaway RM, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Schöb C, Xiao S, Zaitchek B, Anthelme F, Björk RG, Dickinson KJM, Gavilán R, Kanka R, Maalouf J-P, Noroozi J, Parajuli R, Phoenix GK, Reid AM, Ridenour WM, Rixen C, Wipf S, Zhao L, Brooker RW: Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol Lett 2013, 16: 478-86. doi:10.1111/ele.12070 10.1111/ele.12070
Article
Google Scholar
Cavieres L, Arroyo M: Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes. J Veg Sci 2002, 13: 547-554.
Google Scholar
Cavieres LA, Sierra-Almeida A: Facilitative interactions do not wane with warming at high elevations in the Andes. Oecologia 2012, 170: 575-84. doi:10.1007/s00442-012-2316-x 10.1007/s00442-012-2316-x
Article
Google Scholar
Cavieres LA, Brooker RW, Butterfield BJ, Cook BJ, Kikvidze Z, Lortie CJ, Michalet R, Pugnaire FI, Schöb C, Xiao S, Anthelme F, Björk RG, Dickinson KJM, Cranston BH, Gavilán R, Gutiérrez-Girón A, Kanka R, Maalouf J-P, Mark AF, Noroozi J, Parajuli R, Phoenix GK, Reid AM, Ridenour WM, Rixen C, Wipf S, Zhao L, Escudero A, Zaitchik BF, Lingua E, Aschehoug ET, Callaway RM: Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett 2014, 17: 193-202. doi:10.1111/ele.12217 10.1111/ele.12217
Article
Google Scholar
Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoenix GK, Gwynn Jones D, Jonasson S, Chapin FS, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjornsson B, Aerts R: Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 2001, 89: 984-994. 10.1111/j.1365-2745.2001.00625.x
Article
Google Scholar
Day TA, Ruhland CT, Strauss SL, Park JH, Krieg ML, Krna MA, Bryant DM: Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. Glob Chang Biol 2009, 15: 1640-1651. doi:10.1111/j.1365-2486.2009.01919.x 10.1111/j.1365-2486.2009.01919.x
Article
Google Scholar
Doak DF, Morris WF: Demographic compensation and tipping points in climate-induced range shifts. Nature 2010, 467: 959-62. doi:10.1038/nature09439 10.1038/nature09439
Article
Google Scholar
Dorji T, Totland O, Moe SR, Hopping KA, Pan J, Klein JA: Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global change biology 2013, 19: 459-72. doi:10.1111/gcb.12059 10.1111/gcb.12059
Article
Google Scholar
Dormann C, Woodin S: Climate change in the Arctic: using plant functional types in a meta‒analysis of field experiments. Funct Ecol 2002, 16: 4-17. 10.1046/j.0269-8463.2001.00596.x
Article
Google Scholar
Gehrig-Fasel J, Guisan A, Zimmermann NE: Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol Modell 2008, 213: 345-355. 10.1016/j.ecolmodel.2008.01.003
Article
Google Scholar
Graglia E, Jonasson S, Michelsen A, Schmidt IK, Havström M, Gustavsson L: Effects of environmental perturbations on abundance of subarctic plants after three, seven, and ten years of treatments. Oikos 2001, 24: 5-12.
Google Scholar
Hagen SR, Spomer GG: Hormonal regulation of growth form in the arctic-alpine cushion plant, Silene acaulis. Arct Alp Res 1989, 21: 163-168. 10.2307/1551628
Article
Google Scholar
Hågvar S, Klanderud K: Effect of simulated environmental change on alpine soil arthropods. Glob Chang Biol 2009, 15: 2972-2980. doi:10.1111/j.1365-2486.2009.01926.x 10.1111/j.1365-2486.2009.01926.x
Article
Google Scholar
IPCC: Climate Change 2007: Impacts. Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change. Cambridge, England; 2007.
Google Scholar
Jägerbrand AK, Alatalo JM, Chrimes D, Molau U: Plant community responses to 5 years of simulated climate change in meadow and heath ecosystems at a subarctic-alpine site. Oecologia 2009, 161: 601-10. doi:10.1007/s00442-009-1392-z 10.1007/s00442-009-1392-z
Article
Google Scholar
Junttila O, Robberecht R: The influence of season and phenology on freezing tolerance of Silene acaulis L., a subarctic and arctic cushion plant of circumpolar distribution. Ann Bot 1993, 71: 423-426. 10.1006/anbo.1993.1054
Article
Google Scholar
Klanderud K: Species-specific responses of an alpine plant community under simulated environmental change. J Veg Sci 2008, 19: 363-372. doi:10.3170/2008-8-18376 10.3170/2008-8-18376
Article
Google Scholar
Le Roux PC, McGeoch MA, Nyakatya MJ, Chown SL: Effects of a short‒term climate change experiment on a sub‒Antarctic keystone plant species. Glob Chang Biol 2005, 11: 1628-1639. 10.1111/j.1365-2486.2005.001022.x
Article
Google Scholar
Makkonen M, Berg MP, van Hal JR, Callaghan TV, Press MC, Aerts R: Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol Biochem 2011, 43: 377-384. 10.1016/j.soilbio.2010.11.004
Article
Google Scholar
Marion G, Henry GHR, Freckrnan DW, Johnstone I, Jones G, Jones MH, Levesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virgina RA: Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 1997, 3: 20-32. 10.1111/j.1365-2486.1997.gcb136.x
Article
Google Scholar
Molau U: Climatic Impacts on Flowering, Growth, and Vigour in an Arctic-Alpine Cushion Plant, Diapensia Lapponica, under Different Snow Cover Regimes. Ecol Bull 1996, 45: 210-219.
Google Scholar
Molau U: Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecol Divers 2010, 3(1):29-34. 10.1080/17550874.2010.487548
Article
Google Scholar
Molau U, Alatalo J: Responses of subarctic-alpine plant communities to simulated environmental change: biodiversity of bryophytes, lichens, and vascular plants. Ambio 1998, 27: 322-329.
Google Scholar
Molau U, Nordenhäll U, Eriksen B: Onset of flowering and climate variability in an alpine landscape: a 10-year study from Swedish Lapland. Am J Bot 2005, 92: 422-31. doi:10.3732/ajb.92.3.422 10.3732/ajb.92.3.422
Article
Google Scholar
Molenda O, Reid A, Lortie CJ: The alpine cushion plant Silene acaulis as foundation species: a bug’s-eye view to facilitation and microclimate. PLoS One 2012, 7: e37223. doi:10.1371/journal.pone.0037223 10.1371/journal.pone.0037223
Article
Google Scholar
Molina-Montenegro MA, Badano EI, Cavieres LA: Cushion Plants as Microclimatic Shelters for Two Ladybird Beetles Species in Alpine Zone of Central Chile. Arctic, Antarct Alp Res 2006, 38: 224-227. 10.1657/1523-0430(2006)38[224:CPAMSF]2.0.CO;2
Article
Google Scholar
Morris WF, Doak DF: Life history of the long-lived gynodioecious cushion plant Silene acaulis (Caryophyllaceae), inferred from size-based population projection matrices. Am J Bot 1998, 85: 784. 10.2307/2446413
Article
Google Scholar
Morris W, Pfister C, Tuljapurkar S: Longevity can buffer plant and animal populations against changing climatic variability. Ecology 2008, 89: 19-25. 10.1890/07-0774.1
Article
Google Scholar
Neftel A, Beer J, Oeschger H, Zurcher F, Finkel R: Sulphate and nitrate concentrations in snow from South Greenland 1895–1978. Nature 1985, 314: 611-613. 10.1038/314611a0
Article
Google Scholar
Olofsson J, te Beest M, Ericson L: Complex biotic interactions drive long-term vegetation dynamics in a subarctic ecosystem. Philos Trans R Soc Lond B Biol Sci 2013, 368: 1-33.
Article
Google Scholar
Olsrud M, Carlsson BÅ, Svensson BM, Michelsen A, Melillo JM, et al.: Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest. Glob Chang Biol 2010, 16: 1820-1829. doi:10.1111/j.1365-2486.2009.02079.x
Article
Google Scholar
Philipp M: Genetic diversity, breeding system, and population structure in Silene acaulis (Caryophyllaceae) in west Greenland. Opera Bot 1997, 132: 89-100.
Google Scholar
Polunin N: The real Arctic: suggestions for its delimitation, subdivision and characterization. J Ecol 1951, 39: 308-315. 10.2307/2257914
Article
Google Scholar
R Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
Google Scholar
Reid AM, Lortie CJ: Cushion plants are foundation species with positive effects extending to higher trophic levels. Ecosphere 2012, 3.11: art96. doi:10.1890/ES12-00106.1
Google Scholar
Reid AM, Lamarque LJ, Lortie CJ: A systematic review of the recent ecological literature on cushion plants: champions of plant facilitation. Web Ecol 2010, 10: 44-49. doi:10.5194/we-10-44-2010 10.5194/we-10-44-2010
Article
Google Scholar
Rinnan R, Stark S, Tolvanen A: Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J Ecol 2009, 97: 788-800. doi:10.1111/j.1365-2745.2009.01506.x 10.1111/j.1365-2745.2009.01506.x
Article
Google Scholar
Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press M: Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 1998, 79: 856-866. 10.1890/0012-9658(1998)079[0856:PCRTSE]2.0.CO;2
Article
Google Scholar
Roy J, Albert CH, Ibanez S, Saccone P, Zinger L, Choler P, Clément J-C, Lavergne S, Geremia RA: Microbes on the cliff: alpine cushion plants structure bacterial and fungal communities. Front Microbiol 2013, 4: 64.
Google Scholar
Shaver GR, Kummerow J, et al.: Phenology, Resource Allocation, and Growth of Arctic Vascular Plants. Edited by: Chapin FI, Jefferies R, Reynolds T, Shaver G, Svoboda J. San Diego, CA: Arctic ecosystems in a changing climate. An ecophysiological perspective. Academic Press; 1992:193-211.
Google Scholar
Stenström M, Gugerli F, Henry GHR: Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Glob Chang Biol 1997, 3: 44-54. 10.1111/j.1365-2486.1997.gcb144.x
Article
Google Scholar
Stevnbak K, Scherber C, Gladbach DJ, Beier C, Mikkelsen TN, Christensen S: Interactions between above- and belowground organisms modified in climate change experiments. Nature Climate Change 2012, 2: 805-808. 10.1038/nclimate1544
Article
Google Scholar
Van Cleve K, Oechel W, Horn J: Response of black spruce (Picea mariana) ecosystems to soil-temperature modification in interior Alaska. Can J For Res 1990, 20: 1530-1535. 10.1139/x90-203
Article
Google Scholar
Van der Putten WH, Macel M, Visser ME: Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Lond B Biol Sci 2010, 365: 2025-2034. 10.1098/rstb.2010.0037
Article
Google Scholar
Walker MD: Community baseline measurements for ITEX studies. In ITEX Man. 2nd edition. Edited by: Molau U, Miolgaard P. Copenhagen, Denmark: Danish Polar Centre; 1996:39-41.
Google Scholar
Wardle DA, Gundale MJ, Jäderlund A, Nilsson M-C: Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology 2013, 94: 904-919. 10.1890/12-0948.1
Article
Google Scholar
Yang Y, Niu Y, Cavieres LA, Sun H: Positive associations between the cushion plant Arenaria polytrichoides (Caryophyllaceae) and other alpine plant species increase with altitude in the Sino-Himalayas. J Veg Sci 2010, 21: 1048-1057. doi:10.1111/j.1654-1103.2010.01215.x 10.1111/j.1654-1103.2010.01215.x
Article
Google Scholar