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Background
The system we consider in this paper consists of n machines, n fixed-size buffers, and 
m+ 1 inspection stations (one inspection station is at the end of the line and m are inter-
nal) in series. We explore the impact of quality constraints on the system performance 
and (numerical) complexity. The objective is to simultaneously minimize the combined 
storage and shortage costs, determine the optimal buffers’ sizes, and specify the optimal 
number and positions of the m internal inspection stations. The resulting mathemati-
cal model is an intractable combinatorial nonlinear optimization model; it is difficult to 
find an exact solution in a reasonable time, especially when the production line is large. 
This paper develops an efficient evolutionary heuristic for this complex model. While 
the number of machines considered in the literature does not exceed 10 (to the best of 
our knowledge), this paper aims at solving larger production lines and a variable number 
of inspection stations.

In the recent past, several authors have investigated improving productivity with pro-
duction control policies. Most studies assume that all the parts produced are conform-
ing, which is unrealistic. Standard quality analysis models usually separate the problem 
of quality preservation in production lines (via the positioning of inspection stations, 
for example) and the optimization of production (via Kanban, CONWIP etc.). However, 
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these two problems are interdependent (see Kim and Gershwin 2005, 2008; Colledani 
and Tolio 2005, 2006, 2009, 2011). We illustrate this by considering the Kanban strate-
gies introduced by Toyota in the 1960s that have since become the paradigm of “lean 
manufacturing”. These strategies essentially advocate areas of limited storage between 
successive machines in a production line. The storage areas allow a degree of decou-
pling between machines to increase the productivity of the line. The idea is to limit the 
impact of shortages on downstream machines and to avoid blocking machines that are 
upstream from one that is broken down. These areas should be limited because they are 
associated with frozen capital: they introduce storage costs and extended transit times 
for parts in the workshop.

In an ideal “just in time” scenario, there would be no intermediate storage and finished 
parts would be pulled from the system as they are produced. In reality, machine break-
downs and shortages of raw material or operators make it impossible to ensure continu-
ous workshop output. The sizes of the storage areas should depend on the likelihood of 
such events and the estimated costs of the associated service interruptions. If we decide 
the amount of storage without considering the quality dimension, we risk creating stor-
age areas that contain important quantities of defective parts. These defective parts cor-
respond to misused production-line time, and they undermine the effectiveness of the 
intermediate storage in terms of increasing productivity. Moreover, the costs associated 
with storage impact the budget available for improvements in quality and vice versa. In 
a similar manner, Inman et al. (2013) show that production design impacts quality and 
vice versa. Also, the location of an inspection station affects both the expected produc-
tion cost per item and the production rate of the line. The quality control is obviously 
critical to any production system and has significant managerial impact. As a result, it 
is crucial to develop strategies to allocate inspection or quality control stations into a 
manufacturing processes that can help preventing all wastes resulting from unidentified 
defective items being processed (see Shetwan et al. 2011; Raviv 2013).

In a real manufacturing context, simulation can be used to determine the optimal buff-
ers’ sizes and the optimal positions of the inspection stations by considering all possible 
scenarios. However, this is not practical when the systems are complex: the number of 
scenarios is (nm)× 100n for a system with n machines and m inspection stations where 
each buffer of equal size is discretized to 100 levels. Note that the system is required 
to have an inspection station at the end of the line. Since the position of this station is 
known, it is not included in the optimization. An alternative to simulation is to develop 
a realistic model and a fast optimization technique to solve it. The real model is however 
very complex because many factors impact quality and production. So, we need elabo-
rate some simplifying assumptions in such a way that the resulting model is still realistic 
and can be solved optimally.

Researchers have investigated the integration of quality aspects and production poli-
cies for a single unreliable machine producing a single product type. The system starts in 
an “in-control” state producing conforming items and then switches to an “out-of-con-
trol” state and starts producing nonconforming items. Integrated models can be classi-
fied as: (1) integrated production and quality management (e.g., Hajji et al. 2010; Kutzner 
and Kiesmüller 2013; Mhada et  al. 2014b; Naebulharam and Zhang 2014; Matta and 
Simone 2016; 2) integrated production and maintenance management (e.g., Ben-Daya 
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2002; Dhouib et al. 2012; Rivera-Gómez et al. 2013; Jafari and Makis 2015; Nourelfath 
et al. 2016); and (3) integrated production, quality, and maintenance management (e.g., 
Radhoui et al. 2009, 2010; Njike et al. 2012; Zequeira et al. 2008; Rivera-Gmez et al. 2016; 
Bouslah et al. 2016). Some researchers (see Mandroli et al. 2006) focus on determining 
the optimal inspection-station position in n serial production lines with or without (1) 
scrapping, (2) reworking, and (3) offline repairs, without considering the buffer sizing.

A large part of published articles related to the inspection suppose the inspection 
reliable and without errors. They assumed that the produced items are subject to 100% 
inspection and there are no inspection errors. Some researchers have incorporated qual-
ity inspection errors caused, among others, by human failure in their models (see Hsu 
and Hsu 2013; Duffuaa and Khan 2002; Khan et al. 2014).

In the context of serial production lines with production and inspection machines that 
follow Bernoulli reliability and quality assumptions, Meerkov and Zhang (2010, 2011) 
provide important insight into the nature of production and quality bottlenecks. Such 
systems are encountered in automotive assembly and painting operations where the 
downtime is relatively short and the defects are a result of uncorrelated random events 
(Ju et al. 2013).

Mhada et al. (2014a) consider a situation where every machine has to satisfy a demand 
specified as good parts per time unit. Moreover, the inventory size takes into account 
that the stock is a mixture of good and defective parts, and defective parts are generally 
eliminated at inspection stations. Mhada et al. (2014a) improve the continuous models 
of Kim and Gershwin (2005, 2008). The former model is more fluid in the sense that 
quality is treated as a continuous flow, whereas in the Kim and Gershwin models quality 
is considered to be discrete. They considered a line with 4 machines.

Mhada et al. (2014a) develop decomposition methods to reduce the analysis of the line 
to a series on an equivalent machine that can be isolated and sequentially analyzed. They 
consider just one inspection station. Ouzineb et  al. (2013, 2014) generalize the model 
proposed in Mhada et al. (2014a) by optimizing the number of internal inspection sta-
tions (m ≥ 1) and their positioning, and develop an exact search method to solve it. The 
exact search method (ESM) is exhaustive: the search is guaranteed to generate all pos-
sible locations of inspection stations. For each location, the problem is reformulated as 
a network flow optimization problem that can be efficiently solved by a fast polynomial 
algorithm. This method is efficient for small instances, but it may need days for reason-
ably large instances. The solution time increases exponentially with the size of the prob-
lem, i.e. with n and m. For larger problems, we expect that the solution time may span 
over several months. We can have an idea on that from Table 4.

The present paper efficiently adapts a space partitioning technique that decomposes 
the search space into multiple levels. At each level, we use two well-known metaheuris-
tics to explore some potential regions. A genetic algorithm (GA) is used to identify a 
population of promising locations of inspection stations. Tabu search (TS) then searches 
intensively around by exploring locations that are neighbors to some newborns in the 
population. The population evolves dynamically in a sense that worst locations are dis-
carded and good ones are added during the search. We use a quick shortest path pro-
cedure (from ESM) to determine the optimal buffers’ sizes and evaluate the objective 
function (the fitness) for each considered location. From time to time, GA replenishes 
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the population. GA facilitates thus the exploration by guiding the search to unvisited 
regions with good potential, and this gives a certain diversification in terms of the 
regions to explore. The new approach is hence a multilevel hybrid heuristic (MHH) 
that provides certain balance between diversification and intensification. This hybrid 
approach is effective when the number of solutions is huge: it finds optimal or near-opti-
mal solutions in a fraction of the time required by ESM. We also discuss some important 
properties of the production line and its sensitivity to system parameters.

Similar ideas have been used to solve some high-dimensional combinatorial optimiza-
tion problems in other contexts. In Ouzineb et al. (2011), the authors apply a GA to solve 
an optimal design model for assembly/disassembly manufacturing networks. The objec-
tive is to maximize the production rate subject to a total cost constraint, the machines 
are chosen from a list, and the buffers’ sizes are within a predetermined range. Nahas 
et al. (2014) applies a GA–TS algorithm to optimize the nonhomogeneous redundancy 
of multistate series-parallel systems. In Ouzineb et al. (2010), the authors use space par-
titioning to solve two design optimization problems: the first is the expansion schedul-
ing of multistate series-parallel systems, and the second is the redundancy allocation of 
binary-state series-parallel systems. We adapt space partitioning and GA–TS techniques 
to efficiently solve the design problem addressed in this paper.

The remainder of this paper is organized as follows. “Problem formulation and discus-
sion” section presents the problem statement and discusses some theoretical properties, 
and “Methods” section describes our approach. “Numerical results” section presents 
numerical results for ESM (Ouzineb et  al. 2013, 2014) and our method. “Conclusions 
and future work” section provides concluding remarks.

Problem formulation and discussion
Figure 1 illustrates the production system studied. It consists of n machines separated by 
n buffers with m+ 1 inspection stations. The machines can be either up or down, starved 
or blocked. Machine Mi is starved if one of the upstream machines is down and all the 
buffers between that machine and Mi are empty. Mi is blocked if one of the downstream 
machines is down and all the buffers between that machine and Mi are full. When an 
operating machine is neither starved nor blocked, it continuously transfers parts from 
the upstream buffer to the downstream machines. We assume that the first machine can 
never be starved, and an inspection station is located after the last machine to ensure 
the quality of the parts received by the customer. The machines Mi, i = 1 . . . n can be 
modeled as a continuous-time Markov chain that produces a single part type with two 

Fig. 1  Production line
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quality levels, conforming and nonconforming, with a predefined ratio β of noncon-
forming parts to conforming parts. We assume that the machines have the same maxi-
mum production rate k, failure rate p, and repair rate r.

Let d be the demand rate for conforming parts, xi the inventory level for buffer i, d̃i 
the long-term average number of parts pulled per unit of time from stock xi, cp the stor-
age cost per time unit and per part, cI the inspection cost per pulled part, and andes the 
required availability rate of conforming finished parts.

A binary variable �i determines whether or not there is a station before machine M(i+1) 
to identify nonconforming parts. We assume that there are m inspection stations in the 
line (m is unknown), i.e., 

∑n−1
i=1 �i = m, m ∈ {0, 1, . . . , (n− 1)} and �n = 1. The problem 

is to minimize the long-term average global cost per unit time of storage, shortages, and 
inspection:

The constraints are 
∑n−1

i=1 �i = m, �i binary (�n = 1), and m ∈ {0, 1, . . . , (n− 1)}. The 
objective function (1) can be rewritten as (see Mhada et al. 2014a):

with a = (a1, a2, . . . , an−1) and � = (�1, �2, . . . , �n−1). Here,

• • ai, i = 1 . . . n− 1 is the total work-in-progress availability coefficient at buffer xi; this 

coefficient has a lower bound of max

[

(

r
(r+p)

)i−1
, (r+p) d̃i

r k

]

 and an upper bound of 

min

(

[

r+p
r

](n−i)
adesn , 1

)

. These bounds are proved in Ouzineb et al. (2014) (see Prop-

ositions 3.3 and 3.5 for more details). Note that an = adesn .
• • d̃i, i = 1 . . . n is the long-term average number of parts pulled per unit time from 

stock xi. It depends on the positions of the inspection stations. Let ej , j = 1 . . .m be 
the positions of the inspection stations, i.e., 

 Then we have 

(1)JT (d̃i ,�i)
= lim

T→∞

1

T

n
�

i=1

E





T
�

0

(cp xi(t)+ cI d̃i �i)dt



.

(2)J (a, �) =

n−1
∑

i=1

T (i)(ai, ai−1, �)+ TF (a
n
des, an−1, �)+ cI

n
∑

i=1

�i d̃i

(3)�i =

{

1 if i ∈ {ej , j = 1 . . .m}
0 otherwise

}

, i = 1 . . . n− 1.
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
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d(1+ β)n−em if em < i ≤ n














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
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• • and finally 

 with σi =
(
(r+p)
ai−1

)
d̃i
ai
−k r

(k−
d̃i
ai
)
d̃i
ai

, ρn =
r(k− d̃n

adesn
)

(r(1−an−1)+p)

an−1

d̃n

adesn

, µn =
(r(1−an−1)+p)

an−1(k−
d̃n

adesn
)

, and 

zn(a
des
n ) = −

ln





1
ρn



1− (1−ρn)

(1−adesn )(
(r+p)

(r(1−an−1)+p)
)









µn(1−ρn)
.

The problem can now be formulated as follows:

We aim to find the optimal solution, i.e. the minimal average global cost system struc-
ture, (a, �,m) that minimizes J and satisfies the constraint (8) on the number of inspec-
tion stations, constraints (9) on buffers sizes bounds, and integrality constraints 
(10)–(11) on admissible values of � and m. The proposition below discusses the sensitiv-
ity of the production line to cI. A numerical example is given in “Sensitivity analysis” sec-
tion to illustrate this result.

Proposition 1  The total cost as a function of cI is a piecewise linear function. The slope 
of the line depends on the number of inspection stations m and their positions �.

(5)

T (i)(ai, ai−1, �) = cp





k
(r(1−ai−1)+p)

ai−1

σi(k − d̃i
ai
)
(r+p)
ai−1

−
k (1− ai)

σi(k − d̃i
ai
)
−





1

σi
−

(1− ai)
(r+p)
ai−1

σ 2
i (k − d̃i

ai
)





ln





(r(1−ai−1)+p)
ai−1

d̃i
ai

r (k − d̃i
ai
)

−
σi

(r(1−ai−1)+p)
ai−1

d̃i
ai

(r+p)
ai−1

r (1− ai)







, i = 1, . . . , n− 1,

(6)

TF (a
n
des, an−1, �) =

ρn cp

(

k (1−exp(−µn(1−ρn) zn(a
des
n ))

1−ρn
−

(r+p)
an−1

zn(a
des
n ) exp(−µn(1− ρn) zn(a

des
n )

)

(r+p)
an−1

(1− ρn exp(−µn(1− ρn) zn(adesn )))

(7)minimize J (a, �)

(8)

subject to

n−1
∑

i=1

�i = m

(9)

max

[

(

r

(r + p)

)i−1

,
(r + p) d̃i

r k

]

≤ ai ≤ min

(

[

r + p

r

](n−i)

adesn , 1

)

,

∀i, 1 ≤ i ≤ n− 1

(10)�i ∈ {0, 1}, ∀i, 1 ≤ i ≤ n− 1

(11)m ∈ {1, 2, . . . , n− 1}.
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Proof  The minimum total storage and inspection cost is

The optimal total storage and inspection cost as a function of cI is

where (a∗, �∗) = argmin(J(a, �)). Observe that 
∑

n−1
i=1 T

(i)(a∗
i
, a∗

i−1
, �∗)+ TF (a

n

des
,

a
∗
n−1

, �∗) does not depend on the value cI, so it is constant on cI and referred to as 
Constant(cI ). Thus, we can write Eq. (12) as follows:

Hence, the total cost as a function of cI is a piecewise linear function; its slope depends 
only on m and the positions of the inspection stations. � �

The cost function J is likely to be convex as conjectured by Conjecture 1 and confirmed 
by the numerical results in “Characteristics of the production line” section. The convex-
ity of the cost function is used to reduce the number of iterations. Actually, the local 
minimum of a convex function is also a global minimum, and there are many specialized 
methods and mathematical tools for optimizing convex functions.
Conjecture 1 

• • The minimal total cost J is a convex function of �.
• • The minimal total cost J is a convex function of the number of inspection stations m.
• • If we divide the production line into two parts with the same number of machines 

and we fix the number of stations in the first part, the minimal total cost J is a convex 
function of the number of internal stations in the second part.

Methods
In Ouzineb et  al. (2013, 2014), authors present an exact search methd (ESM) for the 
problem studied in this paper. For a given location of inspection stations, they show that 
the optimizing of the buffers’ sizes with ESM can be quickly done in polynomial time. 
Actually, the bottleneck of ESM is the number of possible locations. This number could 
be reduced by using the property of convexity (Conjecture 1) but nevertheless, it would 
stay very large. The innovation in this paper is to smartly select potential locations using 
an evolutionary algorithm combined with tabu search. We summarize ESM in “Exact 
search method (ESM)” section and then present our new approach in “Multilevel hybrid 
heuristic (MHH)” section.

J (a, �) =

n−1
∑

i=1

T (i)(ai, ai−1, �)+ TF (a
n
des, an−1, �)+ cI

n
∑

i=1

�id̃i.

(12)

J (a∗, �∗) =

n−1
∑

i=1

T (i)(a∗i , a
∗
i−1, �

∗)+ TF (a
n
des, a

∗
n−1, �

∗)+ cI

n
∑

i=1

�
∗
i d̃

∗
i

=Constant(cI )+ cI

n
∑

i=1

�
∗
i d̃

∗
i

(13)J (a∗, �∗) = Constant(cI )+ cI

(

m
∑

i=1

d(1+ β)n−ei + d(1+ β)n

)

.
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Exact search method (ESM)

For a fixed �, Ouzineb et al. (2013, 2014) shows that the term T (i)(ai, ai−1, �), and thus 
the objective function itself, is separable by the variables ai. ESM reformulates then the 
problem defined by (7)–(11), for a given �, as a shortest path problem defined on a net-
work (described below). It uses a standard shortest path algorithm to find the optimal 
buffers’ sizes. For this, we discretize the continuous variables ai to take discrete values 
1, 2, ..., 100%. For a fixed �, the value of m is determined straightforwardly. So, the con-
straints (8), (10), and (11) are satisfied. They do not depend on a and consequently could 
be omitted.

Consider the connected network G(N, A) consisting of a set of nodes N and a set of 
arcs A, as depicted in Fig. 2. With each machine we associate a set of nodes represent-
ing all the possible buffers’ sizes, which range from 1 to 100%. The set N consists of 
100× (n− 1) nodes (representing the n− 1 machines) plus two additional nodes N0 and 
Nn that are adjacent to the nodes representing the first and last machines. The set A con-
sists of 1002 × (n− 2)+ 200 arcs weighted as follows:

• • N0 is connected to the nodes N
j
1, j = 1, . . . , 100 representing machine 1. 

The weight of each arc (N0,N
j
1) is null. Nn is connected to the nodes Nj

n−1, 
j = 1, . . . , 100 representing machine n− 1. The weight of each arc (Nj

n−1,Nn) is 
c
j
n−1,n = TF (a

des
n , j, �)+ cI × d̃n, 1 ≤ j ≤ 100.

• • Each node Nj
i  representing machine i is connected to each node Nk

i+1 representing 
machine i + 1 by an arc (Nj

i ,N
k
i+1) that is weighted cjki,i+1 = T (i)(k , j, �)+ cI × �i × d̃i , 

i = 1, . . . , n− 2 and 1 ≤ j, k ≤ 100.

Nodes, and all incident arcs, corresponding to values that are not in the intervals 
imposed by constraints (9) are removed from the network. Algorithm 1 presents ESM. 

Fig. 2  Network flow problem
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It finds optimal solutions but takes hours for instances with 20 machines. It is unable to 
solve some larger instances with 30 machines in one month!

Algorithm 1 Exact search method (ESM)
J∗ = ∞.
for all λ do

Evaluate the optimal cost function J , called also Fitness, and a for the current λ using Algorithm 2.
if J < J∗ then

J∗ = J , a∗ = a, λ∗ = λ.
end if

end for
return (J∗, a∗, λ∗).

Algorithm 2 Fitness evaluation
Given λ.
Construct the network G.
Find a shortest path in G (i.e. the buffers sizes vector a) and set J to its cost.
return (J , a).

Multilevel hybrid heuristic (MHH)

Our approach combines ideas from ESM and metaheuristic techniques. The choice of 
a search space and a neighborhood structure is a critical step in metaheuristic design (see 
Gendreau 2002). Our search space is the space of all possible line structures, i.e. the vec-
tors (a, �, m) that are feasible solutions to the system (8)–(11). As discussed above, the most 
determinant element of these vectors is � because if we know �, we can compute m in a 
straightforward manner and a in a polynomial time. Consequently, our search space S in this 
section is composed of all possible � values. We reduce it by: (1) partitioning this space into a 
set of disjoint subspaces as explained in “Partitioning the search space” section; (2) applying 
a hybrid heuristic to selected subspaces in order to find potential solutions; we use Algo-
rithm 2 above to evaluate the fitness of each selected � (in a subspace) and to find the optimal 
buffers’ sizes a. See “Hybrid heuristic” section for more details. The multilevel hybrid heuris-
tic pseudocode is then given in “MHH pseudocode” section. This approach finds, as reported 
in the numerical results, near-optimal solutions in a fraction of the time required by ESM.

Partitioning the search space

We refer hereunder to � as a solution vector or simply solution. Each solution vector is 
assigned an address, also called a level, as explained below.

Definition 1  We divide the solution vector � into two equal parts and create its address 
r as follows: r = Address(�) =

∑⌊n/2⌋
l=1 �l. A search subspace of address r, denoted Sr, is 

defined to be the set of solutions that have the same address, i.e. equal to r.

The lower bound of r is 0 and its upper bound is m. It is clear that (Sr)1≤r≤m is a parti-
tion of the space S, i.e., Sr1

⋂

Sr2 = ∅ ∀ r1 �= r2 and S =
⋃m

r=0 Sr.

Example  Consider a system with n = 20 machines and m = 5 inspection stations: 2 
stations in the first part and 3 in the second part:

From the above definition, address(�) = 2. So, � ∈ S2.

� = [(0, 0, 1, 0, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 1, 0, 0, 0, 1)].
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Hybrid heuristic

The goal here is to locate promising regions in a given subspace Sr. Our hybrid optimiza-
tion is based on a combination of a GA, which provides diversification, and TS, which 
provides intensification. The hybrid heuristic pseudocode is presented in Algorithm  3 
and a flowchart is given in Fig. 3. Nrep and Nc are GA tuned by experimentation. The 
main steps are explained in the paragraphs that follow.

Algorithm 3 Hybrid heuristic algorithm
Given level r, Nrep, Nc

J∗ = ∞, k = 0, l = 0.
Step 1. Generate a random population of Ns (chromosomes) solutions with the same address r.
Step 2. Select randomly from the population two parent solutions λ1 and λ2 that will “reproduce” using a 1-point
crossover operator.
Step 3. Produce a new solution λ (child or offspring) from the selected pair of parent solutions Parent 1 and Parent 2.
Step 4. Find the best solution λ in V (λ), the effective neighborhood of the new child λ, using TS. Evaluate its value
J and its corresponding optimal a .
if J < J∗ then

J∗ = J , a∗ = a , λ∗ = λ .
end if
Step 5. If λ is better than the worst solution currently in the population, it replaces that solution; otherwise, it is
discarded.
if k < Nrep then

k = k + 1 and go to Step 2.
end if
Step 6. Decide if the population needs to be replenished and then to start a new generation:
if l < Nc then

k = 0, l = l+ 1, go to Step 1.
end if
return (J∗, a∗, λ∗).

 In Step 3, we use a 1-point crossover operator, which, as illustrated in Table 1, creates 
a child string � for a given pair of parent strings �1 and �2 by:

1.	 Copying the string elements belonging to the first part from �1;
2.	 Copying the rest of the string elements from �2. 

Observe that the child has the same address as its parents.
In Step 4, we use TS, in which we iteratively move from the current solution � to a 

new solution in its neighborhood Neighborhood(�) until some stopping criterion has 
been satisfied. For a given �, we define Neighborhood(�) = {solutions (inspection sta-
tions configurations) obtained by applying a single move to �}. Moving to a new solution 
involves changing the positions of two inspection stations; the number of stations does 
not change. Note that we stay in the same level when we move to a neighbor solution. 
We use Algorithm 2 to evaluate the fitness of each new solution, and we use theses fit-
ness values to compare different solutions.

TS uses a memory structure: a potential solution is declared tabu so that the algorithm 
does not visit it again; this prevents cycling. At each iteration, we select the best solution 
�
′ in a subspace V(�) ⊂ Neighborhood(�) as a tabu solution. The subspace V(� ), called the 

effective neighborhood, is obtained by eliminating the tabu solutions from Neighbor-
hood(�). The tabu solutions are stored in a short-term memory, called a tabu list, which 
contains the solutions that have been visited in the recent past. We use a variable-size 
tabu list (tabu tenure) because this is generally more efficient (Gendreau 2002; Ouzineb 



Page 11 of 21Mhada et al. SpringerPlus  (2016) 5:2045 

et al. 2008). Finally, our stopping criterion is defined by the maximum number of local 
iterations (mnli), i.e. the number of visited neighbors that do not improve the best-
known solution. The value of mnli is determined by the experimentation.

* , 0
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, 0

,  
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rep c

J k
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Fig. 3  Hybrid heuristic algorithm
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MHH pseudocode

In MHH, at each iteration we move from the current level to a new level. We divide the 
search space into a set of disjoint subspaces (levels) using the partitioning technique of 
“Partitioning the search space” section and then apply the heuristic presented in “Hybrid 
heuristic” section to each selected subspace. Algorithm 4 presents the proposed pseudo 
code and Fig. 4 the corresponding flowchart.

Table 1  Example of 1-point crossover operator

Italic values indictate the chromosome of Parent �2

Parent string �1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1

Parent string �2 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1

Child string 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1

*J = ∞

( )
Choose theinitialsolution such that thereare no 
     inspection stations 0,   ( -1)i i nλ = ∀ ≤

  Randomly increment the address  and calculate 
the best values of ,  , and  in using Algorithm 3.r

r

J a Sλ

*J J<

tCheck the termination criterion: the maximum time (max )
        without improving the best known solution

satisfied

* * *

Return the best solution found
, ,J a λ

* * *, ,J J a a λ λ= = =

Fig. 4  Multilevel hybrid heuristic algorithm
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Algorithm 4 Multilevel hybrid heuristic
J∗ = ∞.
Step 1. Choose the initial solution such that there are no inspection stations (λi = 0 ∀i ≤ n− 1).
Step 2. Randomly increment the address r and calculate the best values of J, a, and λ in Sr using Algorithm 3.
if J < J∗ then

J∗ = J , a∗ = a, λ∗ = λ.
end if
Step 3. Check the termination criterion: the maximum time (maxt) without improving the best known solution. If it is
satisfied, return the best solution found. Otherwise, go to step 2.
return (J , a, λ).

Numerical results
We use four optimization problems (benchmarks) to test our algorithms: I10 has 10 
machines, I20 has 20 machines, I30 has 30 machines and I40 has 40 machines. To get an 
insight into the algorithms behavior, we fixed the value of m in the model (7)–(11). The 
optimal objective value can be obtained equivalently by varying m between 1, . . . , n− 1 , 
sloving the resulting models and take the minimum possible. We implemented MHH 
and ESM in C++ under the same conditions (computer architecture, operating system, 
etc). The tests were performed on an Intel Core i7 at 2.8 GHz with 8 GB of RAM, run-
ning Linux. Table 2 shows the parameters we used.

Comparing MHH to ESM

ESM can find the optimal solutions for I10 and I20. We compare the MHH solutions to 
the optimal solutions to evaluate the performance of MHH. ESM is unable to solve I30 
and I40, which has been newly proposed in this paper, for large m. The reduction per-
centage in terms of CPU time (RPCPU) is defined as follows:

For I10, MHH and ESM find the same optimal solutions in comparable times. Tables 3 
and 4 give the results for I20 and I30, with m = 1, . . . , 10. The first column indicates 
the number m of inspection stations. The MHH cost is given in the second column; if 
the solution is optimal the entry is in italics. MHH finds optimal solutions for all the 
instances solved by ESM. The column MHH/Best gives the time to find the best solu-
tion, and the column MHH gives the total computational time. ESM takes hours on I20 
for m ≥ 5. MHH outperforms ESM in terms of the computational time; for I20, it finds 

(14)RPCPU = 100×
(ESM Time − MHH Time)

ESM Time
%.

Table 2  Parameters

n p r k β d cp cI adesn
maxt(s) Nc Nrep mnli

10 machines 10 0.2 0.9 4 0.1 1 1 2 0.95 10 2 3 5

20 machines 20 0.2 0.9 9 0.1 1 0.1 0.2 0.95 600 2 5 5

30 machines 30 0.2 0.9 22 0.1 1 0.1 0.2 0.95 3600 2 5 5

40 machines 40 0.2 0.9 9 0.05 1 0.1 0.2 0.95 3600 2 2 5
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optimal solutions in a fraction of ESM time. We also report results for a “pure” genetic 
algorithm (GA) which is obtained by modifying Algorithm 3 as follows:

• • Remove Step 4.
• • Replace Step 5 by: If the new solution is better than the worst solution currently in 

the population, it replaces that solution; otherwise, it is discarded.

GA is coded in the same technology and runs on the same machine as MHH and ESM. 
MHH results are signifcantly better in terms of quality and CPU time than GA. For 
larger instances, we omit GA and present results of MHH only.

For I30, MHH finds “optimal” solutions in a reasonable time. ESM cannot solve the 
instances with m ≥ 7. For example, for m = 7, ESM did not converge after a month of 
running time. We believe that the MHH solution is optimal or near-optimal for m = 7 
and beyond, but we cannot confirm this. Large problems require fast heuristics such as 
MHH that provide good results in an acceptable time.

Table  5 presents results for I40 which consists of very large instances. In this table, 
we report the cost values for both MHH and ESM because they are slightly different for 

Table 3  Results for I20

Italic values indictate optimal costs

m MHH cost  GA cost Running time (s)

ESM MHH/Best MHH RPCPU GA

1 8.3125 9.23149 15.3 34.3 177.6 −91.39 457.0

2 6.2645 6.90041 105.7 77.4 440.5 −76.01 983.0

3 5.9802 6.28064 421.7 422.0 1011.9 −58.33 1524.4

4 6.0663 6.32419 1601.2 591.7 1191.7 25.58 1364.0

5 6.2772 6.51936 4743.3 571.2 879.4 81.46 1402.9

6 6.5230 6.76087 11,108.7 631.4 992.0 91.07 1649.9

7 6.7959 7.02709 20,613.0 635.2 1108.9 94.62 1710.7

8 7.0965 7.37334 29,790.2 960.7 1560.7 94.76 1255.8

9 7.4298 7.67294 35,764.9 476.5 1076.5 96.99 1176.9

10 7.7947 8.05445 35,767.6 109.0 709.0 98.02 977.7

Table 4  Results for I30

Italic values indictate optimal costs

m MHH cost Running time (s)

ESM MHH/Best MHH RPCPU

1 40.7297 31.2 109.6 829.3 −96.24

2 22.9847 389.4 1186.7 1554.6 −74.95

3 20.0887 3524.2 3779.7 3926.9 −10.25

4 19.0494 18,769.2 4470.1 5671.9 69.78

5 18.9133 115,432.0 6584.2 8065.0 93.01

6 19.1256 421,630.0 10,034.2 13,634.2 96.77

7 19.4257 – 10,713.9 14,313.9 –

8 19.7315 – 12,300.6 15,900.6 –

9 20.1073 – 10,549.2 14,149.2 –

10 20.3278 – 11,128.0 14,728.0 –
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m = 2 and m = 3. We did not compute RPCPU for the same reason. For I40, MHH finds 
good solutions in a reasonable time while ESM takes too much time for m = 3 and can-
not solve the instances with m ≥ 4; ESM did not converge after many hours of running 
time. The MHH solution is optimal or near-optimal for m = 3 and below. We think that 
the optimal solution is obtained when m = 5 despite the fact that we cannot solve it by 
the exact method.

Table 6 shows the results for I20 when the computational time is limited to one hour. 
Both methods find optimal solutions for m ≤ 4; MHH finds better solutions for m ≥ 5.

Characteristics of the production line

Figure  5 shows the optimal cost as a function of (the number of internal inspection 
stations) m = 1, 2, . . . , 19. The cost is a convex function of m. The optimal number of 
internal inspection stations is m = 3, and the optimal positions are �2 = 1, �7 = 1, and 
�18 = 1. The results obtained by MHH and ESM are identical.

Figure  6 shows the best cost found by MHH as a function of m = 1, 2, . . . , 19. The 
cost is a convex function of m. The optimal value for m is m = 5, and the optimal posi-
tions are �1 = 1, �3 = 1, �7 = 1, �15 = 1, and �29 = 1. These results support Conjecture 

Table 5  Results for I40

Italic values indictate optimal costs

 m ESM cost MHH cost Running time (s)

ESM MHH/Best MHH

1 25.2938 25.2938 109,147 194.46 387.83

2 16.0119 16.1078 1105,72 1008.23 1013.94

3 13.3200 13.3208 13,200,38 2336.34 2623.08

4 12.5685 3932.31 5827.07

5 12.3450 6092.55 6920.45

6 12.5043 5266.51 11,511.62

7 12.6973 10,604.86 16,425.48

8 12.8781 18,929.32 23,346.94

9 13.1145 12,666.15 25,374.23

10 13.3623 15,501.52 31,699.22

Table 6  MHH and ESM results for I20 with computational time limited to one hour

Italic values indictate optimal costs

m MHH cost ESM cost

1 8.3125 8.3125

2 6.2645 6.2645

3 5.9802 5.9802

4 6.0663 6.0663

5 6.2772 6.4972

6 6.5230 7.0839

7 6.7959 7.4549

8 7.0965 7.8745

9 7.4298 8.4677

10 7.7947 8.8909
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1. Convexity can play an important role in reducing the solution time. Using convexity, 
we can conjecture that even I30 is solved optimally by ESM and MHH because the cost 
starts increasing for m ≥ 6.

Figure 7 shows the best cost found by MHH as a function of m = 1, 2, . . . , 10 for I40. 
The cost is a convex function of m. The optimal value for m is m = 5.

Sensitivity analysis

We now study the sensitivity of the optimal cost and number of inspection stations to 
the parameters of the model. We study particularily β and cI because they directly affect 
quality. Table 7 gives the parameters used for this study; we investigate I20.

Inspection cost cI
We begin by varying cI, the inspection cost per time unit and per part (for a fixed 
β = 0.1 ). The upper plot in Fig. 8 shows that for values of cI close to cp (the storage cost 
per time unit and per part), the optimal number of stations is high, while for high values 
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Fig. 5  Optimal cost as a function of m = 1, 2, . . . , 19 for I20
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of cI, the optimal number decreases until it reaches zero. This is because the system 
encourages storage when it is profitable to do so, and it reduces nonconforming parts by 
imposing more inspection stations when that option is better.

When cI increases, by Proposition 1, 
(
∑m

i=1 d(1+ β)n−ei
)

 must decrease (m or (n− ei) 
decreases). The stations will thus be closer to the end of the line. When a station is 
placed after machine n− 1, any increase in cI will make it unnecessary, so the optimal 
number of stations will be reduced by 1 (see Table 8).

Figure 9 shows the cases m = 1 (upper plot) and m = 0 (lower plot). For m = 1 and for 
each station position, the total cost as a function of cI is linear. For m = 0, the total cost 
as a function of cI is linear.

Fraction β of nonconforming to conforming parts

Figure 10 and Table 9 show the behavior of the line as a function of β. As β increases, the 
quantity of nonconforming parts increases. If we do not eliminate the nonconformity 
from the system, the machines will work harder and the stocks will fill faster, and the line 
will not be able to meet the final demand. Here the cost varies exponentially (Fig. 11).

Conclusions and future work
We proposed an efficient hybrid approach, based on ideas from an exact method and 
metaheuristics, for the buffer sizing problem in unreliable homogeneous production 
lines with several inspection stations. This is a difficult mixed integer nonlinear pro-
gram. Our approach combines a genetic algorithm and tabu search to identify profit-
able configurations (locations of inspection stations). For these locations, we use an 
exact approach to decide the optimal buffers’ sizes. Our final goal is to find an optimal 

1 2 3 4 5 6 7 8 9 10
12

14

16

18

20

22

24

26

T
he

 o
pt

im
al

 c
os

t 

The number of the inspection stations

Fig. 7  Optimal cost as a function of the number of inspection stations for I40

Table 7  Parameters

n p r k d cp adesn

20 machines 20 0.2 0.9 9 1 0.1 0.95
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or near-optimal design as rapidly as possible. This hybrid approach provides a balance 
between diversification and intensification and works well on homogeneous production 
lines with up to 40 machines. MHH is significantly faster than ESM and produces solu-
tions that are equally good.
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Fig. 8  Optimal number of inspection stations and cost as a function of cI

Table 8  Optimal location of inspection stations

cI 0.2 0.3 0.5 0.6 0.8 1.2 1.3 2 2.7 3.3 3.9 4.5 5.2 5.7

Optimal m 3 3 2 2 2 2 1 1 1 1 1 1 1 1

Optimal positions 2; 7; 18 2; 7; 19 3; 11 3; 13 3; 14 4; 19 5 6 7 8 9 10 11 11
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Fig. 9  Optimal total cost as a function of cI (m∗ = 1 and m∗ = 0)
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Future research should focus on developing an optimization method for more realistic 
nonhomogeneous production lines and solving it by combining simulation and optimi-
zation. The model developed here could be used as an approximation model for more 
complex real life design problems. Fast optimization techniques, like the one proposed 

0.01 0.03 0.05 0.07 0.09 0.11 0.12
0

1

2

3

4

β

T
he

 o
pt

im
al

 n
um

be
r 

of
 th

e 
in

sp
ec

tio
n 

st
at

io
ns

Fig. 10  Optimal number of inspection stations as a function of β
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Fig. 11  Optimal total cost as a function of β

Table 9  Optimal station locations

β 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Optimal m 1 1 1 1 2 2 3 3 4

Optimal positions 18 18 18 16 8; 18 6; 18 4; 10; 19 2; 7; 18 2; 4; 8; 18
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in this paper, would help in rapidly selecting potential scenarios/configurations for a 
more realistic simulation, and hence reducing the solution time without losing solution 
applicability in real life context.
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