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Background
Recently, social experiments have been conducted using rental bikes available at distri-
bution nodes. When people borrow bikes, they return them to nearby nodes. Table 1 
shows example models, such as Hamatyari of Yokohama (Kikuchi 2011), the Niigata 
Rental Cycle, and Bicing of Barcelona (Takami et  al. 2011). However, many problems 
have been reported from these experiments. Moreover, it is costly to run these opera-
tions. The results of these experiments are obscure regarding the system construction, 
including the number of bikes, nodes that should be used, and placement of nodes. 
Because the selection of the parameters of a system depends on the person designing it, 
the resulting system may not be optimal.

In this paper, we attempt to solve problems such as where to place nodes, how many 
nodes should be prepared, and how many bikes should be available for each node. We 
formulate a model using the queueing network (Miyazawa 1993, 2006), and this model is 
calculated using mathematical analysis.

Abstract 

In recent social experiments, rental motorbikes and rental bicycles have been arranged 
at nodes, and environments where users can ride these bikes have been improved. 
When people borrow bikes, they return them to nearby nodes. Some experiments 
have been conducted using the models of Hamachari of Yokohama, the Niigata Rental 
Cycle, and Bicing. However, from these experiments, the effectiveness of distributing 
bikes was unclear, and many models were discontinued midway. Thus, we need to 
consider whether these models are effectively designed to represent the distribution 
system. Therefore, we construct a model to arrange the nodes for distributing bikes 
using a queueing network. To adopt realistic values for our model, we use the Google 
Maps application program interface. Thus, we can easily obtain values of distance and 
transit time between nodes in various places in the world. Moreover, we apply the 
distribution of a population to a gravity model and we compute the effective transition 
probability for this queueing network. If the arrangement of the nodes and number 
of bikes at each node is known, we can precisely design the system. We illustrate our 
system using convenience stores as nodes and optimize the node configuration. As a 
result, we can optimize simultaneously the number of nodes, node places, and number 
of bikes for each node, and we can construct a base for a rental cycle business to use 
our system.
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Previous fundamental research on queueing networks includes that of Gordon and 
Newell (1967), who proposed improvements to Jackson-style closed queueing networks 
(Jackson 1957). Baskett et  al. (1975) developed BCMP networks, which are a general 
queueing model with complex classes and arbitrary service distribution. We can build 
a flexible model using these approaches. It is also important to compute a characteris-
tic value for a closed queueing network; we often use the convolution algorithm (Buzen 
1973) and mean value analysis (Reiser and Lavenberg 1980).

Applied works include George and Xia (2011) and Waserhole and Jost (2016), who 
describe vehicle rental systems using closed queuing networks. In particular, Waserhole 
and Jost discuss optimization over nonstationary demands. Their model needs some 
additional work, because it does not include the ability to set vehicles at a station. There-
fore, we construct a model with vehicle capacity. In another approach to bike-sharing 
systems, Etienne and Latifa (2014) looked at mobility patterns using model-based clus-
tering methodology and analyzed 2,500,000 trip data points. Boyac et  al. (2015) pro-
posed an optimization framework for car sharing in Nice, France. It would be interesting 
to analyze their data using the approach of Etienne and Latifa.

Similar bike rental systems are now being used all over the world. In Japan, the Minis-
try of Economy, Trade and Industry has authorized a plan to utilize electrically assisted 
bicycle-drawn carts for delivery businesses (Ministry of Economy, Trade and Industry 
2014). There are various such plans as social experiments in Japan (Yamakawa 1992; Abe 
and Kawashima 2003; Miida 2002; Kawamoto 2007). Zhang et al. (2016) analyzed Chi-
na’s model (in Ningbo, Hangzhou, and Beijing) and described the rental station planning 
of bicycle sharing systems, as well as the allocation, operation, and dispatch of public 
bicycles (Zhang et al. 2016). Aeschbach et al. (2015) examined London’s Barclays Cycle 
Hire. Here, we consider improving these models with a generic rental bike system that 
does not depend on specific areas.

Using our model, we can easily visualize the settings of the system as they change with 
time. Our method for designing bike distribution systems does not depend on the coun-
try or the area being deployed. Thus, as an example, we use convenience stores as nodes 
to distribute bikes. Moreover, we use the Google Maps application program interface 
(API) to obtain parameters, such as transit time and distance between nodes.

Table 1  Examples of rental bicycle systems

City Name of rental bicycle Number of nodes Number of bikes

Niigata, Japan Niigata Rental Cycle (4/2003–present) 20 164

Edogawa-ku, Japan E-Cycle social experiment (9/2009–present) 3 400

Yokohama, Japan Yokohama city community cycle  
(10/2009–11/2009)

10 100

Toyama, Japan Aville (3/2011–6/2011) 15 150

Sakai, Japan Sakai community cycle (9/2011–present) 4 450

Barcelona, Spain Bicing (12/2007–present) 250 3000

Paris, France Velib (7/2007–present) 1500 20,000

London, UK London cycle Hire scheme (7/2010–present) 400 6000

Lyon, France Vélo’v (5/2005–present) 250 3400

Madison, WI, USA Madison B-cycle (3/2013–present) 33 300



Page 3 of 14Mizuno et al. SpringerPlus  (2016) 5:2071 

Modeling using closed queueing networks
In this section, we consider how to arrange bikes at nodes. We solve this problem using 
closed queuing networks. First, we assume that the number of bikes is equal to the num-
ber of users in the system. Then, we formulate a model as follows:

1.	 Our distribution system contains one class of bikes.
2.	 The system contains K nodes.
3.	 N is the total number of bikes in this system. N is limited. The number of bikes at 

node k is denoted by nk, where N =
∑K

k=1 nk.
4.	 The service period at node k follows an exponential distribution and has a mean of 

1
µk

 .
5.	 αk is the arrival rate of bikes that have reached node k from other nodes in the sys-

tem.
6.	 pi,j is the probability that a bike served at node i travels to node j, such that 

1 ≤ i, j ≤ K , pi,j ≥ 0, 
∑K

j=1 pi,j = 1.

Regarding step 4, as illustrated in Fig. 1, we assume the number of bikes is equal to 
the number of customers, as in usual queueing models. We also assume that the num-
ber of users that they want to use bikes is unlimited, so we adjust the duration of bike 
visits using the service rate of each node. We take the service rate to be proportional 
to the rate of use for users at node k. If there are few users at node k, bikes are not used 
by many users, so they stay for a long time at the node. In other words, the service rate 
is low. In this model, we assume an M/M/1 closed queueing network. Thus, we have a 
server at each node. We cannot lend two or more bikes simultaneously. However, we can 
extend this model to a Gordon–Newell network (Gordon and Newell 1967) easily, and 
we can lend a number of bikes simultaneously that is the same as the number of servers 
prepared at each node.
αk is the solution of the traffic equation,

(1)xk =

K∑

j=1

xjpj,k , k = 1, 2, . . . ,K .

Fig. 1  Treated object in this closed queueing network model
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and we insert when we compute the closed queueing network. Moreover, we set 
σk =

αk
µk

, k = 1, 2, . . . ,K . The probability that nk bikes exist at node k is obtained accord-
ing to the stationary distribution

Moreover, the transition probability pi,j is computed according to the following gravity 
model (Anderson 2011; Flowerdew and Aitkin 1982; Carrère 2006; Yeates 1969):

• • fi,j: Movement from area i to j, which we obtain from (3),
• • qi,j: Total movement from area i to area j,
• • rj,i: Total movement from area j to area i,
• • si,j: Absolute value of the elevation difference between nodes i and j,
• • di,j: Distance between areas i and j,
• • C: Constant value of the gravity normalization model,

and

Note that qi and rj are both asymmetric: riders tend to go to more popular nodes from 
less popular one. So, qi and rj need information about direction of movement. We also 
often need to consider the elevation of each node. If this is of no concern in an area, we 
set γ to 0. If we consider di,j to be important, then we increase the distance parameter 
η . These parameters indicate what we emphasize, either distance or population, for the 
transition probability in this model.

Normalizing fi,j, we obtain the transition probability pi,j. If

• • Lk: Number of bikes in the system at node k,
• • CPk: Capacity of node k,

then the problem of assigning bikes to nodes can be formulated as follows:

where event Ak indicates that it satisfied the condition for the number of bikes at node 
k. In other words, Ak is an appropriate number of bikes for the node, for example, less 
than capacity while maintaining the number of bikes below the minimum requirement 
at k. PTk is the penalty cost. I(E) is an indicator function; if an event E is satisfied, this 

(2)

π(n1, n2, . . . , nk) =
1

G(N ,K )

K∏

k=1

σ
nk
k ,

where G(N ,K ) =
∑

n1+···+nK=N

K∏

k=1

σ
nk
k .

(3)fi,j = C
qαi,jr

β
j,is

γ
i,j

d
η
i,j

, i, j = 1, 2, . . . ,K .

(4)

minimize

K∑

k=1

(|Lk − CPk | + PTk · I(Ak)),
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function returns 1 and if not, it returns 0. We define the objective function (4). In this 
equation, we use Lk, which denotes the number of bikes in the system at node k. Thus, 
we optimize the bike arrangement so as not to crowd the bikes at a node. If the number 
of bikes at node k is not within the safety range described by event Ak, we must add the 
penalty PTk to the objective function.

We know that the problem of bikes tending to converge at a node occurs. We must 
transport bikes to distribute them at each node. The objective function (4) indicates that 
bikes are distributed as efficiently as possible.

Configuration of the proposed system
In Fig. 2, we show the procedure used to compute the optimal placement of the nodes in 
our system. A region is defined as the entire target area and an area has a postal code and 
population. We obtain the transition probability for the gravity model from (3), using the 
area as the minimum unit of the gravity model.

Initial settings

Before proceeding with the computations, we select the initial settings. The database of 
our system uses two tables for initial settings. In the first table, we enter the postal code 
data, which consists of the postal code, state name, region name, city name, town name, 
and population, as shown in Table 2.

We input information data for the distribution nodes, which consists of the node 
name, postal code, address, latitude, longitude, service rate, and capacity, as shown in 
Table 3.

Fig. 2  Flow of the proposed system

Table 2  Example of postal code data used by our system

Postal code State name Region name City name Town name Population

4300805 Shizuoka Koutou District Naka-ku Hamamatsu-shi Aioi-cho 858

4338111 Shizuoka Hagioka District Naka-ku Hamamatsu-shi Aoinishi 9814

4338114 Shizuoka Hagioka District Naka-ku Hamamatsu-shi Aoihigashi 2159

4328043 Shizuoka Kousai District Naka-ku Hamamatsu-shi Asada-cho 813
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Given the node information, we can compute the distance and transit time between 
nodes i and j. In Fig. 3, we show the procedure to acquire information for all nodes. Com-
mercially, we use the Google Maps API (Google Inc and Google Maps 2005) because 
we would like our system to be used anywhere. By using the Google Maps API, we can 
effectively acquire the parameters used in our system and visualize locations. Moreover, 
we can minimize the setup time required to obtain the cost parameters, such as distance 
and transit time, between nodes. We specifically use GDirections of the Google Maps 
API version 2, which requires approximately 1 s to acquire the parameters for each com-
bination of nodes (Mizuno et al. 2012). We use either the transit time or distance as the 
distance parameter for the gravity model. The transit time and distance are used to con-
firm the tendency of the direction for users in the gravity model.

Using the method listed in Fig. 3, we obtain the parameters, distance, and transit time, 
which we store in the database, as illustrated in Table 4. In this table, Each From ID and 
To ID is a unique id for all combinations for each node. Once these parameters are saved 
in the database, we use them for the computations repeatedly.

Optimization parameters

Next, we set the optimization parameters. In our approach, we perform optimization 
using the genetic algorithm (GA) (Cantù-Paz 1998; Zhang et al. 1999). As illustrated in 
Tables 5 and 6, the optimization parameters used are the number of genes, number of 

Table 3  Example of information data for the nodes used by our system

ID Node name Postal code, address Latitude, longitude Service rate Capacity

1 Hamamatsu training 
school of information

4300929, Naka-ku Hama‑
matsu-shi, Shizuoka

34.7071129, 137.7409474 5.0 10

2 Thanks Hamamatsu Act 
Street

4300928, Naka-ku Hama‑
matsu-shi, Shizuoka

34.7084987, 137.7340032 5.0 10

3 Thanks Hamamatsu 
Sumiyoshi

4300906, Naka-ku Hama‑
matsu-shi, Shizuoka

34.7309325, 137.7241608 5.0 10

4 Thanks Hamamatsu 
Wagou

4338125, Naka-ku Hama‑
matsu-shi, Shizuoka

34.7392201, 137.7079812 5.0 10

Fig. 3  Parameter acquisition process for all nodes
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generations, number of bikes, total number of nodes available, service rate, and capacity 
of the number of bikes.

Optimization procedure

First, we select the number of nodes in the bike distribution system. There are two types 
of nodes: fixed and dynamic. We set U to be the total number of nodes that are can-
didates for optimization (U ≤ K ). If we select m fixed nodes, the number of dynamic 
nodes is U −m. Then we create the gene with length U and each element has a node ID. 
Additionally, the system consists of m fixed nodes and U −m dynamic nodes, as shown 
in Fig. 4.

We may need to analyze a varying number of fixed nodes. After we select the fixed 
nodes, we select the best nodes from the dynamic nodes to compute the objective func-
tion using a closed queueing network. Thus, we obtain the average queue length at each 
node. We should confirm the value of the objective function because we want to verify 
that the GA converges to plot the change of value for the objective function. Next, we 
display the results on Google Maps.

Table 4  Example for information data for the nodes used in our system

ID From ID To ID Distance(m) Time (s)

1 1 2 6781 747

2 1 3 7314 868

3 1 4 8289 1314

4 1 5 16,396 1366

5 1 6 9175 1228

6 1 7 8002 1476

7 1 8 14,962 1041

Table 5  Settings parameters for GA

Gene item Value

Number of genes 100

Number of generations 1000

Intersection Partially matched crossover

Selection pressure 0.7

Sudden generation Insertion mutation

Sudden incidence 0.03

Parallelization method Master–slave parallelization

Table 6  Parameters for the closed queueing network

Parameter Value

Number of bikes 100

Total number of nodes 20

Service rate 5.0

Capacity of the number of bikes at each node 10
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Numerical example
We use regional information from Hamamatsu, Japan. In this region, there are 466 postal 
codes. In addition, we register as nodes the 304 convenience stores in Hamamatsu. In 
this case, we ignore the elevation of each node, to simplify the computation. We take the 
population-located nodes i and j as qi,j and rj,i.

The settings of the GA used in this example are shown in Table 5. Several parallel com-
puting techniques for GAs have been proposed (Darrell 1994). In this example, we adopt 
the master–slave parallelization approach because it is easily implemented in Google 
Maps using the PHP language. In Table 6, we show the parameters for the gravity model 
and closed queueing network.

The condition of capacity event Ak for each node in (4) is as follows: the difference 
between the number of bikes and the capacity of a node is not larger than twice the node 
capacity, and is not less than 1/10 of its capacity. How to satisfy a condition such as this 
can be selected based the particular target model.

The GA minimizes the following objective function:

For k = 1, 2, . . . ,K ,
if Lk > 2 · CPk, then add PTK = 1000 to the objective function,
else if Lk < CPk · 0.1, then add PTk = 200 to the objective function,
else add |Lk − CPk | to the objective function.

Decision for the gravity parameter

We use the population parameters α and β, γ and the distance parameter η from (3). 
These can be determined flexibly according to the model being applied or the scenario 
under consideration. As an example of how to set these parameters, we proceed as fol-
lows: using the population in an area, the distance or transit time between nodes, and 
population transit time parameter, we employ the gravity model to obtain the transition 
probabilities (Ooyama 1993). Using the gravity model, we obtain parameters α, β, γ and 
η from (3). In Fig. 5, we show the plot of the values of the objective function using 10 
nodes, while varying the distance parameter. In this plot, the horizontal axis represents 
the value of the distance parameter. We observe that the value of the objective function 
changes as we vary the distance parameter. In this case, we concluded that the distance 
parameter should be set to 0.5 because this value minimized the objective function, as 
shown in Table 7.

Fig. 4  Composition of a gene
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Computing the initial number of fixed nodes

The number of fixed nodes plays an important role in node optimization. We examine 
the value of the objective function as we vary the number of fixed nodes. In Fig. 6, the 
horizontal axis represents the number of fixed nodes. Figure 6 demonstrates that we can 
obtain similar results using fewer fixed nodes. In the next sections, we present optimiza-
tion results obtained for 20 nodes, of which only one is a fixed node.

Optimization results for 20 nodes

We have the experiment of the previous section using 20 nodes. We use one fixed node 
and 19 dynamic nodes. The value of the objective function is 692.1918. Table  8, we 
observe three nodes, with node IDs 179, 232, and 247, that use <10% of the capacity of 
the number of bikes at each node. These nodes among the dynamic nodes are referred to 

Table 7  Parameters for the gravity model

Parameter Value

Population parameter of the gravity model α 1.0

Population parameter of the gravity model β 1.0

Population parameter of the gravity model γ 0.0

Distance parameter of the gravity model η 0.5

Fig. 5  Value of the objective function while varying the distance parameter

Fig. 6  Value of the objective function while varying the number of fixed nodes
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as penalty nodes. We continue removing penalty nodes until there are no penalty nodes 
remaining. The results obtained are presented in Table 9. In this case, the value of the 
objective function is 85.5264, as shown in Fig. 7.

Moreover, we continue removing the nodes for node IDs 112, 171, and 294, which 
have the least number of bikes, and optimize again. From Table  10, Figs.  7 and 8, we 
observe that the best results occur when 14 nodes are used.  

Table 8  Optimization results for 20 nodes

Node ID Number of bikes Element of the objective function for each node

15 5.722361 4.277639

23 2.039668 7.960332

25 6.334638 3.665362

34 2.590727 7.409273

42 12.10129 2.101291

48 8.77132 1.22868

56 6.257035 3.742965

57 1.888292 8.111708

65 3.077918 6.922082

79 4.900534 5.099466

81 7.030343 2.969657

112 1.693075 8.306925

171 1.141893 8.858107

175 18.00817 8.008174

179 0.752507 200

209 7.62364 2.37636

213 7.060485 2.939515

232 0.425842 200

247 0.794523 200

294 1.785734 8.214266

Table 9  The 17 optimized nodes obtained after removing the penalty nodes

Node ID Number of bikes Element of the objective function for each node

15 6.61131 3.38869

23 2.252811 7.747189

25 6.852832 3.147168

34 2.709976 7.290024

42 16.18106 6.181063

48 10.05988 0.05988

56 7.637594 2.362406

57 1.978323 8.021677

65 3.124947 6.875053

79 5.043066 4.956934

81 8.121089 1.878911

112 1.529695 8.470305

171 1.140414 8.859586

175 11.52231 1.522305

209 7.805536 2.194464

213 5.894068 4.105932

294 7.981989 2.018011
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Table 10  Optimization results for 14 nodes

Node ID Number of bikes Element of the objective function for each node

15 6.053414 3.946586

48 7.028729 2.971271

23 2.57486 7.42514

57 2.271532 7.728468

25 8.127648 1.872352

34 3.183185 6.816815

42 15.97184 5.971837

56 9.570738 0.429262

79 4.771828 5.228172

81 11.44458 1.444584

65 3.630369 6.369631

175 11.32166 1.321662

209 9.896153 0.103847

213 4.153461 5.846539

Fig. 7  Value of the objective function when removing the node with the least number of bikes

Fig. 8  Locations of the 14 optimized nodes obtained by removing the nodes with the least number of bikes
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For an actual rental cycle system, administrators often transport bikes to other nodes 
by truck because of converging bikes at a specific node. In this model, if the optimal 
node is not chosen, bikes will converge at one node. We use the objective function effec-
tively and we succeed in distributing bikes. Thus, we obtain better results by adjusting 
the optimization procedure. We suggest that this approach should be followed when 
designing a bike distribution system.

Conclusion
Currently, in various places, social experiments are being conducted concerning the 
sharing of regular or battery-assisted bicycles. To increase the effectiveness of these bike 
distribution systems, it is important to carefully arrange the distribution nodes of the 
system. In this study, we optimized the arrangement of nodes of Hamamatsu, Japan. If 
provided with regional information, such as postal codes, region names, and node infor-
mation, our approach can be applied to other locations. Moreover, using the Google 
Maps API, we can compute the required parameters in a timely fashion.

In this rental bike system, we have the problem that bikes converge at a specific node. 
To resolve this problem, we prepared the node candidate information exceeding 300 and 
422 regional information. From our numerical computation, we found that we obtained 
better results when using as few fixed nodes as possible. If we use a greater number 
of nodes, such as 20 nodes, we obtain a better result than GA when removing a node 
according to specific conditions. Then we consider that such a calculation condition is 
required to perform the optimal placement and arrangement of rental bikes.

Our proposed approach has several unique features. First, all parameter computations 
can be performed using cloud computing and the Google Maps API. Next, using the 
gravity model, we can compute the transition probabilities through population and dis-
tance. It is important to determine the transition probability of the queueing network, 
thus we conclude that it is effective to use the gravity model. Finally, we performed effec-
tive analysis using a queuing network. Based on the results, we are confident that our 
proposed approach can be used to generate effective arrangements of bike distribution 
nodes.

We have several directions for future work. In our optimization problem, we assumed 
that the capacity and service rate of each node have the same values. As such, we inves-
tigated realistic node data, for example, elevation, to determine appropriate parameters 
for computing the transition probability, and we expect the optimization to be more 
representative of actual results. We need to interview field staff and gather real data to 
improve the model. The model also does not include the travel time between nodes. In 
this study, we used a GA for optimization. A more precise calculation is likely needed 
to compare computing time with utility. We also consider a simulation of this model to 
be needed because of the amount of information, such as a comparison of the results of 
this model and simulation including travel time. We aim next to develop a more realistic 
model coupled with simulation data.



Page 13 of 14Mizuno et al. SpringerPlus  (2016) 5:2071 

Authors’ contributions
SM and NY have a conception and design of the study. SI construct this analysis platform to analyze and interpretation of 
data and MS has Collection and assembly of data and drafting of the article. SM has the critical revision of the article for 
important intellectual content. All authors read and approved the final manuscript.

Author details
1 Shizuoka Institute of Science and Technology, 2200‑2 Toyosawa, Fukuroi, Shizuoka 437‑8555, Japan. 2 Regius Ltd., 
3‑34‑50 Handayama, HIgashi‑ku, Hamamatsu, Shizuoka 431‑3125, Japan. 3 Shizuoka University, 836 Ohya, Suruga‑ku, 
Shizuoka 422‑8529, Japan. 

Acknowledgements
Advice and comments given by Yasuyuki Muramatsu has been a great help in this research.

Competing interests
The authors declare that they have no competing interests.

Received: 28 May 2016   Accepted: 18 November 2016

References
Abe T, Kawashima M (2003) Research on construction and the management technique of community cycle system. 

Architectural Institute of Japan, The collection of academic lecture outlines. F-1. City Planning, and Construction 
Economy and the Housing Problem, vol 2003, pp 131–132

Aeschbach P, Zhang X, Georghiou A, Lygeros J (2015) Balancing bike sharing systems through customer cooperation-a 
case study on London’s Barclays Cycle Hire. In: Proceedings of the 54th IEEE conference on decision and control 
(CDC), December 15–18, 2015. IEEE, Osaka, Japan, pp 4722–4727

Anderson JE (2011) The gravity model. Annu Rev Econ 3:133–160
Baskett F, Chandy K, Muntz R, Palacios F (1975) Open, closed, and mixed networks of queues with different classes of 

customers. J ACM 22(2):248–260
Boyac B, Zografos KG, Geroliminis N (2015) An optimization framework for the development of efficient one-way car-

sharing systems. Eur J Oper Res 240(3):718–733
Buzen JP (1973) Computational algorithms for closed queueing networks with exponential servers. Commun ACM 

16(9):527–531
Cantù-Paz E (1998) A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems repartis 

10(2):141–171
Carrère C (2006) Revisiting the effects of regional trade agreements on trade flows with proper specification of the grav‑

ity model. Eur Econ Rev 50:223–247
Darrell W (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85
Etienne C, Latifa O (2014) Model-based count series clustering for bike sharing system usage mining: a case study with 

the VlibSystem of Paris. ACM Trans Intell Syst Technol (TIST) 5(3):39
Flowerdew R, Aitkin M (1982) A method of fitting the gravity model based on the Poisson distribution. J Reg Sci 

22:191–202
George DK, Xia CH (2011) Fleet-sizing and service availability for a vehicle rental system via closed queueing networks. 

Eur J Oper Res 211:198–207
Google Inc, Google Maps (2005) http://maps.google.com
Gordon W, Newell G (1967) Closed queuing systems with exponential servers. Oper Res 15(2):254–265
Jackson JM (1957) Networks of waiting lines. Oper Res 5(4):518–521
Kawamoto K (2007) A survey research on the effect of Bike-sharing program to prevent Left-bikes problem and The 

global warming in Japan and Nagoya. Environmental Policy Unit Nagoya University Graduate School master’s 
thesis, vol 2007 (in Japanese)

Kikuchi M (2011) Urban mobility management strategy by community cycle: new bicycle shared use in the cases of 
London and Japan. http://community-bike.com/ (in Japanese)

Miida K (2002) Merits and demerits of bicycle and community planning. “Cycle-Net Nara” community planning with the 
active use of bicycles. City Plan Inst Jpn 51(5):33–36 (in Japanese)

Ministry of Economy, Trade and Industry (2014) Authorization of the plan to utilize the electric assist bicycle with the 
bicycle-drawn cart for delivery business. http://www.meti.go.jp/press/2014/09/20140918001/20140918001.html

Miyazawa M (1993) Probability and stochastic processes. Kindai Kagaku-sha, Tokyo (in Japanese)
Miyazawa M (2006) Mathematical modeling for queues and its applications. Makino-shoten, Tokyo (in Japanese)
Mizuno S, Iwamoto S, Yamaki N (2012) Proposal of an effective computation environment for the traveling salesman 

problem using cloud computing. J Adv Mech Des Syst Manuf 6(5):703–714
Ooyama T (1993) Optimization model analysis. The union of Japanese Scientists and Engineers (in Japanese)
Reiser M, Lavenberg SS (1980) Mean-value analysis of closed multichain queuing networks. J ACM 27(2):313–322
Takami K, Ohmori N, Aoki H (2011) Planning and current situation of Barclays cycle hire scheme in London, Reports of the 

City Planning Institute of Japan, No. 10, pp 55–60 (in Japanese)
Waserhole A, Jost V (2016) Pricing in vehicle sharing systems: optimization in queuing networks with product 

forms. EURO J Transp Logist 5(3):293–320
Yamakawa H (1992) Possibilities and limits for bicycle transportation systems in Urban Area. Tokyo Inst Munic Res 

83(5):3–16 (in Japanese)

http://maps.google.com
http://community-bike.com/
http://www.meti.go.jp/press/2014/09/20140918001/20140918001.html


Page 14 of 14Mizuno et al. SpringerPlus  (2016) 5:2071 

Yeates MH (1969) A note concerning the development of a geographic model of international trade. Geogr Anal 
1:399–404

Zhang T, Gruver WA, Smith MH (1999) “Team scheduling by genetic search.” In: Proceedings of the second international 
conference on intelligent processing and manufacturing of materials, 1999. IPMM’99, vol. 2. IEEE

Zhang S, He K, Dong S, Zhou J (2006) Modeling the distribution characteristics of urban public bicycle rental duration. 
Discrete Dyn Nat Soc 2016(6):1–9


	Proposal for optimal placement platform of bikes using queueing networks
	Abstract 
	Background
	Modeling using closed queueing networks
	Configuration of the proposed system
	Initial settings
	Optimization parameters
	Optimization procedure

	Numerical example
	Decision for the gravity parameter
	Computing the initial number of fixed nodes
	Optimization results for 20 nodes

	Conclusion
	Authors’ contributions
	References




