
Haider and Nazir ﻿SpringerPlus (2016) 5:1991
DOI 10.1186/s40064-016-3669-0

REVIEW

Fault tolerance in computational grids:
perspectives, challenges, and issues
Sajjad Haider1,2 and Babar Nazir3*

Abstract 

Computational grids are established with the intention of providing shared access to hardware and software based
resources with special reference to increased computational capabilities. Fault tolerance is one of the most important
issues faced by the computational grids. The main contribution of this survey is the creation of an extended classifica-
tion of problems that incur in the computational grid environments. The proposed classification will help researchers,
developers, and maintainers of grids to understand the types of issues to be anticipated. Moreover, different types of
problems, such as omission, interaction, and timing related have been identified that need to be handled on various
layers of the computational grid. In this survey, an analysis and examination is also performed pertaining to the fault
tolerance and fault detection mechanisms. Our conclusion is that a dependable and reliable grid can only be estab-
lished when more emphasis is on fault identification. Moreover, our survey reveals that adaptive and intelligent fault
identification, and tolerance techniques can improve the dependability of grid working environments.

Keywords:  Fault identification, Fault tolerance, Fault classification, Computational grid, Distributed computing

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
Grid computing is an extension of distributed computing
environment where geographically distributed resources
are shared, selected, and aggregated based on the avail-
ability, performance, and capability (Guimaraes et al.
2013). From the cluster computing point of view, a grid
is a collection of clusters that is “grid is a cluster of clus-
ters” (Haider 2007). Distributed computing consists of
three major paradigms, namely: (a) cluster, (b) grid, and
(c) cloud (Valentini et al. 2013; Hussain et al. 2013).

As the nodes and resources are dynamically added in
distributed systems like grids and clouds, different types
of uncertainties start creeping and chances of resource
failures increase. According to in Moon and Youn (2015)
70–75% resources have failure rates of around 20 and
40% in workload archives such as DEUB, UCB and
SDSC (Kondo et al. 2010). Furthermore, their applica-
tion level traces reveal that most of their resources have
more failure probabilities which further cause issues

related to performance of scheduling and unavailabil-
ity of resources (Kondo et al. 2010; Li et al. 2006). In
many organizations, there are underutilized comput-
ing resources that can be effectively used by making
them part of the grid. Desktop machines in organiza-
tions are busy less than 5% of the time (Viktors 2002).
Servers available in organizations are un utilized to the
full potential. For such scenarios, grid computing pro-
vides a paradigm for making use of such underutilized
or unused idle resources in a better way to increase the
efficiency of resource utilization. IBM has defined grid as
Selic (2004). “Grid is a collection of distributed comput-
ing resources available over a local or wide area network
that appears to an end user or application as one large
virtual computing system. The grid’s vision is to create
virtual dynamic organizations through secure, coordi-
nated resource sharing among individuals, institutions,
and resources. Grid computing is an approach to dis-
tributed computing that spans not only locations but
also organizations, machine architectures, and software
boundaries to provide unlimited power, collaboration,
and information access to everyone connected to a grid”.
Grid computing focuses on large scale resource shar-
ing (Foster et al. 2001) where resources are distributed

Open Access

*Correspondence: babarnazir@gmail.com
3 Department of Computer Science, COMSATS Institute of Information
Technology, University Road, Tobe Camp, Abbottabad 22060, Pakistan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3669-0&domain=pdf

Page 2 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

geographically in various administrative domains (Buyya
and Murshed 2002; Yu and Buyya 2005).

Fault tolerance is a capability developed in the system
to perform functions correctly even in the presence of
faults. Taking fault tolerance into consideration would
result in increased dependability of a grid system (Selic
2004). An important assumption in understanding fault
tolerance is to know about the correct behavior of a sys-
tem. A failure is encountered when a system moves away
from an expected behavior. The cause of the failure is
called error that ultimately depicts some sort of fault or
defect in the system. More specifically, the fault is the
real cause of a failure and error is merely an indication or
sign of a fault. Multiple errors could be due to a fault, and
even a single error could be the cause of multiple failures
(Selic 2004).

Computational grids offer the constructs of large-scale
applications, but the execution of the jobs are exposed
to various types of failures. Resources can join or leave a
grid dynamically. Therefore, dependability related issues,
such as availability and reliability must be considered by
the grid resource managers and job schedulers (Zadah-
mad Jafarlou and al 2012). A survey (Hwang and Kes-
selman 2003) regarding the problems expected in grids
identifies, how job execution in a scalable and heteroge-
neous environment, such as a grid is a critical issue due
to the likelihood of a wide range of failures. Grid appli-
cations are multi-tasked applications that require scal-
able, heterogeneous, and distributed environments for
execution. Therefore, failure identification and failure
handling techniques in such environments become appli-
cation specific. If a job, whose results are expected within
specific time intervals, fails to produce results within
the time, then such a scenario is referred to as “timing
related failure” (Siva Sathya and Syam Babu 2010; Garg
and Singh 2011). Similarly, an application fails due to the
difference in the variant versions of the grid middleware
would be a “versioning fault” (Haider 2007). Another
example is when an application attempts to write data
on a hard disk, but cannot find the available space on the
hard disk to perform the operation. As can be realized,
there could be many cases where failures are expected to
be encountered. The usage and implementation of grid
will result in highlighting the significance of fault toler-
ance and the allied issues (Latchoumy and Khader 2012).
Moreover, fault tolerance also plays a key role to ensure
serviceability in cloud computing (Sun et al. 2013). To
handle fault tolerance in cloud environments, Sun et al.
(2013) have proposed a dynamic adaptive fault tolerant
strategy.

Failure probability in grid computing environments
is potentially higher due to its heterogeneous nature as
compared to other conventional parallel computing

environments (Nazir et al. 2012). Therefore, it is critical
to perform beforehand measures to address the expected
or even unexpected problems. Fault tolerance in grid
environments can be divided into two major categories,
namely: (a) fault tolerance using pro-active approaches
and (b) post-active approaches (Garg and Singh 2011;
Ganga et al. 2012). Pro-active fault tolerant approaches
consider failures proactively before scheduling jobs on
grid resources. Fault prediction and fault forecasting
techniques are used in designing a proactive fault toler-
ant approach (Haider 2007; Haider and Ansari 2012).
Proactive fault tolerance is relatively diffcult to imple-
ment as compared to reactive or post-active fault tolerant
approaches (Zhang et al. 2009). Proactive fault toler-
ance approaches require different types of faults related
knowledge with respect to the future (Haider and Ansari
2012). In the literature, most of the work regarding fault
tolerance is based on post-active approaches rather than
the pro-active approaches (Garg and Singh 2011; Haider
and Ansari 2012). On the other hand, a post-active fault
tolerant technique reacts or activates after the encoun-
tered failures. Reactive or post-active techniques uses
fault identification techniques before responding to the
occurred faults and only the identified faults can be toler-
ated (Haider et al. 2007). For example, if a network failure
has occurred and a grid node is not responding due to the
network failure, then a response to such a state could be
in the form of a retry or replication (Haider et al. 2011).
Here, retry or replication is the fault tolerant technique
that will be applied after an identified problem, such as a
network failure.

The major contributions of this work are as follows:

1.	 In this survey, a taxonomy of dependable grid com-
puting is presented that identifies recent challenges
and threats in grid computing. The presented tax-
onomy is an extension of Avizienis et al. (2004); how-
ever, our dependability taxonomy provides a rigorous
and a more recent review. Moreover, additional chal-
lenges are discussed along with possible solutions
that can be used to address such challenges. Simi-
larly, threats to grid computing are discussed in more
detail.

2.	 This paper presents a comprehensive survey on the
types of errors, failures, and faults that are encoun-
tered in various grid computing environments.
Nearly all of known types of risks that could be
encountered in the grid environment are reviewed.

3.	 Lastly, based on the rigorous literature review, this
survey identifies open research issues that need the
attention of the research community to have more
efficient solutions to a broad, complex, and challeng-
ing area of fault tolerance in the computational grids.

Page 3 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Challenges in grid dependability
Existing surveys
Many of the existing surveys on the dependability and
security of computational grids are more focused on
the computing systems in general, and do not pay more
attention towards grid and distributed systems (Avizienis
et al. 2004). Some of the surveys address fault tolerance
in grid computing, but do not discuss in detail the types
of threats and challenges (Latchoumy and Khader 2011).
Some of the surveys focus more on the software side
and ignore other areas, such as handling of the hardware
based faults and their impact (Garg et al. 1998; Vaidy-
anathan and Trivedi 2001). Our survey specifically dis-
cusses the dependability scenarios in grid computing and
most of the challenges, threats, and attributes related to
dependability along with the corresponding subtypes that
are specified in Fig. 1.

To attain high levels of availability and reliability, the
infrastructure of grid must be fault tolerant (Qureshi
et al. 2011). Avizienis et al. (2004) presented a depend-
ability taxonomy that has been extended by incorporat-
ing more factors extracted from the literature. Challenges
in the grid dependability are the factors that encompass
fault identification, fault prevention, fault avoidance, fault
forecasting, fault tolerance/recovery, fault treatment,
fault isolation/localization, fault removal, fault diagnosis,
fault injection, fault discovery, and fault testing. Similarly,
there are some threats to the dependability that exist

in the form of errors, failures, and faults and the cor-
responding subtypes. The design goals of a dependable
grid system are availability, quality of service (QOS), reli-
ability, consistency, maintainability, accuracy, flexibility,
adaptability, and security. Fault tolerance is a vital aspect
of grid for achieving reliability, availability, and QOS
(Malik et al. 2012). Fuijan et al. (2012) proposed a QOS
constrained algorithm for resource scheduling in grid
environments by associating the tasks with QOS dimen-
sions and one of the associated dimension was reliability.

The main strengths of this survey are that an enhanced/
extended taxonomy of dependable grid computing is
established that discusses various types of threats and the
corresponding sub-types in more detail. In this survey,
we also discuss various types of challenges faced by the
grid computing environments to strengthen the depend-
ability. Large numbers of papers were selected for review
and to the best of our knowledge, we have discussed
almost all of the types of challenges and their types along
with examples faced nowadays. Similarly, the design
goals have also been identified that can lead us to more
reliable, available, and secure grid environments. Previ-
ously identified and published research (Nazir et al. 2012;
Haider and Ansari 2012; Haider et al. 2011; Qureshi et al.
2011; Malik et al. 2012; Nazir et al. 2009; Khan et al.
2010) regarding fault tolerance pertaining to different
types of errors, failures, and faults and the correspond-
ing subtypes are also part of this survey, which discloses

Fig. 1  Grid dependability taxonomy

Page 4 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

a very wide range of problems expected in the grid com-
puting environments.

Fault identification, detection, and diagnosis
Fault identification, fault detection, and fault diagnosis
are the techniques that are used to identify faults. Fig-
ure 2 depicts various techniques used in the fault iden-
tification of computational grids. A probabilistic and
possibility risk assessment model for grid computing is
proposed in Carlsson and Fuller (2010). A probabilistic
resource allocation technique is applied by Shestak et al.
(2012) considering the random failures in grid environ-
ments. Calado and da Costa (2006) used neural network
based fault identification and diagnosis to claim that the
fuzzy approach is most suitable for handling faults and
achieving reliability in high performance computing
environments. Charoenporwattana et al. (2008) used an
artificial neural networks based approach to proactively
avoid faults.

Faults are unavoidable in a complex distributed envi-
ronment like grid that is scalable and heterogeneous.
Diagnosing faults in such environments is a challenging
task. A prompt detection and isolation mechanism of
faults and failures lead to a reliable and robust environ-
ment. Automating fault diagnosis in large and complex
distributed environments is critical (Sethi et al. 2004).

In a large-scale system many nodes performing tasks
for applications related to computation, I/O and network
communication etc. increase the probability of failures.
The monitoring software dealing with nodes should be
able to identify failures quickly (Massie et al. 2004). Mas-
sie et al. (2004) presented a monitoring system for HPC
environments like clusters and grids with the name of
Ganglia. Ganglia is based on hierarchical design which
relies on multicast-based listen/announce protocol for
monitoring sates within clusters. It further uses a tree
of point-to-point connections of cluster nodes to merge
clusters and combine their states.

Periodic device polling for monitoring information
about the liveness of hardware or software has been
used as fault detection and identification in distributed

systems (Bheevgade and Patrikar 2008; Zhou et al. 2007;
Bhagyashree et al. 2010). A technique used at software
level for fault identification is known as “heartbeat” where
a liveness message is produced by the device mentioning
about its correct functioning and working (Ammendola
et al. 2015), though it has a slight disadvantage of creating
extra network traffic. In order to avoid the traffic prob-
lem a new trend is the use of Intelligent Platform Man-
agement Interface (IPMI) (Ammendola et al. 2015). An
example of IMPI in high performance clusters is FTB-
IPMI (Rajachandrasekar et al. 2012). Heartbeat and time-
out method for handling the problem of unpredictable
nodes in Map Reduce (MR) computations in hybrid com-
puting environments has also been used by Tand et al.
(2015).

Fault localization and isolation
Fault localization is an important concept and is a part
of fault management. Fault localization focuses on iden-
tification of the source of failure from a set of observed
failure indications (Sethi et al. 2004). Fault localization
is also referred to as fault isolation and alarm/event cor-
relation. It is a set of observed fault indications that are
analyzed to find the root cause of the problem (Katzela
1996).

Communication systems are constantly evolving and
providing new capabilities, but on the other side they are
also becoming more and more complex and the obliga-
tory requirements on fault localization techniques have
also changed. Fault localization in multifaceted and
complex communication systems still remains an open
research area (Sethi et al. 2004).

The proposed techniques in literature for fault localiza-
tion and isolation are inspired from various areas of com-
puter science, such as artificial intelligence, information
theory, neural networks, graph theory, and automata the-
ory. Such research areas can be used for identifying new
dimensions in fault localization and isolation (Sethi et al.
2004).

Fault injection and testing
Fault injection and testing are the techniques through
which we asses the severity of the expected faults and the
behaviors. In fault injection, faults are considered to be
a valid case for a fault tolerant system, and are the tech-
niques through which we can actually check the issues
that can occur during the working of grid computing
environments. Trodhandl and Weiss (2008) places fault
injection methods into three main categories; (a) simula-
tion-based fault injection (b) hardware-based fault injec-
tion, and (c) software-based fault injection. Brodie et al.
(2003) claim that the problem determination and fault Fig. 2  Techniques used in fault identification of computational grids

Page 5 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

diagnosis can be performed using fault probing and test-
ing for complex and scalable distributed systems.

Hsueh et al. (1997) emphasises on the importance of
fault injection for evaluating the dependability of com-
puter systems. Hardware and software based method
exists for identifying the dependability through inject-
ing faults in the systems. A case study of software based
fault injection system for distributed systems is tested
by Ghosh et al. (1997). It is recommended to apply fault
injection techniques for identification of devastation in
cases of failures. Severity and catastrophe of damage can
be minimized through this type of proactive approach.
Fault injection issues in distributed arena and espe-
cially in grid computing environments are a bit tricky as
resources being tested are part of various geographical
domains. Three way strategy, e.g. error based, coverage
based and failure based is adopted by Ghosh et al. (1997)
for implementation of fault injection.

a.	 Error based strategy

This technique identifies error sources and then used
techniques for injecting errors for each error category.

b.	 Coverage based strategy

Here coverage is measured with respect to code, inter-
faces and exceptions/errors codes.

c.	 Failure based strategy

Focuses on the behavior of system when other compo-
nents fail and try to find whether faults are handled or
not and whether the failure of one component affect the
other one or not.

Cotroneo et al. (2013) is of view that fault injection
methods mostly inject faults during experimentation
phase and repeat the process various times. Advanced
fault injection techniques start injection on encounter-
ing specific types of events in the system. Fault injection
is a valid way for validating the fault tolerance technique
(Fugini et al. 2009).

Fault forecasting and prediction
Fault forecasting and prediction is a proactive way
through which we can forecast or predict faults before
they are actually observed, detected, and identified. A
fault forecasting model for computer clusters was pro-
posed by Haider and Ansari (2012), in which the fore-
casting and prediction of hardware faults is done on the
basis of thermal signatures.

A java based neural network engine (JOONE) was uti-
lized for fault predictions by Charoenpornwattana et al.

(2008) and applicability of the ANN for fault prediction
was discussed. Gurer et al. (1996) proposed an artificial
intelligence based solution that incorporated an ANN
based approach and case-based reasoning technique for
fault handling in heterogeneous distributed environ-
ments. Prediction and forecasting of faults is an impor-
tant method that can be used for improving the reliability
of a system. Prediction and forecasting of faults can also
be applied in proactive fault tolerance.

Fault treatment and removal
Proactive and reactive fault tolerance techniques are
placed in the fault treatment and removal category. The
significant difference between them is that the proac-
tive techniques anticipate and predict, while the reactive
mechanisms react and respond.

A proactive fault tolerant scheduling approach is pro-
posed by Haider et al. (2007) for handling the faults pro-
actively in computational grids. The model uses various
components at different layers of the grid that commu-
nicate with each other using a cross-layer design for cal-
culating the overall reliability of the grid node. The use
of cross-layered architecture is a relatively new concept
that is applied in grid environments for handling faults
proactively. Figure 3 shows a high level diagram of the
proposed architecture. The architecture shows that at
each layer of the grid, there is a component, and all of the
components are communicating with each other using a
cross-layer design.

The proposed model instead of using the traditional
top-down/bottom-up approach of grid layers, uses a
cross-layer communication model where a middle layer
can communicate with the layers above and below it.
Each layer of grid contains Hardware Monitoring Com-
ponent (HMC), Software Monitoring Component (SMC)
and Cross-Layer Component (CLC) for finding the most
reliable nodes of the grid.

Hardware Monitoring Component (HMC) is designed
to work at the fabric layer of grid. HMC is responsible
for calculating Hardware Reliability Rating (HRR) of
the machine/node and will rate each grid node as High,
Medium or Low from HRR perspective. Factors consid-
ered for HRR are machine up time, remaining storage
space of the node, OS service failures encountered by the
node, network speed and connectivity time of the node
with the network. A node which is up for long time and
has large store space available and has high network con-
nectivity speed etc. will be rated as HRR-High. Similarly
a node having less storage space and slow network con-
nectivity etc. will be rated as HRR-Medium. If a node
is facing OS service failures and disconnecting with the
network and has less up time then node will be rated
HRR-Low.

Page 6 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Software Monitoring Component (SMC) works at appli-
cation layer of grid and is responsible for calculating Soft-
ware Reliability Rating (SRR) in the form of High, Medium
and Low. A node is SRR-High when it has executed the task
successfully, e.g. without encountering value faults, version-
ing faults, unhandled exceptions and unexpected inputs.
Similarly SRR-Medium will be rated on encountering one
or two faults, and SRR-Low will be assigned to a node upon
encountering most of the faults, e.g. three or more faults.

Information generated about the reliability of the node
in the form of High, Medium and Low with respect to
Hardware and Software by HRR and SRR through HMC
and SMC working at fabric and application layers of grid
respectively is passed to Cross-Layer Component (CLC).
CLC will overall rate the node as High, Medium or Low,
depending on the rating received from HMC and SMC.
For a node having HMC and SMC as High, the node is
declared as highly reliable node. Similarly, if CLC receives
information in the form of Medium then node is declared
as Medium from reliability point of view and Low in case
of information received as Low.

When grid scheduler selects nodes for execution of
jobs, then only highly reliable nodes are selected as their
reliability from hardware and software point of view has
already been obtained.

Similarly, a framework for proactive fault tolerance is
presented in Vallee et al. (2008) that uses a component
based approach consisting of three components: (a)
fault predictor, (b) policy daemon, and (c) fault toler-
ance daemon. Most (Kondo et al. 2010; Bahman arasteh
et al. 2012; Hwang and Kesselman 2003; Garg and
Singh 2011; Latchoumy and Khader 2011; Vaidyana-
than and Trivedi 2001; Shestak et al. 2012) of the fault
tolerant techniques discussed in literature use reactive
techniques and solutions that employ preventive meas-
ures. When an application encounters a failure then
instead of avoiding that failure, recovery technique are
applied in order to handle the situation (Engelmann
et al. 2009).

Fault tolerance and recovery
Fault tolerance, recovery, and removal are solutions for
the fault related problems in grid computing environ-
ments (Haider et al. 2011). Retry, replication, message
logging, and check pointing are the fault tolerant tech-
niques that are used in clustered and grid computing
environments (Haider and Ansari 2012). Almost all of the
fault tolerant solutions presented in the literature use the
above mentioned techniques and we briefly discuss them
below.

Retry
In retry, if a problem occurs in a distributed applica-
tion, and due to that problem the application stops, then
instead of finding the cause of the problem, we restart the
application. Retry is considered to be the simplest failure
recovery or fault tolerance technique. That is to say that,
we hope that whatever were the causes of failures, the
effect will not be encountered in the subsequent retries
(Hwang and Kesselman 2003).

Replication
In replication, we run multiple copies or replicas of an
application on different machines/nodes of the grid. The
intention of running replicas on various machines/nodes
is that if all of the machines fail and only a single machine
out of those machines completes the job successfully,
then the objective will be accomplished. The main idea of
replication is to have replicas of a task run on different
grid resources. As long as, not all of the replicated tasks
crash, for example (due to host crash or host partition
away from the grid client), then the task execution would
succeed (Hwang and Kesselman 2003).

Message logging
Message logging is another technique used to han-
dle faults in distributed systems. When an application
executes, the nodes maintain the information about the

Fig. 3  High level design diagram for component based proactive
fault tolerant scheduling using cross layer design

Page 7 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

execution of the application in the form of logs. If an
issue is encountered, then the logs are used for an appro-
priate solution. In message logging, nodes log incoming
messages to stabilize storage devices. After a failure, the
message logs are used to compute a consistent global
state. Algorithms that use the approach of message log-
ging for fault tolerance are further classified into the fol-
lowing two categories: (Sistla and Welch 1989).

a.	 Optimistic message logging

In optimistic message logging approach, a process
starts execution before the completion of logging a mes-
sage (with a hope that process will not encounter failure),
but on encountering failure in such cases, chances are to
have an orphan process. An orphan process will not be
consistent with its associated process as it does not have
the complete information about the associated process.
Optimistic message logging approach creates orphan
processes.

b.	 Pessimistic message logging

In pessimistic message logging approach there are no
chances of orphan processes as a process does not proceed
further unless it completely stores its state. Slight disad-
vantage in pessimistic approach is the time taken to store/
log the complete message (Alvisi and Marzullo 1998).

Checkpointing
The most popular fault-tolerance mechanism is that of
checkpointing. In this technique, we periodically save the
state of the application on stable storage, usually a hard
disk. After a crash, the application is restarted from the
last checkpoint rather than from the beginning (Hus-
sain et al. 2006). Checkpointing is a proficient way for
developing a fault tolerant application. Bouguerra et al.
(2013) have proposed a performance model through
which checkpoint based scheduling problem has been
expressed. Gokuldev and Valarmathi (2013) have dis-
cussed many types of checkpointing that include: (a) Full
checkpointing, (b) Incremental checkpointing, (c) Coor-
dinated checkpointing, (d) Uncoordinated checkpoint-
ing, (e) Kernel level checkpointing, (f) Application level
checkpointing, and (g) User level checkpointing.

a.	 Full checkpointing

Full checkpoint stores the complete state of the appli-
cation to the local storage. Obvious drawback of this
scheme is the time taken to save complete state and stor-
age space required for storing the state.

b.	 Incremental checkpointing

Incremental checkpoint instead of storing the state of
complete process, saves information of only the modi-
fied pages. Initially first checkpoint is the full checkpoint
and the continuing checkpoints are stored on the basis of
modified pages hence known as the incremental check-
points. Incremental checkpoint technique is considered
to be a reliable technique.

c.	 Coordinated checkpointing

In coordinated checkpointing, the protocols used for
checkpointing generate reliable and steady checkpoints
making overall recovery process to be simple. Through
coordinated checkpointing technique a consistent global
state can be maintained forcing participating processes
to synchronize their checkpoints (Egwutuoha et al.
2013).

d.	 Uncoordinated checkpointing

In uncoordinated checkpointing every process takes
its checkpoint independently and there is no coordina-
tion for checkpointing between processes. As there is no
coordination between processes, there remains a chance
for losing the complete computation and due to this very
fact uncoordinated checkpointing technique is not used
in practice (Egwutuoha et al. 2013).

e.	 Kernel level checkpointing

The process of checkpointing is included in the ker-
nel and is transparent for the user so no modifications/
changes are required in the program for the implementa-
tion of checkpointing. It is the responsibility of the kernel
to manage recovery operations when the system restarts
from a failure.

f.	 Application level checkpointing

In application level checkpointing it is the responsibil-
ity of the application to carry out all the checkpointing
related issues. Checkpointing code and mechanism is
part of the application and benefit of this technique is
that checkpointing can be handled and controlled in a
better way.

g.	 User level checkpointing

In this approach, user level library is linked with the
application for checkpointing. Application code does not

Page 8 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

require any changes for incorporating checkpoint mecha-
nism; however specific linking needs to be done between
user level library and the application.

Threats to grid dependability: errors, failures
and faults
An important assumption in understanding fault toler-
ance is to know about the correct behavior of a system.
We generally say that a failure is encountered when a
system moves away from the behavior for which it was
designed. The reason behind that failure is called error,
which ultimately depicts some sort of fault or defect in
that system. This means that the fault is the actual and
main reason behind a failure, and error is just an indica-
tion or sign of a fault. Multiple errors could be due to a
fault, and even a single error could be the cause of mul-
tiple failures (Selic 2004). These concepts are shown in
the unified modelling language (UML) class diagram, see
Fig. 4.

In Fig. 4, we can see that fault and failures are not
directly connected. Its reason is that fault or defect leads
to error, whereas error leads to failure. Error will be pro-
duced due to the defect or fault of some hardware/soft-
ware, due to which the task we wanted to perform will be
halted resulting in failure. In simple words, faults results
in errors that causes failures.

Threats to grid dependability are established after a
thorough literature survey. The classification of threats
are specified with respect to various types of errors, fail-
ures and faults and the corresponding subtypes. In Fig. 5,
we have identified various types of errors, failures, and
faults, which we detail below.

Error
Error can be observed and evaluated as a property of
the state of the system. A system that starts facing the

behavior against that system’s compliance and specifica-
tions is considered as an error. The following lists a few
errors.

Network errors
In distributed environments, errors and failures related
to nodes and or links are unavoidable and may cause a
damaging effect on the performance of workflow based
systems (Gu et al. 2013). Network errors can be in the
form of packet corruption, packet loss, or network con-
gestion (Siva Sathya and Syam Babu 2010).

a.	 Packet corruption

In packet corruption, a packet gets corrupted dur-
ing the transmission, when it moves from one node to
the other. Noise can be a reason for packet corruption.
Packet corruption can lead to further problems with
respect to communication or change of information. The
data that has to travel from the memory of source node
to the main memory of target node has no protection.
For example, if an error occurs after the validity of the
data is verified by the network interface, but before calcu-
lating its CRC by the network, such type of error will go
unnoticed and undetected (Balaji et al. 2012).

b.	 Packet loss

Packet loss is a problem in which a sent packet is lost
during the transmission. If one or more packets of data
do not reach the destination due to network errors, then
such a problem is identified as a packet loss.

c.	 Network congestion

Network congestion is a problem that can be encoun-
tered due to low bandwidth. Diverting all of the traffic
towards a single path can also create network congestion.
More traffic or network load can also lead to network
congestion. Network congestion creates delay in com-
munication and in grid computing environment network
congestion may affect QoS (Haider 2007).

Software errors
Numerical exceptions and memory leaks are identified as
software errors.

a.	 Memory leaks

Memory leaks are application specific problems in
which an application uses a huge amount of memory and
never releases that memory (Vaidyanathan and Trivedi
2001). It is not necessary that all memory errors originate Fig. 4  Relationship between errors, failures, and faults (Selic 2004)

Page 9 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

from memory cells. There can be cases where mem-
ory contents are accurate and error occurs on the path
from memory to processor (Balaji et al. 2012). Memory
leak occurs when unneeded part of the memory is not
released. According to Roohi Shabrin et al. (2006), mem-
ory leak is a problem in which a part of allocated memory
can not be accessed, resulting in degradation of execution
and performance of application. Application exhausts
systems resources and ultimately program crashes due to
the problem of memory leak.

b.	 Numerical exception

Applications require numerical computations during
execution. An application that has not considered prob-
lems from the numerical conversions point of view is
expected to generate numerical exceptions during execu-
tion. Unhandled exceptions that cause problems due to
out of range produced values by applications are numeri-
cal exceptions.

Fig. 5  Extended classification of errors, failures, and faults (Haider and Ansari 2012; Haider et al. 2007; Haider et al. 2011)

Page 10 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Time based errors
Time based errors are generated due to the applications
that do not complete the execution within a specified
deadline, or the problems faced by the applications in dif-
ferent time intervals in a distributed environment. Tran-
sient, intermittent, and permanent errors are classified
as time based errors (Arshad 2006). The probability of
occurrence of a transient error is very less and they occur
either very seldom or once in the life cycle of an applica-
tion and then disappear. On the other hand, intermittent
errors can be observed many times in an irregular fash-
ion (Siva Sathya and Syam Babu 2010).

Failure
The occurrence of failure is generally assumed on detect-
ing some error in the system state (Haider et al. 2011).
A failure can also be considered as a noticeable deviation
from accepted specifications (Siva Sathya and Syam Babu
2010). Failures may be obvious in case of a detected error.
Failure is actually observed when a deviated behavior is
produced by the system instead of a normal or expected
one. We have identified categories of failures that are,
omission, hardware, response, network, software, crash,
and miscellaneous failures, which we detail below.

Omission failures
Omission failures occurred and are observed when a
server fails to react and respond to the incoming requests
(Siva Sathya and Syam Babu 2010). Some observed omis-
sion failures are send omission and receive omission.

a.	 Send omission

Send omission occurs when a server fails to send mes-
sages (Delporte-Gallet et al. 2005). A server that stops
sending messages leads to serious issues, such as com-
munication. A server that has stopped sending messages
will be isolated in the network as it has lost the capability
of communication, and grid is a network of computation
that is useless with communication. In send omission
failures a message that is sent by a process will not be
placed into the communication channel (Delporte-Gallet
et al. 2005).

b.	 Receive omission

In receive omission failures a message that has arrived
at the communication channel will not be received by the
algorithm of the process (Delporte-Gallet et al. 2005).
Receive omission failure takes place when a server fails
to receive messages. If a server stops receiving messages,
then severe problem with respect to communication

starts and the server and the connected nodes can not
further proceed the business.

Hardware failure
Hardware failures are more obvious than many other
types of failures. Although hardware failure is a general
terminology there are many types of hardware failures,
such as CPU failure, machine reboot, disk failure, memory
failure, and device failure. Some hardware failures, such as
disk, memory, and CPU are purely hardware based fail-
ures, but some hardware failures can be due to software,
such as operating system. Egwutuoha (2014) has men-
tioned that hardware (processors, hard disks and memory
etc.) are the reasons for more than 50% of the failures in
High Performance Systems, and intensity of the workload
affects the failure rate (Schroeder et al. 2010).

Response failure
Another category of failure is the response failure, where
the grid node does not respond at all or does not respond
within a certain acceptable time frame (Haider et al.
2011). Incorrect and erroneous response of a grid node
is considered as a response failure. Response failure is
further categorized into value failure and state transition
failures.

a.	 Value failure

Value failure is faced when the value of a response is
wrong (Haider 2007). An unexpected or out of range
value received by the grid server from a grid node for a
query is an example of a value failure.

b.	 State transition failure

State transition failure is a problem when the mes-
sages transmitted by server are not received by clients
due to network problem (Haider 2007). Moreover, failure
of state transition can also be observed if a server stops
sending messages due to some problem in the network.

Network failure
Network failure is a very serious issue, as a communica-
tion in distributed environment is impossible without
a network (Das and De Sarkar 2012). Network failure
can be due to site failures, link failures, configuration
changes, or device failures such as routers or switches
(Haider et al. 2011).

Push and pull models for the identification and detec-
tion of network failures can successfully be used (Haider
2007). Legion is a grid middleware that uses “pinging and
timeout” approach to check whether a machine is alive

Page 11 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

and responding, or not (Nguyen-Tuong 2000; Grimshaw
et al. 1997).

a.	 Configuration change

Configuration change is a very important reason due to
which a network is likely to fail (Haider and Ansari 2012).
Participating machines of a grid belong to different net-
works bounded by the configuration and policies of the
respective network. A change in policy or configuration
may cause problems for applications using the resources
of those machines (Haider et al. 2007). Due to this very
fact, it is very important for a grid administrator about
the implications of change in configuration on the jobs
running in that environment.

According to a survey conducted by Medeiros et al.
(2003) many failures are experienced in grids due to con-
figuration related problems and solutions for the prob-
lem are mostly application dependent. Reasons identified
in Medeiros et al. (2003) are that though a high-level of
abstraction exists between grid components but when a
problem occurs then all complex gory details are exposed
that are related to configuration, middleware, hardware
and software based issues.

Software failure
Software failure is an important class of failures in a grid
environment, as the software is the most important com-
ponent of the grid (Vaidyanathan and Trivedi 2001). Grid
middleware is software, which requires further software,
such as operating system. Moreover applications execut-
ing in the grid environment are also software (Haider
et al. 2011). Software failures cannot be left unattended.
Many complex issues can be experienced due to the tech-
nicality and delicacy of software.

a.	 Operating system failure

The most fundamental type of software failure is the
operating system failure. When the operating system of a
grid node fails, then the execution of the application and
services on that particular machine are stopped (Haider
2007). Selection of a dependable and reliable operating sys-
tem is an important factor to tackle the problem of operat-
ing system failure. Historical data regarding the failures and
crashes of operating system can be maintained from the
perspective of proactive decisions regarding the operating
system failures (Haider 2007; Haider and Ansari 2012).

b.	 Application and task specific failure

Application and task specific failures also belong to the
software failure category. However, the reason behind

application and task specific failures can be software, as
well as hardware.

c.	 Performance failure

Performance failure is also an important class of soft-
ware failures (Khan et al. 2010). Failure in the perfor-
mance of software can be due to hardware (Haider et al.
2011). A slow processor or a communication link with
less bandwidth can not deliver the results within an
acceptable time frame and ultimately results in perfor-
mance failures (Haider 2007). Bad selection of resources
could also be the reason for performance failure (Haider
2007). Unhandled exceptions or exceptions generated
due to unexpected inputs are all types of performance
failure that ultimately are types of software failures (Vaid-
yanathan and Trivedi 2001).

Miscellaneous failure
Some of the failures identified in literature do not fall
in any specific failure category and a few of them are
time related and arbitrary failure (Baldoni et al. 2007)
According to Baldoni et al. (2008), arbitrary failures are
one of the toughest failures and is a real practical chal-
lenge due to unexpected software errors and malicious
attacks. In arbitrary failures, a server is prone to gener-
ate random and arbitrary responses at arbitrary/random
times.

Another type of miscellaneous failure is random fail-
ure. Task assignment to compute nodes is known as
resource allocation or mapping. Mapping policies in
grid environments depends upon many factors, e.g.
number of available nodes, nodes characteristics and
links between them. Scenarios can be developed for
number of available nodes as nodes can randomly fluc-
tuate between down and up states. SETI@Home is an
example where participating nodes keep on fluctuating
randomly and can join or leave the system any time due
to any reason (Shestak et al. 2012). Another example of
random failures could be due to malfunctioning of hard-
ware due to harsh operating environments, e.g. tempera-
ture increase of a machine due to broken cooling fan can
seriously result in performance or even malfunction of
processor.

Fault
The reason behind system or component failure is fault,
and fault tolerance means that the system keeps on pro-
viding services even in the presence of faults (Haider
et al. 2011). Literature survey reveals many types of
faults, such as aging related faults, omission faults,
response faults, and timing related faults etc., which we
detail below.

Page 12 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Aging related fault
Faults that creep into the system with the passage of time
are placed into the aging related faults category. The phe-
nomenon of software based aging was reported in Garg
et al. (1998), Vaidyanathan and Trivedi (2001). The obser-
vation regarding the software based aging was that once
the software is started, many possible fault conditions
gradually are accumulated with time leading to either
performance degradation or transient failures, or both
(Vaidyanathan and Trivedi 2001). Hardware faults related
to aging are well known. The performance of hardware
degrades as the time passes and the degradation can lead
to problems, such as performance, maintainability and
availability. The bathtub curve in computer architecture
is well-known for identifying the reliability of a machine
based on time. Klutke et al. (2003) have referenced that
some products show decrease in failure rate in early life
and an increase in failure in later life.

Omission faults
Omission faults are more prevalent in grids and arise
when resources becomes unavailable (Siva Sathya and
Syam Babu 2010; Garg and Singh 2011). Disk space full is
considered to be omission fault as once the disk space of
a hard disk completes; thereafter, further storage of data
on that device cannot be stored as the storage resource is
unavailable. Denial of service (DoS) is a type of omission
fault where a node of the network is under the potential
threat of DoS attack and will be forced to stop the ser-
vices for which it is responsible.

Response faults
Response faults can be classified as, value faults, byz-
antine faults, and state transition faults. When a server
responds incorrectly to a request than response faults
occur (Siva Sathya and Syam Babu 2010). If some lower
level system or application level fault has not been han-
dled properly, then an individual processor or applica-
tion may emit incorrect output or value, and is known
as value faults (Siva Sathya and Syam Babu 2010; Haider
et al. 2007). Byzantine faults take place due to failed or
corrupted processors that behave arbitrarily (Coulouris
et al. 2001). Byzantine faults take place when a system
does not stop after a failure, and starts behaving in an
unpredictable way (Siva Sathya and Syam Babu 2010).
The problems faced when processes are changing their
states are known as state transition faults.

Timing faults
Problems that occur due to synchronization between
processes are known as timing faults. Timing faults
arise in synchronous distributed environments where

processes have strict time limitations with respect to
communication or execution. Timing faults occur when
the specified time limit exceeds (Avizienis et al. 2004).
Timing faults are further divided into the categories of
early and late faults.

When execution or communication services start too
early then it is called early fault. Similarly, when commu-
nication or execution services are too late and exceed the
time limit then late faults are encountered.

Interaction faults
Interaction faults occur when an increase number of inter-
actions occur between a large numbers of services. Many
of these services may be dynamically bounded at run time
and original application developer may be unaware of such
a scenario. Therefore, the result of such an increased inter-
action results in interaction faults (Garg and Singh 2011).
A reason of interaction fault may also be due to different
services supporting different protocols (Townend and Xu
2003). Timing overhead, security incompatibilities, and
policy problems are the types of interaction faults.

a.	 Policy problems and security incompatibilities

The difference in the policies of the grid nodes of dif-
ferent networks lead to policy issues. The problems faced
by applications that interact with the grid nodes working
under different policies is known to be policy problems.
Security incompatibility is another type of interaction
fault that could be due to policy problems.

b.	 Timing overhead

Application interaction with respect to timing may
lead to faults. A time out in a service due to slow pro-
cessor, low bandwidth, or failed link may cause problems
(Townend and Xu 2003). Faults related to timing are also
placed into the category of interaction faults.

Software faults: Heisenbugs and Bhorbugs
Hisenbugs and bhorbus are types of software failures
that lead to intermittent failures. Heisenbugs cause a
class of software failures that typically surface in situ-
ations where there are boundaries between various
software components and are likely to appear in grids.
Heisenbugs result in intermittent failures that are
extremely difficult to identify through testing (Vaidyana-
than and Trivedi 2001).

Bohrbugs are permanent design faults and are almost
deterministic in nature. They can be identified easily and
weeded out during the testing and debugging phase of
the software life cycle.

Page 13 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Life cycle faults
Faults expected to occur due to different versions of
applications and their toolkits. An example of versioning
fault is that of a grid application developed for GT4 (glo-
bus Buyya and Murshed 2002; Klutke et al. 2003 toolkit
version 4) might create problems from versioning point
of view on GT3 (globus toolkit version 3).

a.	 Service expiry fault

A particular service or resource on the grid is available
for a particular time. An application that tries to use a
service or resource beyond the time for which that ser-
vice or resource is available would result in a life cycle
type of fault known as service expiry fault.

Response faults: Byzantine and value faults
Response faults take place due to failed or corrupted pro-
cessors that behave arbitrarily (Coulouris et al. 2001). A
lower level system or application level fault that has not
been handled properly may emit incorrect output. The
incorrect output or value produced by application is
known as value fault.

Design goals in grid dependability
Probability of faults in a grid environment is much
higher than a traditional distributed system (Nazir et al.
2009). To minimize the faults and making grids more
reliable, we must strive for improving its dependability.
Encountering challenges of different types as discussed
in “Challenges in grid dependability” section and taking
care of threats identified in “Threats to grid dependabil-
ity: errors, failures and faults” section we can proceed
towards dependable grids. Design goals of a dependable
grid are availability, reliability, continuity, quality of ser-
vice, flexibility, and adaptability.

Availability
The most important design goal in any fault tolerant sys-
tem is availability that depicts a quality responsible for
providing correct services. If problems are encountered in
a distributed environment, then the availability character-
istic of dependability must be able to handle the problems.
Reliability is another important design goal of not only in
grid but in any of the fault tolerant system. Reliability por-
trays the willingness for the provisioning of accurate ser-
vices. A system is more available if that system is reliable
and vice versa. Availability and reliability are directly pro-
portional to each other (Charoenpornwattana et al. 2008).

Adaptability
Adaptability refers to the capability of the system that can
accommodate changes and provide the specified services

at the same time. An adaptive fault tolerant design
improves availability and reliability of the system. Adapt-
able systems can respond to the changed environment
and policy that otherwise can create problems and gener-
ate faults (de Lemos 2006). Many fault tolerant solutions
considering adaptability have been discussed (Guimaraes
et al. 2013; Sun et al. 2013; Nazir et al. 2009; de Lemos
2006; Guimaraes and de Melo 2011)

Continuity and quality of service
Continuity and quality of service (QoS) are also related
to reliability and availability. Services are dependent
on the availability of the system. If a system is unavail-
able due to hardware or software failures, then it is
obvious that the system would be unable to continue
providing services. A system that is not providing or
fails to provide smooth and consistent service, suffers
from the problems known as continuity and quality of
service.

Many of the techniques (Chan et al. 2007; Foster et al.
2003; Wei-Tek et al. 2003; Zheng and Lyu 2008; Zheng
and Lyu 2009) provided are not appropriate to be used
in different systems having specific performance require-
ments. An adaptive fault tolerance technique with QoS-
aware middleware is proposed by Zheng and Lyu (2010).
Zheng model is based on user collaborated QoS aware
middleware that can dynamically adjust its fault toler-
ance configurations in order to achieve reliability and
performance.

Maintainability
Maintainability refers to the capability of performing the
necessary amendments and repairs whenever required
for the smooth operation and functioning of the sys-
tem. If we broaden the horizon of the design goals of a
dependable grid system, then security, integrity, and
maintainability must also be considered.

The design goal with respect to dependability is a con-
cept that includes many attributes such as, availability,
reliability, safety, integrity, and maintainability (Avizienis
et al. 2004). In Fig. 6, we point out the parameters on
which the availability and reliability of a system depends.
The parameters used for determining the availability and
reliability are: (a) mean time to detect (MTTD), (b) mean
time to repair (MTTR), and (c) mean time between fail-
ures (MTBF). Christer Carlsson (2011) analyzed fail-
ure data, collected over several years at the Los Almos
National Laboratory (LANL), where the study included
the major causes of failures, the mean time between fail-
ure (MTBF), and the mean time to repair (MTTR). The
researchers discovered that the average failure rates were
roughly ranging from 20 to 1000 failures per year (Chris-
ter Carlsson 2011).

Page 14 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Fault detection and tolerance in grid computing
As the size and sophistication of the present-day dis-
tributed systems make the occurrence of failures, the
rule rather than the norm, many fault tolerant resource
management techniques have been designed (Gallet et al.
2010). In Table 1 we provide a comparative analysis of
various grid middleware that have fault tolerant capa-
bilities. Literature survey reveals that grid computing
paradigms in distributed environments use various fault
detection and tolerance techniques, which are discussed
as under:

Globus provides a software infrastructure that enables
applications to handle distributed heterogeneous com-
puting resources as a single virtual machine. The Globus
toolkit consists of a set of components that implement
basic services, such as security, resource allocation,
resource management, and communications (Baker

et al. 2002). Globus can be considered as a grid comput-
ing framework that offers many services for wide-area
application execution to application developers. The
Globus heart beat monitor (Hwang and Kesselman 2003;
Stelling et al. 1999) provides a generic failure detection
service designed to be incorporated into distributed sys-
tem, tools, or applications. Globus enables applications
to detect both host/network failure by detecting miss-
ing heartbeats. The strategy for fault tolerance used in
Globus is to resubmit the failed jobs (Affaan and Ansari
2006).

Monitoring and Discovery Systems (MDS-2) in theory
can support the task crash failure detection functional-
ity through the GRRP (Gullapalli et al. 2001) notification
protocol and the Grid Resource Information Service/
Grid Index Information Server (GRIS/GIIS) framework.
However, in case of Globus heart beat monitor, it is not

Fig. 6  Factors required for finding availability and reliability

Table 1  Comparison of fault detection and tolerance techniques used in grids along with their advantages and disadvan-
tages

System Fault detection
technique

Types of faults
detected

Fault tolerance
technique

Advantages Disadvantages

Globus
Buyya and Murshed

(2002), Klutke et al.
(2003)

Heartbeat monitor Host failure, Network
failure

Resubmit the failed job Generic failure detec-
tion

Can not handle user
defined exceptions

MDS-2
Buyya and Murshed

(2002), Coulouris
et al. (2001)

GRRP Task crash failure Retry Task crash failure
detection through
protocols

Can not handle user
defined exceptions

Legion
Alvisi and Marzullo

(1998), Hussain et al.
(2006)

Pinging Task failure Checkpoint recovery Application level fault
tolerance

Can not discern
between task failure
and network failure

Condor-G
Townend and Xu

(2003)

Polling Host crash, Network
crash

Retry on same
machine

Provides security, man-
agement of jobs, and
fault tolerance

Retry on same machine,
can not detect task
crash failure

NetSolve
Buyya and Murshed

(2002), de Lemos
(2006)

Generic heartbeat
mechanism

Host crash, task crash,
and network failure

Retry on another avail-
able machine

Load balancing, heart-
beat mechanism,
Retry on another
machine

Does not support
diverse failure recov-
ery mechanism

CoG Kits
Guimaraes and de

Melo (2011)

N/A N/A N/A Security, Discovery of
resources, and man-
agement of resources

Failure detection is hard
coded, Ignores fault
tolerance

Page 15 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

straight forward to use MDS-2 to construct the failure
detection services. The MDS-2 is in fact designed to
develop grid information services rather than the failure
detection services. Moreover user-defined exceptions
cannot be detected using the MDS-2 (Hwang and Kes-
selman 2003; Czajkowski et al. 2001).

Legion is an object-based system developed at the Uni-
versity of Virginia. The software infrastructure offered
by Legion ensures seamless interaction of machines
in heterogeneous and geographically distributed envi-
ronments. Features available in Legion are transpar-
ent scheduling, data management, fault tolerance, site
autonomy, and security (Baker et al. 2002). Legion uses
“pinging and timeout” mechanism to detect task failures.
If a response is not received from a task within an accept-
able time, then Legion assumes that the task has failed.
Indeed, this pinging and timeout mechanism can detect
neither the task crash failures nor user-defined excep-
tions, nor Legion can distinguish the pure task crash
failure from the host/network failures (Nguyen-Tuong
2000; Grimshaw et al. 1997). Legion provides fault toler-
ance through checkpoint recovery at the application level
(Medeiros et al. 2003).

Condor-G leverages software from Globus and Condor
to enable users to harness multi-domain resources as if
they all belong to one personal domain. Condor-G com-
bines the inter-domain resource management protocols
of the Globus toolkit. Similarly, Condor-G uses the intra-
domain resource management methods of Condor. This
combination allows the users to combine large collec-
tions of resource across multiple domains, providing an
impression as they belong to one personal domain (Frey
et al. 2002). Features offered by Condor-G are job man-
agement, resource selection, security, and fault tolerance.
Condor-G (Frey et al. 2002) adopts an ad hoc failure
detection mechanism because the underlying grid proto-
col ignores fault tolerance issues. Condor-G uses periodic
polling to the generic grid server to detect certain types
of failures, such as the crash of the generic grid server
and host/network failures. However, Condor-G can nei-
ther detect the task crash failures nor the user-defined
exceptions, as is the case in Legion. Condor-G uses retry
on the same machine for fault tolerance in a grid envi-
ronment (Sistla and Welch 1989). In Condor-G the idea
of fault tolerance and scalability is attained by composing
the system of replicable modules that can be executed on
any node. Fault tolerance is provided by using “process
peer fault tolerance”, when a module fails, it is restarted
by one of the peers (Hussain et al. 2006).

According to Baker et al. (2002), NetSolve is a pro-
gramming and runtime system for accessing high-per-
formance libraries and resources, transparently. NetSolve
(Baker et al. 2002) is a client/server application designed

to solve computational science problems in a distributed
environment. NetSolve is based on a loosely coupled
distributed system. Performance is ensured by a load-
balancing policy that enables NetSolve to use the com-
putational resources available as efficiently as possible.
Clients of NetSolve can be written in C and fortran lan-
guage, and use MATLAB or the Web to interact with the
server. MATLAB can be used in many areas of computer
science, e.g. signal and image processing, computational
biology, control systems and financial models etc.

Many MATLAB based applications for parallel pro-
gramming exists. MatlabMPI (Kepner and Ahalt 2004)
created by MIT Lincoln Laboratory, MultiMATLAB
(Trefethen et al. 1996) by Cornell University, bcMPI by
Ohio Supercomputing Center (Bliss and Kepner 2007)
and pMATLAB etc. are the most notable MATLAB par-
allel programming applications. Furthermore, MATLAB
offers specialized routines in the form of add-ons, known
as “toolboxes” (Sharma and Martin 2009) along with
some simple interfaces to high-performance libraries.
Advantage of using NetSolve is that it ensures good per-
formance through the load balancing policy that enables
NetSolve to use the computational resources available
as efficiently as possible. NetSolve uses a generic heart-
beat mechanism for failure detection and uses retry on
another available machine for fault tolerance (Hwang and
Kesselman 2003).

The CoG Kit is a Commodity Grid toolkit that defines
and implements a set of general components that map
grid functionality into a commodity environment/
framework (Von Laszewski et al. 2000). With the help of
the CoG Kit, the application developers can exploit the
advanced services of grid, such as resource management,
security, and resource discovery. Similarly, CoG kit can
be used for developing higher-level components in terms
of familiar and powerful application development frame-
works (Von Laszewski et al. 2000). CoG Kit (Hwang and
Kesselman 2003) does not have failure detection mecha-
nism and is missing the advanced features of fault toler-
ance, such as replication and check pointing.

Mechanisms used for fault detection and tolerance
The following techniques can be used for detection and
identification of faults in grid computing environments:

Push model
In push model, the components of the grid starts send-
ing heartbeat messages at regular time intervals to a cen-
tral failure detector. If failure detector does not receive
a message from one or more grid components within a
specified time, then failure detector assumes and consid-
ers the problem as a failure of that component (Garg and
Singh 2011).

Page 16 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Pull model
For detection of faults in pull model, the failure detector
keeps on sending ping requests to the grid components
after specific time intervals. Ping request sent for a par-
ticular device if not received within an acceptable time
frame is considered to be failure of that particular device
(Garg and Singh 2011).

Probability based techniques
Different probability based techniques are also used to
detect and identify problems that are expected in grid
computing environments. Joshi et al. (2011), has used
probability based approach for automating recovery of
faults in distributed environments. Risks associated with
service level agreements in grid environments are cal-
culated by Carlsson and Fuller (2010), using a predictive
probabilistic approach.

Neural network based approaches
One of the many usages of the neural networks is in the
field/area of computer networks for diagnosing faults.
Some researchers (Charoenpornwattana et al. 2008) are
applying the concept for detecting and diagnosing faults
in grids for improving reliability. Charoenpornwattana
et al. (2008), used neural network based approach for
proactive fault avoidance. Calado and da Costa (2006),
used neural network based fault identification and diag-
nosis using fuzzy approach to achieve reliability in high
performance computing environments.

Proactive fault tolerance
Fault tolerance can be further handled intelligently by
developing and adopting techniques such as maintain-
ing the history of information about successful job com-
pletion. Faults faced/observed during the working of
grid environment can also be handled proactively. The
probability of resource and or node failure history can
also be maintained and used later for proactive fault
tolerance. Similarly, reliability of resources of grid par-
ticipating nodes/machines can also be generated using
algorithms resulting in timely decisions regarding fault
tolerance. In proactive fault tolerance, we take decisions
regarding a problem that has not yet actually occurred
or observed. Although many proactive fault tolerance
techniques for grids have been proposed by researchers
(Nazir et al. 2012; Haider et al. 2007; Nazir et al. 2009;
Vallee et al. 2008; Engelmann et al. 2009; Nagarajan
et al. 2007; Litvinova et al. 2009; Benjamin Khoo and
Veeravalli 2010) but still a comprehensive and accept-
able proactive fault tolerance technique with respect to
grid is awaited.

Reactive fault tolerance
Reactive fault tolerance is used in systems where job fail-
ures are considered and handled after occurrence. Most
of the fault tolerant techniques are reactive in nature and
many grid middleware (Hwang and Kesselman 2003;
Katzela 1996; Grimshaw et al. 1997; Stelling et al. 1999;
Czajkowski et al. 2001; Baker et al. 2002) are handling the
issue of fault tolerance, reactively. Most of the research
regarding fault tolerance in grid environments is using
reactive/post-active approach that is handling faults after
detection.

Performance evaluation criteria
There are many factors that need to be considered while
evaluating a good or a bad fault tolerant system. An obvi-
ous fact is that more focus and concentration on fault
tolerance will be at the cost of system performance. An
intelligent fault tolerant system can be designed while
considering system performance in mind. Performance
evaluation criteria’s in fault tolerance are identified in
Table 2.

Performance evaluation criteria’s identified in Table 2
signify that authenticity of fault tolerant model will
improve by incorporating more of its factors. It is per-
haps impossible to consider all the criteria’s while design-
ing a fault tolerant system. However, more the considered
points mentioned in Table 2, better will be the designed
fault tolerant system. Similarly, trying to achieve all of the
defined criteria’s, and architecture will be bulky that ulti-
mately will result in the overall reduction in performance.

Open issues: fault tolerance in grid computing
Grid computing will keep on imposing new conceptual
and technical challenges (Nazir et al. 2012). Open issues
with respect to fault tolerance are to find ways to detect
and handle different types of errors, failures, and faults in
distributed application or middleware used in grid com-
puting environments.

Establish a fault detection mechanism capable of detecting
faults
Various techniques can be used for detecting faults. Artifi-
cial neural network, probability, push model and pull model
are the techniques that can be applied for identification of
faults. Combination of two or more techniques, such as
artificial neural network and probability, or any other com-
bination can be helpful for fault detection and according to
our knowledge a combination of neural network and prob-
ability based approaches have not yet been applied for fault
identification in grids. Probability and neural network can
also be used for treatment of faults proactively.

Page 17 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Identification of the domain of the problem
The problems incurred in grids can be in the form of
errors, failures, and faults. Therefore, it would be better
to actually identify the problem domain. Identification of
problem domain is to know whether the problem is error,
failure, or fault and further getting information about the
sub category of the type of problem.

Fault repercussion analysis
After the identification of the domain of the problem, that
problem must be assessed for the possible impact. For
example, what type of harm or damage can that problem
cause? Similarly, further investigation about the identi-
fied problem with respect to the location in the layered
grid architecture and solution for improving the availabil-
ity can further be helpful. Factors, such as mean time to
detect and mean time to repair can then be used to check
whether the proposed solution has increased availability
factor or not. Solutions that improve availability are con-
formance of correctness and further are proof of reliability.

Maintaining log of problems and using fault tolerance
scheduling technique during resource allocation
Several research papers have shown the use of fault
tolerant scheduling strategies (Latchoumy and Khader

2012; Nazir et al. 2012; Haider et al. 2007; Benjamin
Khoo and Veeravalli 2010; Amoon 2012) for compu-
tational grids. An intelligent fault tolerant schedul-
ing scheme that combines ideas from neural network,
probability, and historical data gathered over a course
of time can also be a smart way that can help in fault
tolerance.

Hybrid fault tolerance technique
Hybrid fault tolerance approach, such as a combination
of proactive and reactive technique can also be used in
grid environments. Proactive technique would actu-
ally inform about the problem before that problem is
observed in the system. Moreover, if the problem is
encountered then reactive techniques would be there to
take over the situation.

Prediction of failures and its impact on performance
Another important research area from fault tolerance
point of view in grids and other HPC environments is
of predicting failures. If an application in HPC environ-
ment is likely to finish before the predicted failure, then
a proactive fault tolerant measure can be avoided, hence
a possibility in improving performance (Egwutuoha
2014).

Table 2  Performance evaluation criteria’s

S. no. Evaluation criteria Recommended In between Not recommended

1 Time to detect errors Early – Late

2 Failure probability Low Medium High

3 Node selection for job execution Intelligent Random Unintelligent

4 Failure detection Proactive Reactive –

5 Fault detection layers All layers Few layers No layer

6 Recovery time of failed node Low Medium High

7 Response time after failure Early – Late

8 Resource utilization Increased – Decreased

9 Recovery technique Workflow, task level – –

10 Job success ratio Increased Moderate Decreased

11 Overall throughput Increased Moderate Decreased

12 Overall ATAT Reduced – Magnified

13 Errors detected Large Medium Low

14 Overall AWT Low Medium High

15 Transmission delay Reduced – Magnified

16 Implementation Easy – Difficult

17 Adaptability Yes – No

18 Fault detection Dynamic – Static

19 Task level FT Checkpoint Replication Alternate resource

20 MTTF Increased – Decreased

21 MTTR Decreased – Increased

22 MTTD Decreased – Increased

Page 18 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Conclusion
In this survey we have learned that fault tolerance is an
important issue that must be dealt with care, as reli-
ability, dependability, performance, and quality of service
depends upon the reliable provisioning of services.

Literature review reveals that the distributed sys-
tems are lacking a complete classification of the types of
errors, failures, and faults. Every type of problem is con-
sidered and named as a fault, though it could be an error
or failure too. We have created an extended classification
of errors, failures and faults. To ensure reliability and
dependability in a distributed application or system, all of
these should be incorporated.

Different fault tolerant techniques are available for
grid based environments and most of them are reactive
in nature. However, most of the techniques are capable
of handling only few types of errors. Very few techniques
are dynamic and handle faults proactively. For fault tol-
erant techniques to be more efficient and precise, the
emphasis must be on fault detection first, as only the cor-
rect and timely fault detection can ensure a timely and
right fault tolerant mechanism.

Authors’ contributions
SH has been involved in initial write-up and subsequent revision. SH has been
involved in initial completion and revision of the manuscript. BN has been
involved in concept, organization, and design of the manuscript. Moreover, BN
has been involved in critical analysis of the original and revised manuscript.
Both authors read and approved the final manuscript

Author details
1 Department of Computer Science, Shaheed Zulfiqar Ali Bhutto Institute
of Science & Technology (SZABIST), H‑8, Islamabad, Pakistan. 2 Department
of Computer Science, National University of Modern Languages (NUML), H‑9,
Islamabad, Pakistan. 3 Department of Computer Science, COMSATS Institute
of Information Technology, University Road, Tobe Camp, Abbottabad 22060,
Pakistan.

Competing interests
The authors declare that they have no competing interests.

Received: 27 June 2016 Accepted: 9 November 2016

References
Affaan M, Ansari M (2006) Distributed fault management for computational

grids. In: Fifth international conference grid and cooperative comput-
ing, GCC 2006, pp 363–368

Alvisi L, Marzullo K (1998) Message logging: pessimistic, optimistic, causal, and
optimal. IEEE Trans Softw Eng 24(2):149–159

Ammendola R, Biagioni A, Frezza O, Cicero FL, Lonardo A, Paolucci PS, Rossetti
D, Simula F, Tosoratto L, Vicini P (2015) A hierarchical watchdog mecha-
nism for systemic fault awareness on distributed systems. Future Gener
Comput Syst 53:90–99

Amoon M (2012) A fault-tolerant scheduling system for computational grids.
Comput Electr Eng 38(2):399–412

Arshad N (2006) A planning-based approach to failure recovery in distributed
systems. PhD thesis, University of Colorado

Avizienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concepts and tax-
onomy of dependable and secure computing. IEEE Trans Dependable
Secur Comput 1(1):11–33

Bahman arasteh, ZadahmadJafarlou M, Hosseini MJ (2012) A dynamic and reli-
able failure detection and failure recovery services in the grid systems.
In: Park JJ, Chao HC, Obaidat MS, Kim J (eds) Computer science and
convergence. Lecture notes in electrical engineering (LNEE), vol 114.
Springer, Dordrecht, pp 497–509

Baker M, Buyya R, Laforenza D (2002) Grids and grid technologies for wide-area
distributed computing. Softw Pract Exp 32(15):1437–1466

Balaji P, Buntinas D, Kimpe D (2012) Scalable computing and communications:
theory and practice. In: Zomaya Y, Khan SU Wang L (eds) Fault tolerance
techniques for scalable computing. John Wiley & Sons Publishing,
Hoboken, New Jersey

Baldoni R, H´elary J-M, Piergiovanni ST (2007) A component-based methodol-
ogy to design arbitrary failure detectors for distributed protocols. In:
10th IEEE international symposium on object and component-oriented
real-time distributed computing, ISORC’07, pp 51–61

Baldoni R, H´elary J-M, Piergiovanni ST (2008) A methodology to design
arbitrary failure detectors for distributed protocols. J Syst Archit
54(7):619–637

Benjamin Khoo B, Veeravalli B (2010) Pro-active failure handling mechanisms
for scheduling in grid computing environments. J Parallel Distrib
Comput 70(3):189–200

Bhagyashree A, Pradeep D, Jayanthy N, Mounica K, Nivejaa S, Saranya Dharani
P (2010) A hierarchical fault detection and recovery in a computational
grid using watchdog timers. In: 2010 International conference on com-
munication and computational intelligence (INCOCCI), pp 467–471

Bheevgade M, Patrikar RM (2008) Implementation of watch dog timer for
fault tolerant computing on cluster server. World Acad Sci Eng Technol
38:265–268

Bliss NT, Kepner J (2007) pMATLAB parallel MATLAB library. Int J High Perf
Comput Appl 21(3):336–359

Bouguerra M-S, Trystram D, Wagner F (2013) Complexity analysis of checkpoint
scheduling with variable costs. IEEE Trans Comput 62(6):1269–1275

Brodie M, Rish I, Ma S, Odintsova N, Beygelzimer A (2003) Active probing
strategies for problem diagnosis in distributed systems. In: IJCAI, pp
1337–1338

Buyya R, Murshed M (2002) Gridsim: a toolkit for the modelling and simulation
of distributed resource management and scheduling for grid comput-
ing. Concurr Comput Pract Exp 14(13–15):1175–1220

Calado J, da Costa JS (2006) Fuzzy neural networks applied to fault diagnosis.
In: Computational intelligence in fault diagnosis. Springer, pp 305–334

Carlsson C, Fuller R (2010) Predictive probabilistic and predictive possibilistic
models used for risk assessment of SLAs in grid computing. In: Hüller-
meier E, Kruse R, Hoffmann F (eds) IPMU 2010: Information process-
ing and management of uncertainty in knowledge-based systems.
Applications: 13th international conference, IPMU 2010, Dortmund,
Germany, June 28–July 2, 2010. Proceedings, Communications in
computer and information science (CCIS), vol 81. Springer, Heidelberg,
pp 747–757

Chan PPW, Lyu MR, Malek M (2007) Reliable web services: methodology,
experiment and modelling. In: IEEE International conference on web
services, ICWS 2007, pp 679–686

Charoenpornwattana K, Leangsuksun C, Tikotekar A, Vall´ee GR, Scott SL,
Chen X, Eckart B, He X, Engelmann C, Sun X-H et al. (2008) A neural
networks approach for intelligent fault prediction in hpc environments.
In: Proceedings of the high availability and performance computing
workshop, Denver, Colorado

Christer Carlsson RF (2011) Risk assessment in grid computing. Possibility
Decis Stud Fuzziness Soft Comput 270:145–165

Cotroneo D, Natella R, Russo S, Scippacercola F (2013) State-driven testing
of distributed systems. In: International conference on principles of
distributed systems. Springer International Publishing, pp 114–128

Coulouris G, Dollimore J, Kindberg T (2001) Distributed systems: concepts and
design, 3rd edition. Paragraph 15:4

Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001) Grid information services for
distributed resource sharing. In: Proceedings of the 10th IEEE international
symposium on high performance distributed computing, pp 181–194

Das A, De Sarkar A (2012) On fault tolerance of resources in computational
grids. Int J Grid Comput Appl 3(3):1

de Lemos R (2006) Adaptability and fault tolerance. In: International confer-
ence on software engineering, ICSE workshop on software engineering
for adaptive and self-managing systems (SEAMS). 21–22 May 2006

Page 19 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Delporte-Gallet C, Fauconnier H, Freiling FC (2005) Revisiting failure detection
and consensus in omission failure environments. In: Hung DV, Wirsing
M (eds) International colloquium on theoretical aspects of computing.
Theoretical aspects of computing–ICTAC 2005. Lecture notes in com-
puter science (LNCS), vol 3722. Springer, Heidelberg, pp 394–408

Egwutuoha IP (2014) A proactive fault tolerance framework for high perfor-
mance computing (HPC) systems in the cloud. PhD thesis, University
of Sydney

Egwutuoha IP, Levy D, Selic B, Chen S (2013) A survey of fault tolerance mecha-
nisms and check-point/restart implementations for high performance
computing systems. J Supercomput 65(3):1302–1326

Engelmann C, Vallee GR, Naughton T, Scott SL (2009) Proactive fault tolerance
using pre-emptive migration. In: 2009 17th IEEE euromicro interna-
tional conference on parallel, distributed and network-based process-
ing, pp 252–257

Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling
scalable virtual organizations. Int J High Perform Comput Appl
15(3):200–222

Foster H, Uchitel S, Magee J, Kramer J (2003) Model-based verification of web
service compositions. In: Proceedings of the 18th IEEE international
conference on automated software engineering, pp 152–161

Frey J, Tannenbaum T, Livny M, Foster I, Tuecke S (2002) Condor-g: a computa-
tion management agent for multi-institutional grids. Clust Comput
5(3):237–246

Fugini MG, Pernici B, Ramoni F (2009) Quality analysis of composed services
through fault injection. Inf Syst Front 11(3):227–239

Gallet M, Yigitbasi N, Javadi B, Kondo D, Iosup A, Epema D (2010) A model for
space-correlated failures in large-scale distributed systems. In: D’Ambra
P, Guarracino M, Talia D (eds) Euro-Par 2010, Part 1. LNCS, vol 6271.
Springer, Heidelberg, pp 88–100

Ganga K, Karthik S, Paul AC (2012) A survey on fault tolerance in workflow
management and scheduling. IJARCET 1(8):176

Garg R, Singh AK (2011) Fault tolerance in grid computing: state of the art and
open issues. Int J Comput Sci Eng Surv 2(1):88

Garg S, van Moorsel A, Vaidyanathan K, Trivedi KS (1998) A methodology for
detection and estimation of software aging. In: Proceedings of the
ninth international symposium on software reliability engineering, pp
283–292

Ghosh S, Mathur AP, Horgan JR, Li JJ, Wong WE (1997) Software fault injection
testing on a distributed system–a case study. In: Proceedings of the 1st
international quality week Europe, Brussels, Belgium

Gokuldev S, Valarmathi M (2013) Fault tolerant system for computational and
service grid. Int J Eng Innovative Technol 2(10):236–240

Grimshaw AS, Wulf WA et al (1997) The legion vision of a worldwide virtual
computer. Commun ACM 40(1):39–45

Gu Y, Wu CQ, Liu X, Yu D (2013) Distributed throughput optimization for
large-scale scientific workflows under fault-tolerance constraint. J Grid
Comput 11(3):361–379

Guimaraes FP, de Melo ACMA (2011) User-defined adaptive fault-tolerant
execution of workflows in the grid. In: 2011 IEEE 11th international con-
ference on computer and information technology (CIT), pp 356–362

Guimaraes FP, C’elestin P, Batista DM, Rodrigues GN, de Melo ACMA, (2013)
A framework for adaptive fault-tolerant execution of workflows in the
grid: empirical and theoretical analysis. J Grid Comput 12(1):127–151

Gullapalli S, Czajkowski K, Kesselman C, Fitzgerald S (2001) The grid notification
framework. Global grid forum, Draft GWD-GIS-019

Gurer DW, Khan I, Ogier R, Keffer R (1996) An artificial intelligence approach to
network fault management. SRI International, Menlo Park, CA, USA

Haider S (2007) Component based proactive fault tolerant scheduling through
cross-layer design in computational grid. Master’s thesis, Federal Urdu
University of Arts, Science and Technology, Islamabad, Pakistan

Haider S, Ansari NR (2012) Temperature based fault forecasting in computer
clusters. In: IEEE 15th international multi topic conference (IEEE-INMIC),
pp 69–77

Haider S, Imran M, Niaz I, Ullah S, Ansari M (2007) Component based proactive
fault tolerant scheduling in computational grid. In: IEEE international
conference on emerging technologies, (IEEE-ICET) 2007, pp 119–124

Haider S, Ansari NR, Akbar M, Perwez MR, Ghori KM (2011) Fault tolerance in
distributed paradigms. In: Proceedings of fifth international confer-
ence on computer communication and management. IACSIT Press,
Singapore

Hsueh MC, Tsai TK, Iyer RK (1997) Fault injection techniques and tools. Com-
puter 30(4):75–82

Hussain N, Ansari M, Yasin M, Rauf A, Haider S (2006) Fault tolerance using
parallel shadow image servers (psis) in grid based computing environ-
ment. In: 2006 International conference on emerging technologies,
IEEE, pp 703–707

Hussain H, Malik SUR, Hameed A, Khan SU, Bickler G, Min-Allah N, Qureshi MB,
Zhang L, Yongji W, Ghani N et al (2013) A survey on resource allocation
in high performance distributed computing systems. Parallel Comput
39(11):709–736

Hwang S, Kesselman C (2003) A flexible framework for fault tolerance in the
grid. J Grid Comput 1(3):251–272

Joshi KR, Hiltunen MA, Sanders WH, Schlichting RD (2011) Probabilistic model-
driven recovery in distributed systems. IEEE Trans Dependable Secur
Comput 8(6):913–928

Katzela I (1996) Fault diagnosis in telecommunication networks. PhD thesis,
Columbia University

Kepner J, Ahalt S (2004) Matlab MPI. J Parallel Distrib Comput 64(8):997–1005
Khan FG, Qureshi K, Nazir B (2010) Performance evaluation of fault toler-

ance techniques in grid computing system. Comput Electr Eng
36(6):1110–1122

Klutke G-A, Kiessler PC, Wortman M (2003) A critical look at the bathtub curve.
IEEE Trans Reliab 52(1):125–129

Kondo D, Javadi B, Iosup A, Epema D (2010) The failure trace archive: enabling
comparative analysis of failures in diverse distributed systems. In: 2010
10th IEEE/ACM international conference on cluster, cloud and grid
computing (CCGrid), pp 398–407

Latchoumy P, Khader PSA (2011) Survey on fault tolerance in grid computing.
IJCSES 2:97

Latchoumy P, Khader PSA (2012) Fault tolerant advance reservation-based
scheduling in computational grid. Eur J Sci Res 89(3):409–421

Li H, Groep D, Wolters L, Templon J (2006) Job failure analysis and its implica-
tions in a large-scale production grid. In: Second IEEE international
conference on e-science and grid computing, 2006, pp 27–27

Litvinova A, Engelmann C, Scott SL (2009) A proactive fault tolerance frame-
work for high-performance computing. In: Proceedings of the 9th
IASTED international conference, vol 676, p 105

Malik S, Nazir B, Qureshi K, Khan IA (2012) A reliable checkpoint storage strat-
egy for grid. Computing 95(7):611–632

Massie ML, Chun BN, Culler DE (2004) The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Comput 30(7):817–840

Medeiros R, Cirne W, Brasileiro F, Sauv´e J (2003) Faults in grids: Why are they so
bad and what can be done about it? In: IEEE proceedings of the fourth
international workshop on grid computing, pp 18–24

Moon Y-H, Youn C-H (2015) Multi hybrid job scheduling for fault-tolerant dis-
tributed computing in policy-constrained resource networks. Comput
Netw 82:81–95

Nagarajan AB, Mueller F, Engelmann C, Scott SL (2007) Proactive fault toler-
ance for hpc with xen virtualization. In: Proceedings of the 21st annual
international conference on supercomputing, ACM, pp 23–32

Nazir B, Qureshi K, Manuel P (2009) Adaptive checkpointing strategy to toler-
ate faults in economy based grid. J Supercomput 50(1):1–18

Nazir B, Qureshi K, Manuel P (2012) Replication based fault tolerant job sched-
uling strategy for economy driven grid. J Supercomput 62(2):855–873

Nguyen-Tuong A (2000) Integrating fault-tolerance techniques in grid applica-
tions. PhD thesis, University of Virginia

Qin F (2012) QoS-constrained resource scheduling in grid computing. In: Pro-
ceedings of the international conference on information engineering
and applications (IEA) 2012, pp 407–414. Springer

Qureshi K, Khan FG, Manuel P, Nazir B (2011) A hybrid fault tolerance technique
in grid computing system. J Supercomput 56(1):106–128

Rajachandrasekar R, Besseron X, Panda DK (2012) Monitoring and predicting
hardware failures in hpc clusters with ftb-ipmi. In: 2012 IEEE 26th inter-
national parallel and distributed processing symposium workshops &
PhD forum (IPDPSW), pp 1136–1143

Roohi Shabrin S, Devi Prasad B, Prabu D, Pallavi RS, Revathi P (2006) Memory
leak detection in distributed system. In: Proceedings of world academy
of science, engineering and technology, vol 16, pp 1307–6884

Schroeder B, Gibson G et al (2010) A large-scale study of failures in high-per-
formance computing systems. IEEE Trans Dependable Secur Comput
7(4):337–350

Page 20 of 20Haider and Nazir ﻿SpringerPlus (2016) 5:1991

Selic B (2004) Fault tolerance techniques for distributed systems. IBM develop-
ers manual

Sethi AS et al (2004) A survey of fault localization techniques in computer
networks. Sci Comput Progr 53(2):165–194

Sharma Gaurav, Martin Jos (2009) MATLAB®: a language for parallel comput-
ing. Int J Parallel Progr 37(1):3–36

Shestak V, Chong EK, Maciejewski AA, Siegel HJ (2012) Probabilistic resource
allocation in heterogeneous distributed systems with random failures. J
Parallel Distrib Comput 72(10):1186–1194

Sistla AP, Welch JL (1989) Efficient distributed recovery using message logging.
In: Proceedings of the eighth annual ACM symposium on principles of
distributed computing, pp 223–238

Siva Sathya S, Syam Babu K (2010) Survey of fault tolerant techniques for grid.
Comput Sci Rev 4(2):101–120

Stelling P, DeMatteis C, Foster I, Kesselman C, Lee C, von Laszewski G (1999) A
fault detection service for wide area distributed computations. Clust
Comput 2(2):117–128

Sun D, Chang G, Miao C, Wang X (2013) Analyzing, modelling and evaluat-
ing dynamic adaptive fault tolerance strategies in cloud computing
environments. J Supercomput 66(1):193–228

Tang B, He H, Fedak G (2015) HybridMR: a new approach for hybrid map
reduce combining desktop grid and cloud infrastructures. Concurr
Comput Pract Exp 27(6):4140–4155

Townend P, Xu J (2003) Fault tolerance within a grid environment. Timeout
1(S2):S3

Trefethen AE, Menon VS, Chang CC, Czajkowski G, Myers C, Trefethen LN (1996)
MultiMATLAB: MATLAB on multiple processors. Cornell University, Ithaca

Trodhandl C, Weiss B (2008) A concept for hybrid fault injection in distributed
systems. TAIC PART Publishing, Windsor

Vaidyanathan K, Trivedi KS (2001) Extended classification of software faults
based on aging. Duke University, Durham

Valentini GL, Lassonde W, Khan SU, Min-Allah N, Madani SA, Li J, Zhang L, Wang
L, Ghani N, Kolodziej J et al (2013) An overview of energy efficiency
techniques in cluster computing systems. Clust Comput 16(1):3–15

Vallee G, Engelmann C, Tikotekar A, Naughton T, Charoenpornwattana K,
Leangsuksun C, Scott SL (2008) A framework for proactive fault toler-
ance. In: Third international conference on availability, reliability and
security, ARES 08, pp 659–664

Viktors B (2002) Fundamentals of grid computing. IBM redbooks paper, pp
1–28

Von Laszewski G, Foster I, Gawor J (2000) Cog kits: a bridge between commod-
ity distributed computing and high-performance grids. In: Proceedings
of the ACM 2000 conference on Java Grande, pp 97–106

Wei-Tek T, Ray P, Lian Y, Saimi A, Zhibin C (2003) Scenario-based web services
testing with distributed agents. IEICE Trans Inf Syst 86(10):2130–2144

Yu J, Buyya R (2005) A taxonomy of workflow management systems for grid
computing. J Grid Comput 3(3–4):171–200

Zhang Y, Mandal A, Koelbel C, Cooper K (2009) Combined fault tolerance and
scheduling techniques for workflow applications on computational
grids. In: 9th IEEE/ACM international symposium on cluster computing
and the grid, CCGRID’09, pp 244–251

Zheng Z, Lyu MR (2008) A distributed replication strategy evaluation and
selection framework for fault tolerant web services. In: IEEE Interna-
tional conference on web services, ICWS’08, pp 145–152

Zheng Z, Lyu MR (20098) A qos-aware fault tolerant middleware for depend-
able service composition. In: IEEE/IFIP international conference on
dependable systems & networks, DSN’09, pp 239–248

Zheng Z, Lyu MR (2010) An adaptive qos-aware fault tolerance strategy for
web services. Empir Softw Eng 15(4):323–345

Zhou Y, Lakamraju V, Koren I, Krishna CM (2007) Software-based failure detec-
tion and recovery in programmable network interfaces. IEEE Trans Paral-
lel Distrib Syst 18(11):1539–1550

	Fault tolerance in computational grids: perspectives, challenges, and issues
	Abstract
	Background
	Challenges in grid dependability
	Existing surveys
	Fault identification, detection, and diagnosis
	Fault localization and isolation
	Fault injection and testing
	Fault forecasting and prediction
	Fault treatment and removal
	Fault tolerance and recovery
	Retry
	Replication
	Message logging
	Checkpointing

	Threats to grid dependability: errors, failures and faults
	Error
	Network errors
	Software errors
	Time based errors

	Failure
	Omission failures
	Hardware failure
	Response failure
	Network failure
	Software failure
	Miscellaneous failure

	Fault
	Aging related fault
	Omission faults
	Response faults
	Timing faults
	Interaction faults
	Software faults: Heisenbugs and Bhorbugs
	Life cycle faults
	Response faults: Byzantine and value faults

	Design goals in grid dependability
	Availability
	Adaptability
	Continuity and quality of service
	Maintainability

	Fault detection and tolerance in grid computing
	Mechanisms used for fault detection and tolerance
	Push model
	Pull model
	Probability based techniques
	Neural network based approaches
	Proactive fault tolerance
	Reactive fault tolerance

	Performance evaluation criteria
	Open issues: fault tolerance in grid computing
	Establish a fault detection mechanism capable of detecting faults
	Identification of the domain of the problem
	Fault repercussion analysis
	Maintaining log of problems and using fault tolerance scheduling technique during resource allocation
	Hybrid fault tolerance technique
	Prediction of failures and its impact on performance

	Conclusion
	Authors’ contributions
	References

