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Abstract 

Computational grids are established with the intention of providing shared access to hardware and software based 
resources with special reference to increased computational capabilities. Fault tolerance is one of the most important 
issues faced by the computational grids. The main contribution of this survey is the creation of an extended classifica-
tion of problems that incur in the computational grid environments. The proposed classification will help researchers, 
developers, and maintainers of grids to understand the types of issues to be anticipated. Moreover, different types of 
problems, such as omission, interaction, and timing related have been identified that need to be handled on various 
layers of the computational grid. In this survey, an analysis and examination is also performed pertaining to the fault 
tolerance and fault detection mechanisms. Our conclusion is that a dependable and reliable grid can only be estab-
lished when more emphasis is on fault identification. Moreover, our survey reveals that adaptive and intelligent fault 
identification, and tolerance techniques can improve the dependability of grid working environments.
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Background
Grid computing is an extension of distributed computing 
environment where geographically distributed resources 
are shared, selected, and aggregated based on the avail-
ability, performance, and capability (Guimaraes et  al. 
2013). From the cluster computing point of view, a grid 
is a collection of clusters that is “grid is a cluster of clus-
ters” (Haider 2007). Distributed computing consists of 
three major paradigms, namely: (a) cluster, (b) grid, and 
(c) cloud (Valentini et al. 2013; Hussain et al. 2013).

As the nodes and resources are dynamically added in 
distributed systems like grids and clouds, different types 
of uncertainties start creeping and chances of resource 
failures increase. According to in Moon and Youn (2015) 
70–75% resources have failure rates of around 20 and 
40% in workload archives such as DEUB, UCB and 
SDSC (Kondo et  al. 2010). Furthermore, their applica-
tion level traces reveal that most of their resources have 
more failure probabilities which further cause issues 

related to performance of scheduling and unavailabil-
ity of resources (Kondo et  al. 2010; Li et  al. 2006). In 
many organizations, there are underutilized comput-
ing resources that can be effectively used by making 
them part of the grid. Desktop machines in organiza-
tions are busy less than 5% of the time (Viktors 2002). 
Servers available in organizations are un utilized to the 
full potential. For such scenarios, grid computing pro-
vides a paradigm for making use of such underutilized 
or unused idle resources in a better way to increase the 
efficiency of resource utilization. IBM has defined grid as 
Selic (2004). “Grid is a collection of distributed comput-
ing resources available over a local or wide area network 
that appears to an end user or application as one large 
virtual computing system. The grid’s vision is to create 
virtual dynamic organizations through secure, coordi-
nated resource sharing among individuals, institutions, 
and resources. Grid computing is an approach to dis-
tributed computing that spans not only locations but 
also organizations, machine architectures, and software 
boundaries to provide unlimited power, collaboration, 
and information access to everyone connected to a grid”. 
Grid computing focuses on large scale resource shar-
ing (Foster et  al. 2001) where resources are distributed 
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geographically in various administrative domains (Buyya 
and Murshed 2002; Yu and Buyya 2005).

Fault tolerance is a capability developed in the system 
to perform functions correctly even in the presence of 
faults. Taking fault tolerance into consideration would 
result in increased dependability of a grid system (Selic 
2004). An important assumption in understanding fault 
tolerance is to know about the correct behavior of a sys-
tem. A failure is encountered when a system moves away 
from an expected behavior. The cause of the failure is 
called error that ultimately depicts some sort of fault or 
defect in the system. More specifically, the fault is the 
real cause of a failure and error is merely an indication or 
sign of a fault. Multiple errors could be due to a fault, and 
even a single error could be the cause of multiple failures 
(Selic 2004).

Computational grids offer the constructs of large-scale 
applications, but the execution of the jobs are exposed 
to various types of failures. Resources can join or leave a 
grid dynamically. Therefore, dependability related issues, 
such as availability and reliability must be considered by 
the grid resource managers and job schedulers (Zadah-
mad Jafarlou and al 2012). A survey (Hwang and Kes-
selman 2003) regarding the problems expected in grids 
identifies, how job execution in a scalable and heteroge-
neous environment, such as a grid is a critical issue due 
to the likelihood of a wide range of failures. Grid appli-
cations are multi-tasked applications that require scal-
able, heterogeneous, and distributed environments for 
execution. Therefore, failure identification and failure 
handling techniques in such environments become appli-
cation specific. If a job, whose results are expected within 
specific time intervals, fails to produce results within 
the time, then such a scenario is referred to as “timing 
related failure” (Siva Sathya and Syam Babu 2010; Garg 
and Singh 2011). Similarly, an application fails due to the 
difference in the variant versions of the grid middleware 
would be a “versioning fault” (Haider 2007). Another 
example is when an application attempts to write data 
on a hard disk, but cannot find the available space on the 
hard disk to perform the operation. As can be realized, 
there could be many cases where failures are expected to 
be encountered. The usage and implementation of grid 
will result in highlighting the significance of fault toler-
ance and the allied issues (Latchoumy and Khader 2012). 
Moreover, fault tolerance also plays a key role to ensure 
serviceability in cloud computing (Sun et  al. 2013). To 
handle fault tolerance in cloud environments, Sun et al. 
(2013) have proposed a dynamic adaptive fault tolerant 
strategy.

Failure probability in grid computing environments 
is potentially higher due to its heterogeneous nature as 
compared to other conventional parallel computing 

environments (Nazir et al. 2012). Therefore, it is critical 
to perform beforehand measures to address the expected 
or even unexpected problems. Fault tolerance in grid 
environments can be divided into two major categories, 
namely: (a) fault tolerance using pro-active approaches 
and (b) post-active approaches (Garg and Singh 2011; 
Ganga et  al. 2012). Pro-active fault tolerant approaches 
consider failures proactively before scheduling jobs on 
grid resources. Fault prediction and fault forecasting 
techniques are used in designing a proactive fault toler-
ant approach (Haider 2007; Haider and Ansari 2012). 
Proactive fault tolerance is relatively diffcult to imple-
ment as compared to reactive or post-active fault tolerant 
approaches (Zhang et  al. 2009). Proactive fault toler-
ance approaches require different types of faults related 
knowledge with respect to the future (Haider and Ansari 
2012). In the literature, most of the work regarding fault 
tolerance is based on post-active approaches rather than 
the pro-active approaches (Garg and Singh 2011; Haider 
and Ansari 2012). On the other hand, a post-active fault 
tolerant technique reacts or activates after the encoun-
tered failures. Reactive or post-active techniques uses 
fault identification techniques before responding to the 
occurred faults and only the identified faults can be toler-
ated (Haider et al. 2007). For example, if a network failure 
has occurred and a grid node is not responding due to the 
network failure, then a response to such a state could be 
in the form of a retry or replication (Haider et al. 2011). 
Here, retry or replication is the fault tolerant technique 
that will be applied after an identified problem, such as a 
network failure.

The major contributions of this work are as follows:

1.	 In this survey, a taxonomy of dependable grid com-
puting is presented that identifies recent challenges 
and threats in grid computing. The presented tax-
onomy is an extension of Avizienis et al. (2004); how-
ever, our dependability taxonomy provides a rigorous 
and a more recent review. Moreover, additional chal-
lenges are discussed along with possible solutions 
that can be used to address such challenges. Simi-
larly, threats to grid computing are discussed in more 
detail.

2.	 This paper presents a comprehensive survey on the 
types of errors, failures, and faults that are encoun-
tered in various grid computing environments. 
Nearly all of known types of risks that could be 
encountered in the grid environment are reviewed.

3.	 Lastly, based on the rigorous literature review, this 
survey identifies open research issues that need the 
attention of the research community to have more 
efficient solutions to a broad, complex, and challeng-
ing area of fault tolerance in the computational grids.



Page 3 of 20Haider and Nazir ﻿SpringerPlus  (2016) 5:1991 

Challenges in grid dependability
Existing surveys
Many of the existing surveys on the dependability and 
security of computational grids are more focused on 
the computing systems in general, and do not pay more 
attention towards grid and distributed systems (Avizienis 
et al. 2004). Some of the surveys address fault tolerance 
in grid computing, but do not discuss in detail the types 
of threats and challenges (Latchoumy and Khader 2011). 
Some of the surveys focus more on the software side 
and ignore other areas, such as handling of the hardware 
based faults and their impact (Garg et  al. 1998; Vaidy-
anathan and Trivedi 2001). Our survey specifically dis-
cusses the dependability scenarios in grid computing and 
most of the challenges, threats, and attributes related to 
dependability along with the corresponding subtypes that 
are specified in Fig. 1.

To attain high levels of availability and reliability, the 
infrastructure of grid must be fault tolerant (Qureshi 
et  al. 2011). Avizienis et  al. (2004) presented a depend-
ability taxonomy that has been extended by incorporat-
ing more factors extracted from the literature. Challenges 
in the grid dependability are the factors that encompass 
fault identification, fault prevention, fault avoidance, fault 
forecasting, fault tolerance/recovery, fault treatment, 
fault isolation/localization, fault removal, fault diagnosis, 
fault injection, fault discovery, and fault testing. Similarly, 
there are some threats to the dependability that exist 

in the form of errors, failures, and faults and the cor-
responding subtypes. The design goals of a dependable 
grid system are availability, quality of service (QOS), reli-
ability, consistency, maintainability, accuracy, flexibility, 
adaptability, and security. Fault tolerance is a vital aspect 
of grid for achieving reliability, availability, and QOS 
(Malik et al. 2012). Fuijan et al. (2012) proposed a QOS 
constrained algorithm for resource scheduling in grid 
environments by associating the tasks with QOS dimen-
sions and one of the associated dimension was reliability.

The main strengths of this survey are that an enhanced/
extended taxonomy of dependable grid computing is 
established that discusses various types of threats and the 
corresponding sub-types in more detail. In this survey, 
we also discuss various types of challenges faced by the 
grid computing environments to strengthen the depend-
ability. Large numbers of papers were selected for review 
and to the best of our knowledge, we have discussed 
almost all of the types of challenges and their types along 
with examples faced nowadays. Similarly, the design 
goals have also been identified that can lead us to more 
reliable, available, and secure grid environments. Previ-
ously identified and published research (Nazir et al. 2012; 
Haider and Ansari 2012; Haider et al. 2011; Qureshi et al. 
2011; Malik et  al. 2012; Nazir et  al. 2009; Khan et  al. 
2010) regarding fault tolerance pertaining to different 
types of errors, failures, and faults and the correspond-
ing subtypes are also part of this survey, which discloses 

Fig. 1  Grid dependability taxonomy
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a very wide range of problems expected in the grid com-
puting environments.

Fault identification, detection, and diagnosis
Fault identification, fault detection, and fault diagnosis 
are the techniques that are used to identify faults. Fig-
ure  2 depicts various techniques used in the fault iden-
tification of computational grids. A probabilistic and 
possibility risk assessment model for grid computing is 
proposed in Carlsson and Fuller (2010). A probabilistic 
resource allocation technique is applied by Shestak et al. 
(2012) considering the random failures in grid environ-
ments. Calado and da Costa (2006) used neural network 
based fault identification and diagnosis to claim that the 
fuzzy approach is most suitable for handling faults and 
achieving reliability in high performance computing 
environments. Charoenporwattana et al. (2008) used an 
artificial neural networks based approach to proactively 
avoid faults.

Faults are unavoidable in a complex distributed envi-
ronment like grid that is scalable and heterogeneous. 
Diagnosing faults in such environments is a challenging 
task. A prompt detection and isolation mechanism of 
faults and failures lead to a reliable and robust environ-
ment. Automating fault diagnosis in large and complex 
distributed environments is critical (Sethi et al. 2004).

In a large-scale system many nodes performing tasks 
for applications related to computation, I/O and network 
communication etc. increase the probability of failures. 
The monitoring software dealing with nodes should be 
able to identify failures quickly (Massie et al. 2004). Mas-
sie et al. (2004) presented a monitoring system for HPC 
environments like clusters and grids with the name of 
Ganglia. Ganglia is based on hierarchical design which 
relies on multicast-based listen/announce protocol for 
monitoring sates within clusters. It further uses a tree 
of point-to-point connections of cluster nodes to merge 
clusters and combine their states.

Periodic device polling for monitoring information 
about the liveness of hardware or software has been 
used as fault detection and identification in distributed 

systems (Bheevgade and Patrikar 2008; Zhou et al. 2007; 
Bhagyashree et  al. 2010). A technique used at software 
level for fault identification is known as “heartbeat” where 
a liveness message is produced by the device mentioning 
about its correct functioning and working (Ammendola 
et al. 2015), though it has a slight disadvantage of creating 
extra network traffic. In order to avoid the traffic prob-
lem a new trend is the use of Intelligent Platform Man-
agement Interface (IPMI) (Ammendola et  al. 2015). An 
example of IMPI in high performance clusters is FTB-
IPMI (Rajachandrasekar et al. 2012). Heartbeat and time-
out method for handling the problem of unpredictable 
nodes in Map Reduce (MR) computations in hybrid com-
puting environments has also been used by Tand et  al. 
(2015).

Fault localization and isolation
Fault localization is an important concept and is a part 
of fault management. Fault localization focuses on iden-
tification of the source of failure from a set of observed 
failure indications (Sethi et  al. 2004). Fault localization 
is also referred to as fault isolation and alarm/event cor-
relation. It is a set of observed fault indications that are 
analyzed to find the root cause of the problem (Katzela 
1996).

Communication systems are constantly evolving and 
providing new capabilities, but on the other side they are 
also becoming more and more complex and the obliga-
tory requirements on fault localization techniques have 
also changed. Fault localization in multifaceted and 
complex communication systems still remains an open 
research area (Sethi et al. 2004).

The proposed techniques in literature for fault localiza-
tion and isolation are inspired from various areas of com-
puter science, such as artificial intelligence, information 
theory, neural networks, graph theory, and automata the-
ory. Such research areas can be used for identifying new 
dimensions in fault localization and isolation (Sethi et al. 
2004).

Fault injection and testing
Fault injection and testing are the techniques through 
which we asses the severity of the expected faults and the 
behaviors. In fault injection, faults are considered to be 
a valid case for a fault tolerant system, and are the tech-
niques through which we can actually check the issues 
that can occur during the working of grid computing 
environments. Trodhandl and Weiss (2008) places fault 
injection methods into three main categories; (a) simula-
tion-based fault injection (b) hardware-based fault injec-
tion, and (c) software-based fault injection. Brodie et al. 
(2003) claim that the problem determination and fault Fig. 2  Techniques used in fault identification of computational grids
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diagnosis can be performed using fault probing and test-
ing for complex and scalable distributed systems.

Hsueh et  al. (1997) emphasises on the importance of 
fault injection for evaluating the dependability of com-
puter systems. Hardware and software based method 
exists for identifying the dependability through inject-
ing faults in the systems. A case study of software based 
fault injection system for distributed systems is tested 
by Ghosh et al. (1997). It is recommended to apply fault 
injection techniques for identification of devastation in 
cases of failures. Severity and catastrophe of damage can 
be minimized through this type of proactive approach. 
Fault injection issues in distributed arena and espe-
cially in grid computing environments are a bit tricky as 
resources being tested are part of various geographical 
domains. Three way strategy, e.g. error based, coverage 
based and failure based is adopted by Ghosh et al. (1997) 
for implementation of fault injection.

a.	 Error based strategy

This technique identifies error sources and then used 
techniques for injecting errors for each error category.

b.	 Coverage based strategy

Here coverage is measured with respect to code, inter-
faces and exceptions/errors codes.

c.	 Failure based strategy

Focuses on the behavior of system when other compo-
nents fail and try to find whether faults are handled or 
not and whether the failure of one component affect the 
other one or not.

Cotroneo et  al. (2013) is of view that fault injection 
methods mostly inject faults during experimentation 
phase and repeat the process various times. Advanced 
fault injection techniques start injection on encounter-
ing specific types of events in the system. Fault injection 
is a valid way for validating the fault tolerance technique 
(Fugini et al. 2009).

Fault forecasting and prediction
Fault forecasting and prediction is a proactive way 
through which we can forecast or predict faults before 
they are actually observed, detected, and identified. A 
fault forecasting model for computer clusters was pro-
posed by Haider and Ansari (2012), in which the fore-
casting and prediction of hardware faults is done on the 
basis of thermal signatures.

A java based neural network engine (JOONE) was uti-
lized for fault predictions by Charoenpornwattana et al. 

(2008) and applicability of the ANN for fault prediction 
was discussed. Gurer et al. (1996) proposed an artificial 
intelligence based solution that incorporated an ANN 
based approach and case-based reasoning technique for 
fault handling in heterogeneous distributed environ-
ments. Prediction and forecasting of faults is an impor-
tant method that can be used for improving the reliability 
of a system. Prediction and forecasting of faults can also 
be applied in proactive fault tolerance.

Fault treatment and removal
Proactive and reactive fault tolerance techniques are 
placed in the fault treatment and removal category. The 
significant difference between them is that the proac-
tive techniques anticipate and predict, while the reactive 
mechanisms react and respond.

A proactive fault tolerant scheduling approach is pro-
posed by Haider et al. (2007) for handling the faults pro-
actively in computational grids. The model uses various 
components at different layers of the grid that commu-
nicate with each other using a cross-layer design for cal-
culating the overall reliability of the grid node. The use 
of cross-layered architecture is a relatively new concept 
that is applied in grid environments for handling faults 
proactively. Figure  3 shows a high level diagram of the 
proposed architecture. The architecture shows that at 
each layer of the grid, there is a component, and all of the 
components are communicating with each other using a 
cross-layer design.

The proposed model instead of using the traditional 
top-down/bottom-up approach of grid layers, uses a 
cross-layer communication model where a middle layer 
can communicate with the layers above and below it. 
Each layer of grid contains Hardware Monitoring Com-
ponent (HMC), Software Monitoring Component (SMC) 
and Cross-Layer Component (CLC) for finding the most 
reliable nodes of the grid.

Hardware Monitoring Component (HMC) is designed 
to work at the fabric layer of grid. HMC is responsible 
for calculating Hardware Reliability Rating (HRR) of 
the machine/node and will rate each grid node as High, 
Medium or Low from HRR perspective. Factors consid-
ered for HRR are machine up time, remaining storage 
space of the node, OS service failures encountered by the 
node, network speed and connectivity time of the node 
with the network. A node which is up for long time and 
has large store space available and has high network con-
nectivity speed etc. will be rated as HRR-High. Similarly 
a node having less storage space and slow network con-
nectivity etc. will be rated as HRR-Medium. If a node 
is facing OS service failures and disconnecting with the 
network and has less up time then node will be rated 
HRR-Low.
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Software Monitoring Component (SMC) works at appli-
cation layer of grid and is responsible for calculating Soft-
ware Reliability Rating (SRR) in the form of High, Medium 
and Low. A node is SRR-High when it has executed the task 
successfully, e.g. without encountering value faults, version-
ing faults, unhandled exceptions and unexpected inputs. 
Similarly SRR-Medium will be rated on encountering one 
or two faults, and SRR-Low will be assigned to a node upon 
encountering most of the faults, e.g. three or more faults.

Information generated about the reliability of the node 
in the form of High, Medium and Low with respect to 
Hardware and Software by HRR and SRR through HMC 
and SMC working at fabric and application layers of grid 
respectively is passed to Cross-Layer Component (CLC). 
CLC will overall rate the node as High, Medium or Low, 
depending on the rating received from HMC and SMC. 
For a node having HMC and SMC as High, the node is 
declared as highly reliable node. Similarly, if CLC receives 
information in the form of Medium then node is declared 
as Medium from reliability point of view and Low in case 
of information received as Low.

When grid scheduler selects nodes for execution of 
jobs, then only highly reliable nodes are selected as their 
reliability from hardware and software point of view has 
already been obtained.

Similarly, a framework for proactive fault tolerance is 
presented in Vallee et al. (2008) that uses a component 
based approach consisting of three components: (a) 
fault predictor, (b) policy daemon, and (c) fault toler-
ance daemon. Most (Kondo et al. 2010; Bahman arasteh 
et  al. 2012; Hwang and Kesselman 2003; Garg and 
Singh 2011; Latchoumy and Khader 2011; Vaidyana-
than and Trivedi 2001; Shestak et al. 2012) of the fault 
tolerant techniques discussed in literature use reactive 
techniques and solutions that employ preventive meas-
ures. When an application encounters a failure then 
instead of avoiding that failure, recovery technique are 
applied in order to handle the situation (Engelmann 
et al. 2009).

Fault tolerance and recovery
Fault tolerance, recovery, and removal are solutions for 
the fault related problems in grid computing environ-
ments (Haider et  al. 2011). Retry, replication, message 
logging, and check pointing are the fault tolerant tech-
niques that are used in clustered and grid computing 
environments (Haider and Ansari 2012). Almost all of the 
fault tolerant solutions presented in the literature use the 
above mentioned techniques and we briefly discuss them 
below.

Retry
In retry, if a problem occurs in a distributed applica-
tion, and due to that problem the application stops, then 
instead of finding the cause of the problem, we restart the 
application. Retry is considered to be the simplest failure 
recovery or fault tolerance technique. That is to say that, 
we hope that whatever were the causes of failures, the 
effect will not be encountered in the subsequent retries 
(Hwang and Kesselman 2003).

Replication
In replication, we run multiple copies or replicas of an 
application on different machines/nodes of the grid. The 
intention of running replicas on various machines/nodes 
is that if all of the machines fail and only a single machine 
out of those machines completes the job successfully, 
then the objective will be accomplished. The main idea of 
replication is to have replicas of a task run on different 
grid resources. As long as, not all of the replicated tasks 
crash, for example (due to host crash or host partition 
away from the grid client), then the task execution would 
succeed (Hwang and Kesselman 2003).

Message logging
Message logging is another technique used to han-
dle faults in distributed systems. When an application 
executes, the nodes maintain the information about the 

Fig. 3  High level design diagram for component based proactive 
fault tolerant scheduling using cross layer design
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execution of the application in the form of logs. If an 
issue is encountered, then the logs are used for an appro-
priate solution. In message logging, nodes log incoming 
messages to stabilize storage devices. After a failure, the 
message logs are used to compute a consistent global 
state. Algorithms that use the approach of message log-
ging for fault tolerance are further classified into the fol-
lowing two categories: (Sistla and Welch 1989).

a.	 Optimistic message logging

In optimistic message logging approach, a process 
starts execution before the completion of logging a mes-
sage (with a hope that process will not encounter failure), 
but on encountering failure in such cases, chances are to 
have an orphan process. An orphan process will not be 
consistent with its associated process as it does not have 
the complete information about the associated process. 
Optimistic message logging approach creates orphan 
processes.

b.	 Pessimistic message logging

In pessimistic message logging approach there are no 
chances of orphan processes as a process does not proceed 
further unless it completely stores its state. Slight disad-
vantage in pessimistic approach is the time taken to store/
log the complete message (Alvisi and Marzullo 1998).

Checkpointing
The most popular fault-tolerance mechanism is that of 
checkpointing. In this technique, we periodically save the 
state of the application on stable storage, usually a hard 
disk. After a crash, the application is restarted from the 
last checkpoint rather than from the beginning (Hus-
sain et  al. 2006). Checkpointing is a proficient way for 
developing a fault tolerant application. Bouguerra et  al. 
(2013) have proposed a performance model through 
which checkpoint based scheduling problem has been 
expressed. Gokuldev and Valarmathi (2013) have dis-
cussed many types of checkpointing that include: (a) Full 
checkpointing, (b) Incremental checkpointing, (c) Coor-
dinated checkpointing, (d) Uncoordinated checkpoint-
ing, (e) Kernel level checkpointing, (f ) Application level 
checkpointing, and (g) User level checkpointing.

a.	 Full checkpointing

Full checkpoint stores the complete state of the appli-
cation to the local storage. Obvious drawback of this 
scheme is the time taken to save complete state and stor-
age space required for storing the state.

b.	 Incremental checkpointing

Incremental checkpoint instead of storing the state of 
complete process, saves information of only the modi-
fied pages. Initially first checkpoint is the full checkpoint 
and the continuing checkpoints are stored on the basis of 
modified pages hence known as the incremental check-
points. Incremental checkpoint technique is considered 
to be a reliable technique.

c.	 Coordinated checkpointing

In coordinated checkpointing, the protocols used for 
checkpointing generate reliable and steady checkpoints 
making overall recovery process to be simple. Through 
coordinated checkpointing technique a consistent global 
state can be maintained forcing participating processes 
to synchronize their checkpoints (Egwutuoha et  al. 
2013).

d.	 Uncoordinated checkpointing

In uncoordinated checkpointing every process takes 
its checkpoint independently and there is no coordina-
tion for checkpointing between processes. As there is no 
coordination between processes, there remains a chance 
for losing the complete computation and due to this very 
fact uncoordinated checkpointing technique is not used 
in practice (Egwutuoha et al. 2013).

e.	 Kernel level checkpointing

The process of checkpointing is included in the ker-
nel and is transparent for the user so no modifications/
changes are required in the program for the implementa-
tion of checkpointing. It is the responsibility of the kernel 
to manage recovery operations when the system restarts 
from a failure.

f.	 Application level checkpointing

In application level checkpointing it is the responsibil-
ity of the application to carry out all the checkpointing 
related issues. Checkpointing code and mechanism is 
part of the application and benefit of this technique is 
that checkpointing can be handled and controlled in a 
better way.

g.	 User level checkpointing

In this approach, user level library is linked with the 
application for checkpointing. Application code does not 
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require any changes for incorporating checkpoint mecha-
nism; however specific linking needs to be done between 
user level library and the application.

Threats to grid dependability: errors, failures 
and faults
An important assumption in understanding fault toler-
ance is to know about the correct behavior of a system. 
We generally say that a failure is encountered when a 
system moves away from the behavior for which it was 
designed. The reason behind that failure is called error, 
which ultimately depicts some sort of fault or defect in 
that system. This means that the fault is the actual and 
main reason behind a failure, and error is just an indica-
tion or sign of a fault. Multiple errors could be due to a 
fault, and even a single error could be the cause of mul-
tiple failures (Selic 2004). These concepts are shown in 
the unified modelling language (UML) class diagram, see 
Fig. 4.

In Fig.  4, we can see that fault and failures are not 
directly connected. Its reason is that fault or defect leads 
to error, whereas error leads to failure. Error will be pro-
duced due to the defect or fault of some hardware/soft-
ware, due to which the task we wanted to perform will be 
halted resulting in failure. In simple words, faults results 
in errors that causes failures.

Threats to grid dependability are established after a 
thorough literature survey. The classification of threats 
are specified with respect to various types of errors, fail-
ures and faults and the corresponding subtypes. In Fig. 5, 
we have identified various types of errors, failures, and 
faults, which we detail below.

Error
Error can be observed and evaluated as a property of 
the state of the system. A system that starts facing the 

behavior against that system’s compliance and specifica-
tions is considered as an error. The following lists a few 
errors.

Network errors
In distributed environments, errors and failures related 
to nodes and or links are unavoidable and may cause a 
damaging effect on the performance of workflow based 
systems (Gu et  al. 2013). Network errors can be in the 
form of packet corruption, packet loss, or network con-
gestion (Siva Sathya and Syam Babu 2010).

a.	 Packet corruption

In packet corruption, a packet gets corrupted dur-
ing the transmission, when it moves from one node to 
the other. Noise can be a reason for packet corruption. 
Packet corruption can lead to further problems with 
respect to communication or change of information. The 
data that has to travel from the memory of source node 
to the main memory of target node has no protection. 
For example, if an error occurs after the validity of the 
data is verified by the network interface, but before calcu-
lating its CRC by the network, such type of error will go 
unnoticed and undetected (Balaji et al. 2012).

b.	 Packet loss

Packet loss is a problem in which a sent packet is lost 
during the transmission. If one or more packets of data 
do not reach the destination due to network errors, then 
such a problem is identified as a packet loss.

c.	 Network congestion

Network congestion is a problem that can be encoun-
tered due to low bandwidth. Diverting all of the traffic 
towards a single path can also create network congestion. 
More traffic or network load can also lead to network 
congestion. Network congestion creates delay in com-
munication and in grid computing environment network 
congestion may affect QoS (Haider 2007).

Software errors
Numerical exceptions and memory leaks are identified as 
software errors.

a.	 Memory leaks

Memory leaks are application specific problems in 
which an application uses a huge amount of memory and 
never releases that memory (Vaidyanathan and Trivedi 
2001). It is not necessary that all memory errors originate Fig. 4  Relationship between errors, failures, and faults (Selic 2004)
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from memory cells. There can be cases where mem-
ory contents are accurate and error occurs on the path 
from memory to processor (Balaji et  al. 2012). Memory 
leak occurs when unneeded part of the memory is not 
released. According to Roohi Shabrin et al. (2006), mem-
ory leak is a problem in which a part of allocated memory 
can not be accessed, resulting in degradation of execution 
and performance of application. Application exhausts 
systems resources and ultimately program crashes due to 
the problem of memory leak.

b.	 Numerical exception

Applications require numerical computations during 
execution. An application that has not considered prob-
lems from the numerical conversions point of view is 
expected to generate numerical exceptions during execu-
tion. Unhandled exceptions that cause problems due to 
out of range produced values by applications are numeri-
cal exceptions.

Fig. 5  Extended classification of errors, failures, and faults (Haider and Ansari 2012; Haider et al. 2007; Haider et al. 2011)
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Time based errors
Time based errors are generated due to the applications 
that do not complete the execution within a specified 
deadline, or the problems faced by the applications in dif-
ferent time intervals in a distributed environment. Tran-
sient, intermittent, and permanent errors are classified 
as time based errors (Arshad 2006). The probability of 
occurrence of a transient error is very less and they occur 
either very seldom or once in the life cycle of an applica-
tion and then disappear. On the other hand, intermittent 
errors can be observed many times in an irregular fash-
ion (Siva Sathya and Syam Babu 2010).

Failure
The occurrence of failure is generally assumed on detect-
ing some error in the system state (Haider et  al. 2011). 
A failure can also be considered as a noticeable deviation 
from accepted specifications (Siva Sathya and Syam Babu 
2010). Failures may be obvious in case of a detected error. 
Failure is actually observed when a deviated behavior is 
produced by the system instead of a normal or expected 
one. We have identified categories of failures that are, 
omission, hardware, response, network, software, crash, 
and miscellaneous failures, which we detail below.

Omission failures
Omission failures occurred and are observed when a 
server fails to react and respond to the incoming requests 
(Siva Sathya and Syam Babu 2010). Some observed omis-
sion failures are send omission and receive omission.

a.	 Send omission

Send omission occurs when a server fails to send mes-
sages (Delporte-Gallet et  al. 2005). A server that stops 
sending messages leads to serious issues, such as com-
munication. A server that has stopped sending messages 
will be isolated in the network as it has lost the capability 
of communication, and grid is a network of computation 
that is useless with communication. In send omission 
failures a message that is sent by a process will not be 
placed into the communication channel (Delporte-Gallet 
et al. 2005).

b.	 Receive omission

In receive omission failures a message that has arrived 
at the communication channel will not be received by the 
algorithm of the process (Delporte-Gallet et  al. 2005). 
Receive omission failure takes place when a server fails 
to receive messages. If a server stops receiving messages, 
then severe problem with respect to communication 

starts and the server and the connected nodes can not 
further proceed the business.

Hardware failure
Hardware failures are more obvious than many other 
types of failures. Although hardware failure is a general 
terminology there are many types of hardware failures, 
such as CPU failure, machine reboot, disk failure, memory 
failure, and device failure. Some hardware failures, such as 
disk, memory, and CPU are purely hardware based fail-
ures, but some hardware failures can be due to software, 
such as operating system. Egwutuoha (2014) has men-
tioned that hardware (processors, hard disks and memory 
etc.) are the reasons for more than 50% of the failures in 
High Performance Systems, and intensity of the workload 
affects the failure rate (Schroeder et al. 2010).

Response failure
Another category of failure is the response failure, where 
the grid node does not respond at all or does not respond 
within a certain acceptable time frame (Haider et  al. 
2011). Incorrect and erroneous response of a grid node 
is considered as a response failure. Response failure is 
further categorized into value failure and state transition 
failures.

a.	 Value failure

Value failure is faced when the value of a response is 
wrong (Haider 2007). An unexpected or out of range 
value received by the grid server from a grid node for a 
query is an example of a value failure.

b.	 State transition failure

State transition failure is a problem when the mes-
sages transmitted by server are not received by clients 
due to network problem (Haider 2007). Moreover, failure 
of state transition can also be observed if a server stops 
sending messages due to some problem in the network.

Network failure
Network failure is a very serious issue, as a communica-
tion in distributed environment is impossible without 
a network (Das and De Sarkar 2012). Network failure 
can be due to site failures, link failures, configuration 
changes, or device failures such as routers or switches 
(Haider et al. 2011).

Push and pull models for the identification and detec-
tion of network failures can successfully be used (Haider 
2007). Legion is a grid middleware that uses “pinging and 
timeout” approach to check whether a machine is alive 
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and responding, or not (Nguyen-Tuong 2000; Grimshaw 
et al. 1997).

a.	 Configuration change

Configuration change is a very important reason due to 
which a network is likely to fail (Haider and Ansari 2012). 
Participating machines of a grid belong to different net-
works bounded by the configuration and policies of the 
respective network. A change in policy or configuration 
may cause problems for applications using the resources 
of those machines (Haider et al. 2007). Due to this very 
fact, it is very important for a grid administrator about 
the implications of change in configuration on the jobs 
running in that environment.

According to a survey conducted by Medeiros et  al. 
(2003) many failures are experienced in grids due to con-
figuration related problems and solutions for the prob-
lem are mostly application dependent. Reasons identified 
in Medeiros et al. (2003) are that though a high-level of 
abstraction exists between grid components but when a 
problem occurs then all complex gory details are exposed 
that are related to configuration, middleware, hardware 
and software based issues.

Software failure
Software failure is an important class of failures in a grid 
environment, as the software is the most important com-
ponent of the grid (Vaidyanathan and Trivedi 2001). Grid 
middleware is software, which requires further software, 
such as operating system. Moreover applications execut-
ing in the grid environment are also software (Haider 
et al. 2011). Software failures cannot be left unattended. 
Many complex issues can be experienced due to the tech-
nicality and delicacy of software.

a.	 Operating system failure

The most fundamental type of software failure is the 
operating system failure. When the operating system of a 
grid node fails, then the execution of the application and 
services on that particular machine are stopped (Haider 
2007). Selection of a dependable and reliable operating sys-
tem is an important factor to tackle the problem of operat-
ing system failure. Historical data regarding the failures and 
crashes of operating system can be maintained from the 
perspective of proactive decisions regarding the operating 
system failures (Haider 2007; Haider and Ansari 2012).

b.	 Application and task specific failure

Application and task specific failures also belong to the 
software failure category. However, the reason behind 

application and task specific failures can be software, as 
well as hardware.

c.	 Performance failure

Performance failure is also an important class of soft-
ware failures (Khan et  al. 2010). Failure in the perfor-
mance of software can be due to hardware (Haider et al. 
2011). A slow processor or a communication link with 
less bandwidth can not deliver the results within an 
acceptable time frame and ultimately results in perfor-
mance failures (Haider 2007). Bad selection of resources 
could also be the reason for performance failure (Haider 
2007). Unhandled exceptions or exceptions generated 
due to unexpected inputs are all types of performance 
failure that ultimately are types of software failures (Vaid-
yanathan and Trivedi 2001).

Miscellaneous failure
Some of the failures identified in literature do not fall 
in any specific failure category and a few of them are 
time related and arbitrary failure (Baldoni et  al. 2007) 
According to Baldoni et al. (2008), arbitrary failures are 
one of the toughest failures and is a real practical chal-
lenge due to unexpected software errors and malicious 
attacks. In arbitrary failures, a server is prone to gener-
ate random and arbitrary responses at arbitrary/random 
times.

Another type of miscellaneous failure is random fail-
ure. Task assignment to compute nodes is known as 
resource allocation or mapping. Mapping policies in 
grid environments depends upon many factors, e.g. 
number of available nodes, nodes characteristics and 
links between them. Scenarios can be developed for 
number of available nodes as nodes can randomly fluc-
tuate between down and up states. SETI@Home is an 
example where participating nodes keep on fluctuating 
randomly and can join or leave the system any time due 
to any reason (Shestak et al. 2012). Another example of 
random failures could be due to malfunctioning of hard-
ware due to harsh operating environments, e.g. tempera-
ture increase of a machine due to broken cooling fan can 
seriously result in performance or even malfunction of 
processor.

Fault
The reason behind system or component failure is fault, 
and fault tolerance means that the system keeps on pro-
viding services even in the presence of faults (Haider 
et  al. 2011). Literature survey reveals many types of 
faults, such as aging related faults, omission faults, 
response faults, and timing related faults etc., which we 
detail below.
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Aging related fault
Faults that creep into the system with the passage of time 
are placed into the aging related faults category. The phe-
nomenon of software based aging was reported in Garg 
et al. (1998), Vaidyanathan and Trivedi (2001). The obser-
vation regarding the software based aging was that once 
the software is started, many possible fault conditions 
gradually are accumulated with time leading to either 
performance degradation or transient failures, or both 
(Vaidyanathan and Trivedi 2001). Hardware faults related 
to aging are well known. The performance of hardware 
degrades as the time passes and the degradation can lead 
to problems, such as performance, maintainability and 
availability. The bathtub curve in computer architecture 
is well-known for identifying the reliability of a machine 
based on time. Klutke et al. (2003) have referenced that 
some products show decrease in failure rate in early life 
and an increase in failure in later life.

Omission faults
Omission faults are more prevalent in grids and arise 
when resources becomes unavailable (Siva Sathya and 
Syam Babu 2010; Garg and Singh 2011). Disk space full is 
considered to be omission fault as once the disk space of 
a hard disk completes; thereafter, further storage of data 
on that device cannot be stored as the storage resource is 
unavailable. Denial of service (DoS) is a type of omission 
fault where a node of the network is under the potential 
threat of DoS attack and will be forced to stop the ser-
vices for which it is responsible.

Response faults
Response faults can be classified as, value faults, byz-
antine faults, and state transition faults. When a server 
responds incorrectly to a request than response faults 
occur (Siva Sathya and Syam Babu 2010). If some lower 
level system or application level fault has not been han-
dled properly, then an individual processor or applica-
tion may emit incorrect output or value, and is known 
as value faults (Siva Sathya and Syam Babu 2010; Haider 
et  al. 2007). Byzantine faults take place due to failed or 
corrupted processors that behave arbitrarily (Coulouris 
et  al. 2001). Byzantine faults take place when a system 
does not stop after a failure, and starts behaving in an 
unpredictable way (Siva Sathya and Syam Babu 2010). 
The problems faced when processes are changing their 
states are known as state transition faults.

Timing faults
Problems that occur due to synchronization between 
processes are known as timing faults. Timing faults 
arise in synchronous distributed environments where 

processes have strict time limitations with respect to 
communication or execution. Timing faults occur when 
the specified time limit exceeds (Avizienis et  al. 2004). 
Timing faults are further divided into the categories of 
early and late faults.

When execution or communication services start too 
early then it is called early fault. Similarly, when commu-
nication or execution services are too late and exceed the 
time limit then late faults are encountered.

Interaction faults
Interaction faults occur when an increase number of inter-
actions occur between a large numbers of services. Many 
of these services may be dynamically bounded at run time 
and original application developer may be unaware of such 
a scenario. Therefore, the result of such an increased inter-
action results in interaction faults (Garg and Singh 2011). 
A reason of interaction fault may also be due to different 
services supporting different protocols (Townend and Xu 
2003). Timing overhead, security incompatibilities, and 
policy problems are the types of interaction faults.

a.	 Policy problems and security incompatibilities

The difference in the policies of the grid nodes of dif-
ferent networks lead to policy issues. The problems faced 
by applications that interact with the grid nodes working 
under different policies is known to be policy problems. 
Security incompatibility is another type of interaction 
fault that could be due to policy problems.

b.	 Timing overhead

Application interaction with respect to timing may 
lead to faults. A time out in a service due to slow pro-
cessor, low bandwidth, or failed link may cause problems 
(Townend and Xu 2003). Faults related to timing are also 
placed into the category of interaction faults.

Software faults: Heisenbugs and Bhorbugs
Hisenbugs and bhorbus are types of software failures 
that lead to intermittent failures. Heisenbugs cause a 
class of software failures that typically surface in  situ-
ations where there are boundaries between various 
software components and are likely to appear in grids. 
Heisenbugs result in intermittent failures that are 
extremely difficult to identify through testing (Vaidyana-
than and Trivedi 2001).

Bohrbugs are permanent design faults and are almost 
deterministic in nature. They can be identified easily and 
weeded out during the testing and debugging phase of 
the software life cycle.
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Life cycle faults
Faults expected to occur due to different versions of 
applications and their toolkits. An example of versioning 
fault is that of a grid application developed for GT4 (glo-
bus Buyya and Murshed 2002; Klutke et al. 2003 toolkit 
version 4) might create problems from versioning point 
of view on GT3 (globus toolkit version 3).

a.	 Service expiry fault

A particular service or resource on the grid is available 
for a particular time. An application that tries to use a 
service or resource beyond the time for which that ser-
vice or resource is available would result in a life cycle 
type of fault known as service expiry fault.

Response faults: Byzantine and value faults
Response faults take place due to failed or corrupted pro-
cessors that behave arbitrarily (Coulouris et al. 2001). A 
lower level system or application level fault that has not 
been handled properly may emit incorrect output. The 
incorrect output or value produced by application is 
known as value fault.

Design goals in grid dependability
Probability of faults in a grid environment is much 
higher than a traditional distributed system (Nazir et al. 
2009). To minimize the faults and making grids more 
reliable, we must strive for improving its dependability. 
Encountering challenges of different types as discussed 
in “Challenges in grid dependability” section and taking 
care of threats identified in “Threats to grid dependabil-
ity: errors, failures and faults” section we can proceed 
towards dependable grids. Design goals of a dependable 
grid are availability, reliability, continuity, quality of ser-
vice, flexibility, and adaptability.

Availability
The most important design goal in any fault tolerant sys-
tem is availability that depicts a quality responsible for 
providing correct services. If problems are encountered in 
a distributed environment, then the availability character-
istic of dependability must be able to handle the problems. 
Reliability is another important design goal of not only in 
grid but in any of the fault tolerant system. Reliability por-
trays the willingness for the provisioning of accurate ser-
vices. A system is more available if that system is reliable 
and vice versa. Availability and reliability are directly pro-
portional to each other (Charoenpornwattana et al. 2008).

Adaptability
Adaptability refers to the capability of the system that can 
accommodate changes and provide the specified services 

at the same time. An adaptive fault tolerant design 
improves availability and reliability of the system. Adapt-
able systems can respond to the changed environment 
and policy that otherwise can create problems and gener-
ate faults (de Lemos 2006). Many fault tolerant solutions 
considering adaptability have been discussed (Guimaraes 
et  al. 2013; Sun et  al. 2013; Nazir et  al. 2009; de Lemos 
2006; Guimaraes and de Melo 2011)

Continuity and quality of service
Continuity and quality of service (QoS) are also related 
to reliability and availability. Services are dependent 
on the availability of the system. If a system is unavail-
able due to hardware or software failures, then it is 
obvious that the system would be unable to continue 
providing services. A system that is not providing or 
fails to provide smooth and consistent service, suffers 
from the problems known as continuity and quality of 
service.

Many of the techniques (Chan et al. 2007; Foster et al. 
2003; Wei-Tek et  al. 2003; Zheng and Lyu 2008; Zheng 
and Lyu 2009) provided are not appropriate to be used 
in different systems having specific performance require-
ments. An adaptive fault tolerance technique with QoS-
aware middleware is proposed by Zheng and Lyu (2010). 
Zheng model is based on user collaborated QoS aware 
middleware that can dynamically adjust its fault toler-
ance configurations in order to achieve reliability and 
performance.

Maintainability
Maintainability refers to the capability of performing the 
necessary amendments and repairs whenever required 
for the smooth operation and functioning of the sys-
tem. If we broaden the horizon of the design goals of a 
dependable grid system, then security, integrity, and 
maintainability must also be considered.

The design goal with respect to dependability is a con-
cept that includes many attributes such as, availability, 
reliability, safety, integrity, and maintainability (Avizienis 
et  al. 2004). In Fig.  6, we point out the parameters on 
which the availability and reliability of a system depends. 
The parameters used for determining the availability and 
reliability are: (a) mean time to detect (MTTD), (b) mean 
time to repair (MTTR), and (c) mean time between fail-
ures (MTBF). Christer Carlsson (2011) analyzed fail-
ure data, collected over several years at the Los Almos 
National Laboratory (LANL), where the study included 
the major causes of failures, the mean time between fail-
ure (MTBF), and the mean time to repair (MTTR). The 
researchers discovered that the average failure rates were 
roughly ranging from 20 to 1000 failures per year (Chris-
ter Carlsson 2011).
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Fault detection and tolerance in grid computing
As the size and sophistication of the present-day dis-
tributed systems make the occurrence of failures, the 
rule rather than the norm, many fault tolerant resource 
management techniques have been designed (Gallet et al. 
2010). In Table  1 we provide a comparative analysis of 
various grid middleware that have fault tolerant capa-
bilities. Literature survey reveals that grid computing 
paradigms in distributed environments use various fault 
detection and tolerance techniques, which are discussed 
as under:

Globus provides a software infrastructure that enables 
applications to handle distributed heterogeneous com-
puting resources as a single virtual machine. The Globus 
toolkit consists of a set of components that implement 
basic services, such as security, resource allocation, 
resource management, and communications (Baker 

et al. 2002). Globus can be considered as a grid comput-
ing framework that offers many services for wide-area 
application execution to application developers. The 
Globus heart beat monitor (Hwang and Kesselman 2003; 
Stelling et  al. 1999) provides a generic failure detection 
service designed to be incorporated into distributed sys-
tem, tools, or applications. Globus enables applications 
to detect both host/network failure by detecting miss-
ing heartbeats. The strategy for fault tolerance used in 
Globus is to resubmit the failed jobs (Affaan and Ansari 
2006).

Monitoring and Discovery Systems (MDS-2) in theory 
can support the task crash failure detection functional-
ity through the GRRP (Gullapalli et al. 2001) notification 
protocol and the Grid Resource Information Service/
Grid Index Information Server (GRIS/GIIS) framework. 
However, in case of Globus heart beat monitor, it is not 

Fig. 6  Factors required for finding availability and reliability

Table 1  Comparison of fault detection and tolerance techniques used in grids along with their advantages and disadvan-
tages

System Fault detection 
technique

Types of faults 
detected

Fault tolerance 
technique

Advantages Disadvantages

Globus
Buyya and Murshed 

(2002), Klutke et al. 
(2003)

Heartbeat monitor Host failure, Network 
failure

Resubmit the failed job Generic failure detec-
tion

Can not handle user 
defined exceptions

MDS-2
Buyya and Murshed 

(2002), Coulouris 
et al. (2001)

GRRP Task crash failure Retry Task crash failure 
detection through 
protocols

Can not handle user 
defined exceptions

Legion
Alvisi and Marzullo 

(1998), Hussain et al. 
(2006)

Pinging Task failure Checkpoint recovery Application level fault 
tolerance

Can not discern 
between task failure 
and network failure

Condor-G
Townend and Xu 

(2003)

Polling Host crash, Network 
crash

Retry on same 
machine

Provides security, man-
agement of jobs, and 
fault tolerance

Retry on same machine, 
can not detect task 
crash failure

NetSolve
Buyya and Murshed 

(2002), de Lemos 
(2006)

Generic heartbeat 
mechanism

Host crash, task crash, 
and network failure

Retry on another avail-
able machine

Load balancing, heart-
beat mechanism, 
Retry on another 
machine

Does not support 
diverse failure recov-
ery mechanism

CoG Kits
Guimaraes and de 

Melo (2011)

N/A N/A N/A Security, Discovery of 
resources, and man-
agement of resources

Failure detection is hard 
coded, Ignores fault 
tolerance
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straight forward to use MDS-2 to construct the failure 
detection services. The MDS-2 is in fact designed to 
develop grid information services rather than the failure 
detection services. Moreover user-defined exceptions 
cannot be detected using the MDS-2 (Hwang and Kes-
selman 2003; Czajkowski et al. 2001).

Legion is an object-based system developed at the Uni-
versity of Virginia. The software infrastructure offered 
by Legion ensures seamless interaction of machines 
in heterogeneous and geographically distributed envi-
ronments. Features available in Legion are transpar-
ent scheduling, data management, fault tolerance, site 
autonomy, and security (Baker et  al. 2002). Legion uses 
“pinging and timeout” mechanism to detect task failures. 
If a response is not received from a task within an accept-
able time, then Legion assumes that the task has failed. 
Indeed, this pinging and timeout mechanism can detect 
neither the task crash failures nor user-defined excep-
tions, nor Legion can distinguish the pure task crash 
failure from the host/network failures (Nguyen-Tuong 
2000; Grimshaw et al. 1997). Legion provides fault toler-
ance through checkpoint recovery at the application level 
(Medeiros et al. 2003).

Condor-G leverages software from Globus and Condor 
to enable users to harness multi-domain resources as if 
they all belong to one personal domain. Condor-G com-
bines the inter-domain resource management protocols 
of the Globus toolkit. Similarly, Condor-G uses the intra-
domain resource management methods of Condor. This 
combination allows the users to combine large collec-
tions of resource across multiple domains, providing an 
impression as they belong to one personal domain (Frey 
et al. 2002). Features offered by Condor-G are job man-
agement, resource selection, security, and fault tolerance. 
Condor-G (Frey et  al. 2002) adopts an ad hoc failure 
detection mechanism because the underlying grid proto-
col ignores fault tolerance issues. Condor-G uses periodic 
polling to the generic grid server to detect certain types 
of failures, such as the crash of the generic grid server 
and host/network failures. However, Condor-G can nei-
ther detect the task crash failures nor the user-defined 
exceptions, as is the case in Legion. Condor-G uses retry 
on the same machine for fault tolerance in a grid envi-
ronment (Sistla and Welch 1989). In Condor-G the idea 
of fault tolerance and scalability is attained by composing 
the system of replicable modules that can be executed on 
any node. Fault tolerance is provided by using “process 
peer fault tolerance”, when a module fails, it is restarted 
by one of the peers (Hussain et al. 2006).

According to Baker et  al. (2002), NetSolve is a pro-
gramming and runtime system for accessing high-per-
formance libraries and resources, transparently. NetSolve 
(Baker et al. 2002) is a client/server application designed 

to solve computational science problems in a distributed 
environment. NetSolve is based on a loosely coupled 
distributed system. Performance is ensured by a load-
balancing policy that enables NetSolve to use the com-
putational resources available as efficiently as possible. 
Clients of NetSolve can be written in C and fortran lan-
guage, and use MATLAB or the Web to interact with the 
server. MATLAB can be used in many areas of computer 
science, e.g. signal and image processing, computational 
biology, control systems and financial models etc.

Many MATLAB based applications for parallel pro-
gramming exists. MatlabMPI (Kepner and Ahalt 2004) 
created by MIT Lincoln Laboratory, MultiMATLAB 
(Trefethen et  al. 1996) by Cornell University, bcMPI by 
Ohio Supercomputing Center (Bliss and Kepner 2007) 
and pMATLAB etc. are the most notable MATLAB par-
allel programming applications. Furthermore, MATLAB 
offers specialized routines in the form of add-ons, known 
as “toolboxes” (Sharma and Martin 2009) along with 
some simple interfaces to high-performance libraries. 
Advantage of using NetSolve is that it ensures good per-
formance through the load balancing policy that enables 
NetSolve to use the computational resources available 
as efficiently as possible. NetSolve uses a generic heart-
beat mechanism for failure detection and uses retry on 
another available machine for fault tolerance (Hwang and 
Kesselman 2003).

The CoG Kit is a Commodity Grid toolkit that defines 
and implements a set of general components that map 
grid functionality into a commodity environment/
framework (Von Laszewski et al. 2000). With the help of 
the CoG Kit, the application developers can exploit the 
advanced services of grid, such as resource management, 
security, and resource discovery. Similarly, CoG kit can 
be used for developing higher-level components in terms 
of familiar and powerful application development frame-
works (Von Laszewski et al. 2000). CoG Kit (Hwang and 
Kesselman 2003) does not have failure detection mecha-
nism and is missing the advanced features of fault toler-
ance, such as replication and check pointing.

Mechanisms used for fault detection and tolerance
The following techniques can be used for detection and 
identification of faults in grid computing environments:

Push model
In push model, the components of the grid starts send-
ing heartbeat messages at regular time intervals to a cen-
tral failure detector. If failure detector does not receive 
a message from one or more grid components within a 
specified time, then failure detector assumes and consid-
ers the problem as a failure of that component (Garg and 
Singh 2011).
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Pull model
For detection of faults in pull model, the failure detector 
keeps on sending ping requests to the grid components 
after specific time intervals. Ping request sent for a par-
ticular device if not received within an acceptable time 
frame is considered to be failure of that particular device 
(Garg and Singh 2011).

Probability based techniques
Different probability based techniques are also used to 
detect and identify problems that are expected in grid 
computing environments. Joshi et  al. (2011), has used 
probability based approach for automating recovery of 
faults in distributed environments. Risks associated with 
service level agreements in grid environments are cal-
culated by Carlsson and Fuller (2010), using a predictive 
probabilistic approach.

Neural network based approaches
One of the many usages of the neural networks is in the 
field/area of computer networks for diagnosing faults. 
Some researchers (Charoenpornwattana et  al. 2008) are 
applying the concept for detecting and diagnosing faults 
in grids for improving reliability. Charoenpornwattana 
et  al. (2008), used neural network based approach for 
proactive fault avoidance. Calado and da Costa (2006), 
used neural network based fault identification and diag-
nosis using fuzzy approach to achieve reliability in high 
performance computing environments.

Proactive fault tolerance
Fault tolerance can be further handled intelligently by 
developing and adopting techniques such as maintain-
ing the history of information about successful job com-
pletion. Faults faced/observed during the working of 
grid environment can also be handled proactively. The 
probability of resource and or node failure history can 
also be maintained and used later for proactive fault 
tolerance. Similarly, reliability of resources of grid par-
ticipating nodes/machines can also be generated using 
algorithms resulting in timely decisions regarding fault 
tolerance. In proactive fault tolerance, we take decisions 
regarding a problem that has not yet actually occurred 
or observed. Although many proactive fault tolerance 
techniques for grids have been proposed by researchers 
(Nazir et al. 2012; Haider et al. 2007; Nazir et al. 2009; 
Vallee et  al. 2008; Engelmann et  al. 2009; Nagarajan 
et  al. 2007; Litvinova et  al. 2009; Benjamin Khoo and 
Veeravalli 2010) but still a comprehensive and accept-
able proactive fault tolerance technique with respect to 
grid is awaited.

Reactive fault tolerance
Reactive fault tolerance is used in systems where job fail-
ures are considered and handled after occurrence. Most 
of the fault tolerant techniques are reactive in nature and 
many grid middleware (Hwang and Kesselman 2003; 
Katzela 1996; Grimshaw et  al. 1997; Stelling et  al. 1999; 
Czajkowski et al. 2001; Baker et al. 2002) are handling the 
issue of fault tolerance, reactively. Most of the research 
regarding fault tolerance in grid environments is using 
reactive/post-active approach that is handling faults after 
detection.

Performance evaluation criteria
There are many factors that need to be considered while 
evaluating a good or a bad fault tolerant system. An obvi-
ous fact is that more focus and concentration on fault 
tolerance will be at the cost of system performance. An 
intelligent fault tolerant system can be designed while 
considering system performance in mind. Performance 
evaluation criteria’s in fault tolerance are identified in 
Table 2.

Performance evaluation criteria’s identified in Table  2 
signify that authenticity of fault tolerant model will 
improve by incorporating more of its factors. It is per-
haps impossible to consider all the criteria’s while design-
ing a fault tolerant system. However, more the considered 
points mentioned in Table 2, better will be the designed 
fault tolerant system. Similarly, trying to achieve all of the 
defined criteria’s, and architecture will be bulky that ulti-
mately will result in the overall reduction in performance.

Open issues: fault tolerance in grid computing
Grid computing will keep on imposing new conceptual 
and technical challenges (Nazir et al. 2012). Open issues 
with respect to fault tolerance are to find ways to detect 
and handle different types of errors, failures, and faults in 
distributed application or middleware used in grid com-
puting environments.

Establish a fault detection mechanism capable of detecting 
faults
Various techniques can be used for detecting faults. Artifi-
cial neural network, probability, push model and pull model 
are the techniques that can be applied for identification of 
faults. Combination of two or more techniques, such as 
artificial neural network and probability, or any other com-
bination can be helpful for fault detection and according to 
our knowledge a combination of neural network and prob-
ability based approaches have not yet been applied for fault 
identification in grids. Probability and neural network can 
also be used for treatment of faults proactively.
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Identification of the domain of the problem
The problems incurred in grids can be in the form of 
errors, failures, and faults. Therefore, it would be better 
to actually identify the problem domain. Identification of 
problem domain is to know whether the problem is error, 
failure, or fault and further getting information about the 
sub category of the type of problem.

Fault repercussion analysis
After the identification of the domain of the problem, that 
problem must be assessed for the possible impact. For 
example, what type of harm or damage can that problem 
cause? Similarly, further investigation about the identi-
fied problem with respect to the location in the layered 
grid architecture and solution for improving the availabil-
ity can further be helpful. Factors, such as mean time to 
detect and mean time to repair can then be used to check 
whether the proposed solution has increased availability 
factor or not. Solutions that improve availability are con-
formance of correctness and further are proof of reliability.

Maintaining log of problems and using fault tolerance 
scheduling technique during resource allocation
Several research papers have shown the use of fault 
tolerant scheduling strategies (Latchoumy and Khader 

2012; Nazir et  al. 2012; Haider et  al. 2007; Benjamin 
Khoo and Veeravalli 2010; Amoon 2012) for compu-
tational grids. An intelligent fault tolerant schedul-
ing scheme that combines ideas from neural network, 
probability, and historical data gathered over a course 
of time can also be a smart way that can help in fault 
tolerance.

Hybrid fault tolerance technique
Hybrid fault tolerance approach, such as a combination 
of proactive and reactive technique can also be used in 
grid environments. Proactive technique would actu-
ally inform about the problem before that problem is 
observed in the system. Moreover, if the problem is 
encountered then reactive techniques would be there to 
take over the situation.

Prediction of failures and its impact on performance
Another important research area from fault tolerance 
point of view in grids and other HPC environments is 
of predicting failures. If an application in HPC environ-
ment is likely to finish before the predicted failure, then 
a proactive fault tolerant measure can be avoided, hence 
a possibility in improving performance (Egwutuoha 
2014).

Table 2  Performance evaluation criteria’s

S. no. Evaluation criteria Recommended In between Not recommended

1 Time to detect errors Early – Late

2 Failure probability Low Medium High

3 Node selection for job execution Intelligent Random Unintelligent

4 Failure detection Proactive Reactive –

5 Fault detection layers All layers Few layers No layer

6 Recovery time of failed node Low Medium High

7 Response time after failure Early – Late

8 Resource utilization Increased – Decreased

9 Recovery technique Workflow, task level – –

10 Job success ratio Increased Moderate Decreased

11 Overall throughput Increased Moderate Decreased

12 Overall ATAT Reduced – Magnified

13 Errors detected Large Medium Low

14 Overall AWT Low Medium High

15 Transmission delay Reduced – Magnified

16 Implementation Easy – Difficult

17 Adaptability Yes – No

18 Fault detection Dynamic – Static

19 Task level FT Checkpoint Replication Alternate resource

20 MTTF Increased – Decreased

21 MTTR Decreased – Increased

22 MTTD Decreased – Increased
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Conclusion
In this survey we have learned that fault tolerance is an 
important issue that must be dealt with care, as reli-
ability, dependability, performance, and quality of service 
depends upon the reliable provisioning of services.

Literature review reveals that the distributed sys-
tems are lacking a complete classification of the types of 
errors, failures, and faults. Every type of problem is con-
sidered and named as a fault, though it could be an error 
or failure too. We have created an extended classification 
of errors, failures and faults. To ensure reliability and 
dependability in a distributed application or system, all of 
these should be incorporated.

Different fault tolerant techniques are available for 
grid based environments and most of them are reactive 
in nature. However, most of the techniques are capable 
of handling only few types of errors. Very few techniques 
are dynamic and handle faults proactively. For fault tol-
erant techniques to be more efficient and precise, the 
emphasis must be on fault detection first, as only the cor-
rect and timely fault detection can ensure a timely and 
right fault tolerant mechanism.
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