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Background
Filtering is one of the most essential steps in the applications of image processing. An 
image must contain the required data to show the correct information before it is used 
for any image processing application. But images are usually corrupted with unwanted 
information that causes hindrance to an efficient image processing operations. These 
unwanted information which are termed as noise must be removed properly from the 
image as a preprocessing step. Additive random noise (Gaussian noise) and salt and pep-
per noise are some of the most common noises found in digital image. Impulse noise 
which may be fixed valued noise (FVN) or random valued noise (RVN) is one of the 
most naturally occurring noises in digital images and it is induced in the image dur-
ing image acquisition by faulty sensors or during transmission through communica-
tion channels. Noise removal techniques depends on the type of noises degrading the 
image and also largely on the percentage of noise corrupting the image. A number of 
robust filters have been proposed in literature for filtering the color images corrupted 
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with impulse noise. Non-linear filters which actually work in spatial domain suit well for 
impulse noise removal from color images (Celebi et al. 2007).

Initial approach like the marginal median filter (MMF) treats the color image chan-
nel wise in a scalar form which often leads to color artifacts (Pitas 1990). The nonlinear 
filters like the vector median filter (VMF) (Astola et al. 1990) and the basic vector direc-
tional filter (BVDF) (Trahanias and Venetsanopoulos 1992) which consider the color 
pixels as vectors and work on the concept of order-static filters, are very efficient for the 
impulse noise removal of color images. The VMF forms a sorted array of the cumula-
tive distance of intensity value of the vector pixels from the surrounding pixels in the 
window, and then the corresponding vector pixel which gives the least value of cumula-
tive distance in the sorted array is substituted as the vector median instead of the center 
pixel. And in case of VDF, the sorted array is of the cumulative angular distance of the 
vector pixels from the surrounding vectors in the window. Thus the output of the VDF is 
the vector pixel that corresponds to the least value of cumulative angular distance. The 
directional-distance filter (DDF) (Karakos and Trahanias 1995) combines the μ magni-
tude part from the VMF and the (1 − μ) angular part from the VDF in calculating the 
cumulative distances from a vector pixel to the other in the filtering window. The center 
weighted VMF (CWVMF) (Smolka et al. 2012a), center weighted VDF (CWVDF) and 
the center weighted DDF (CWDDF) highlight the center pixel by assigning more weight. 
These filters have a tendency to preserve the center pixel in the filtering window which 
reduces the efficiency in higher noise ratio. These are the popular filters where the fil-
tering is done uniformly across the pixels without using an actual noise detection algo-
rithm. These filters tend to modify the uncorrupted pixels which result in blurring of the 
edges and loss of fine details of the image.

To overcome this particular issue noise detection schemes are introduced in the rank 
order static filters, that check whether the center pixel is noisy or not. Then the noisy 
pixel is replaced by the output of a vector filter otherwise it is left unaltered. The adap-
tive CWVMF (ACWVMF) (Lukac and Smolka 2003), adaptive CWVDF (ACWVDF) 
(Lukac 2004) and adaptive CWDDF (ACWDDF) replace the center pixel by the output 
of VMF, VDF and DDF respectively, if the difference between the center pixel and the 
corresponding center-weighted vector median is greater than a user specified threshold. 
A weight in the range of 0–1 is given to cumulative distance of the center pixel, for get-
ting the vector median of the modified CWVMF (MCWVMF).

In the peer group filter (PGF) the pixels in the window is sorted according to their dif-
ferences from the center pixel, then a peer group of m =

(√
n+ 1

)/

2 is selected from 
the sorted array, where n is the number of vector pixels in the window. If the difference 
between any two pixels from the peer group is greater than user-specified threshold, 
then the center pixel is replaced with the output of VMF. And if the difference of the 
individual pixel, in the peer group m, from the center pixel is less than a user specified 
threshold, then the center pixel is replaced with the VMF, which results in the fast PGF 
(FPGF) (Kenny et  al. 2001; Smolka and Chydzinski 2005; Malinski and Smolka 2015). 
The adaptive VMF (AVMF) and adaptive VDF (AVDF) replace the center pixel with the 
output of VMF and VDF respectively if their respective cumulative distance is greater 
than a user specified threshold ∂ and T (Lukac 2002, 2003).
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The entropy VMF (EVMF), entropy VDF (EVDF) and entropy DDF (EDDF) are the 
group of entropy vector filters which replace the center pixel with the output of VMF, 
VDF and DDF respectively, if the local contrast entropy of the center pixel is greater 
than its local contrast entropic threshold multiplied by a weighting factor υ (Lukac et al. 
2003).

The Neuvo VMF (NVMF) (Sun and Neuvo 1994) is that kind of vector filter where 
the center pixel is considered to be noisy if its difference from the vector median is big-
ger than a predefined threshold. For the rank-conditioned VMF (RCVMF), rank-condi-
tioned VDF (RCVDF) and rank-conditioned DDF (RCDDF), with respect to ascending 
order of the respective cumulative distances, a subset of the vector pixels excluding the 
minimum and maximum values is formed (Singh and Bora 2004). If the center pixel 
is not in the ordered subset, then it is replaced by the output of VMF, VDF and DDF 
respectively. If l is the number of pixels in the ordered set, then position of the noisy 
center pixel will be outside the range of l. In the rank-conditioned and threshold VMF 
(RCTVMF), rank-conditioned and threshold VDF (RCTVDF) and rank-conditioned and 
threshold DDF (RCTDDF) (Singh and Bora 2004; Smolka et al. 2012b), the center pixel 
is considered as noisy if it does not belong in the trimmed set and its difference from the 
respective vector median is greater than a pre-defined threshold.

The group of fuzzy weighted filters namely the fuzzy vector median filter (FVMF), 
fuzzy vector directional filter (FVDF) and fuzzy directional distance filter (FDDF) 
weight the pixels in the filtering window according to their respective cumulative dis-
tance before replacing the center pixel with the average of the weighted pixels. These 
filters use certain parameters α and β to adjust amount of fuzziness in weighting the pix-
els (Plataniostis et al. 1996, 1999). The fuzzy ordered vector filter (FOVMF) picks up the 
first l elements of the ordered set of cumulative distances, and then assigns the weight 
only to the corresponding pixels.

In the signal dependent rank-ordered mean (SDM), if the difference between the 
center pixel and the first four pixels of the rank-ordered set of pixels is greater than four 
separate thresholds Ta, Tb, Tc and Td respectively, Moore et al. (1999) then the center 
pixel is replaced with the output of VMF. The robust switching vector median filter 
(RSVMF) proposed by Celebi and Aslandogan considers the noisy pixel to be a noisy 
pixel if the cumulative distance with respect to the center pixel is greater than a prede-
fined percentage β of the cumulative distance associated with the median (Celebi and 
Aslandogan 2008).

The non-causal linear predictor based filters use the concept of linear prediction 
(Singh 2012; Singh and Bora 2003) for estimating the center pixel as a weighted combi-
nation of past and future vector pixels with respect to the center pixel. It is based on the 
fact that there exists a strong correlation among the neighborhood pixels of a window 
centered at a vector pixel.

The non-causal vector median filter (NCVMF) (Singh and Bora 2014) first filters the 
image using VMF, then estimates the center pixel using constrained intra-channel linear 
predictor (Hu et al. 1997) by considering the eight second order pixels (see Fig. 1) (David 
and Ramamurthi 1991; Asif and Moura 1996; Asif 2004). Then if the difference between 
the predicted pixel and the center pixel is greater than or equal to a user-specified 
threshold, the center pixel is replaced by the output of VMF, VDF or DDF. In the rank 
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conditioned non-causal vector median filter (NCRVMF), the value of index p, which 
corresponds to the least valued element from the sorted array of cumulative distance of 
the vector pixels in the window, is compared with a threshold, which is calculated based 
on the standard deviations of the separate three channels of the image. If the value of k 
is greater than that of the threshold T, then the center pixel is predicted considering the 
2nd order non-causal regions. The non causal vector median filter 2nd order non causal 
(NCVMF_2nc) considers only the upper four non causal pixels out of the eight, from 
the 2nd order region excluding the center pixel. The non causal vector median filter 1st 
order non causal (NCVMF_1nc) considers the four 1st order pixels from the non causal 
region. The non causal vector median filter 1st order causal (NCVMF_1c) predicts the 
center pixel using the two pixels of the 1st order causal region.

The adaptive vector marginal median filter (AVMMF) compares the cumulative dis-
tance of the center pixel with that of the sorted array of the cumulative distance of all the 
pixels in the window, so that center pixel lies in the l index in the sorted array (Morillas 
et al. 2011). And if l is greater than the index defining the center of the window, then the 
center pixel is replaced by the median of the vector medians for n = 1, 2, …, k, where n is 
the index of the sorted array of cumulative distances of the pixels in the window.

The vector sigma filters (Lukac et  al. 2006) which are based on approximated vari-
ance of the vector pixels in the window are grouped into adaptive and non-adaptive. 
The multivariate variance is calculated either based on the vector mean or the low-
est ranked vector, vector median. In the non-adaptive group of vector sigma filters the 
center pixel is replaced with the output of VMF, VDF and DDF, if the cumulative dis-
tance of the center pixel is greater than a threshold, calculated based on the cumula-
tive distance of the mean vector or the vector median and a parameter μ. This results to 
the corresponding non-adaptive sigma vector filters as SVMF_MEAN, SVMF_RANK, 
SVDF_MEAN, SVDF_RANK, SDDF_MEAN and SDDF_RANK respectively. Then the 
groups of adaptive sigma vector filters are ASVMF_MEAN, ASVMF_RANK, ASVDF_
MEAN, ASVDF_RANK, SDDF_MEAN and ASDDF_RANK correspondingly. Here the 
center pixel is replaced with output of VMF, VDF and DDF respectively if the differ-
ence between the center pixel and the mean vector or the vector median is greater than 
the product of the corresponding approximated variance and a weighting parameter μ, 
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Fig. 1  Block of causal and non causal regions showing different orders
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where the approximated variance is calculated based on the cumulative distance of the 
vector pixels in the window from that of the mean vector.

Many robust filters for impulse noise removal have been proposed in the literature but 
most of them which work efficiently in the lower noise ratio, lack considerably in the 
higher noise ratio. Filters like CWVMF, CWVDF, CWDDF, RCTVDF, RCTVDF, RCT-
DDF etc. which perform very well in the lowest noise ratio group, are not efficient in the 
higher noise ratio group. On the other hand filters like ASVMF_MEAN, ASDDF_MEAN 
and EVMF work quite well both in lowest and highest noise ratio group.

In this work, a simple algorithm checks the impulse noise ratio in the image prior to 
the implementation of the noise detection algorithms, depending on which two filters 
are switched accordingly from lower noise ratio to higher and vice versa. In the higher 
nose ratio, the noisy pixels are identified with the help of noise detection algorithm, 
based on how much the center pixel is different from the mean vector of the neighbor-
ing vectors in the widow (Lukac et al. 2006). Then the detected noisy pixels are replaced 
with the output of modified exponentially weighted mean filter (Celebi et al. 2007) based 
on the concept of bilateral filter (Tomashi and Manduchi 1998; Daniel John 2013; Kaur 
et al. 2015), whereas the uncorrupted pixels are kept untouched.

“Proposed method” section describes the proposed method. Noise model perfor-
mance measuring parameters are described briefly in the next “Filter evaluation” section 
and finally the details are summarized and concluded in “Conclusions” section.

Proposed method
Let a color image X of size P × Q be represented by a 2-D array of 3 component vectors 
represented as,

where p = 1, 2, 3 . . .P and q = 1, 2, 3 . . .Q represents the row and column indices. R, 
G and B represent the Red, Green and Blue components of the vector pixel x(p,q). As 
usual in the basic filtering approach, a window W of odd size m × n centered at x(p,q) is 
considered (see Fig. 2). Considering the fact that impulse noise is distributed randomly 
which results in the variation of noise content in different parts of the image, before 

(1)x(p, q) =
[

xR(p, q), xG(p, q), xB(p, q)
]

x1=x(p-1, q-1) x2=x(p-1, q) x3=x(p-1, q+1)

x4=x(p, q-1) x5=x(p, q) x6=x(p, q+1)

x7=x(p+1, q-1) x8=x(p+1, q) x9=x(p+1, q+1)

Fig. 2  A 3 × 3 window of color vectors with their coordinates
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checking whether the center pixel is noisy or not, a localized impulse noise probability 
Pr, in the window comprising the center pixel is calculated as,

where Nimp is the number of 0 s and 255  s in the window. If TL ≤ pr ≤ TH, then the 
center pixel is replaced with the output of the ACWVMF, otherwise it is replaced with 
the output of the modified ASVMF_MEAN, MASVMF_MEAN, to give the overall pro-
posed noise percentage based switching filter, NPSF as shown below

TL and TH are the lower and higher threshold value of pr. xNPSF is the output of NPSF and 
xACWMF is the output of ACWVMF which is defined as

where c = ((m× n)+ 1)
/

2, T is the threshold, with which the difference of the center 
pixel from the output of CWVMF is compared with and xCWVMF is the output of 
CWVMF which is given as

and

represents the weight to be given to the center pixel.
ACWVMF is chosen for the window with less number of impulse noises, like if at the 

most one number of 0 or 255 is present. It is a very robust filter which is very efficient 
and flexible in removing impulse noise, which actually allows one to design an optimal 
filter for a particular domain by adjusting the weights assigned to the center pixel. The 
weights are estimated using an optimization procedure in Eq. 5 by using a number of 
training images (Celebi et al. 2007). u is used as the smoothing parameter such that if 
u = 1 the ACWVMF becomes an identity filter and so no smoothing will be performed 
and if the value of u increases from 1 to 5, the smoothing potential of the filter increases. 
When u reaches the value of c, lastly the ACWVMF becomes the VMF where the maxi-
mum amount of smoothing is done. In this paper three values of u is chosen from v 
to v + 2, for which three respective CWVMF outputs are determined to be subtracted 
from their respective center pixel as seen in Eq. 4. And if the sum of the three differ-
ences is greater than the threshold T then the center pixel is replaced with the output of 
VMF. In the ACWVMF the center pixel is highlighted or given more importance with-
out a prior knowledge of whether it is a noisy pixel or not, by assigning a variable weight 
by Eq. 5, that makes the ACWVMF more suitable to be considered for windows which 

(2)pr = Nimp/m× n

(3)xNPSF =
{

xACWVMF if TL ≤ pr ≤ TH

xMASVMF_MEAN otherwise

(4)xACWVMF =
{

xVMF if
∑ν+2

u=ν �xCWVMFu − x(p, q)� > T ,
x(p, q) otherwise

ν ∈ [1, c − 1]

xCWVMFu = arg min
xi∈W





m×n
�

j=1

wj(u).
�

�xi − xj
�

�





(5)wj(u) =
{

m× n− 2u+ 2 for j = c
1 otherwise

, u ∈ [1, c]
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contain at the most one 0 or 255. The ACWVMF has a tendency to preserve the center 
pixel that makes it more suitable for lower noised region of the image.

And for the window with two or more number of 0 s and 255 s, a detection algorithm 
based on ASVMF_MEAN is used where the noisy pixel is detected based on the com-
parison of the center pixel with that of an approximated variance of the vector pixels in 
the filtering window (see Fig. 3). Depending on the fact that the impulse noise usually 
has very high or very low pixel value as compared to the surrounding pixels, the variance 
is calculated based on the mean vector of the pixels in the window, where mean is con-
sidered as one of the most probable values other than the vector median, for substituting 
the noisy pixel. Once the noisy pixels are detected, they will be replaced by the output 
of an exponentially weighted filter. The complete algorithm of noise detection using the 
approximated variance and replacement of the center pixel by the output of the expo-
nentially weighted filter, defines the MASVMF_MEAN.

The variance σ2, which is to be compared with, is calculated as,

where,

xmean is the mean of the vector pixels in the window W. For checking the pixels to be 
noisy or not, the difference of the center pixel, x(p,q) from the mean, xmean is compared 

(6)σ 2 =
1

m× n

m×n
∑

i=1

�xi − xmean�2

(7)�xi − xmean �2 =
∣

∣

∣xRi − xRmean

∣

∣

∣

2
+

∣

∣

∣xGi − xGmean

∣

∣

∣

2
+

∣

∣

∣xBi − xBmean

∣

∣

∣

2

Window W centered at 
x(p,q) is considered

Localized noise probability Pr of 
impulse noise, in W is calculated

TL<Pr<TH

Noise detection based on 
approximated variance

No Yes

Replace the center pixel 
with the output of 

ACWVMF

Center 
pixel is 
noisy

Center pixel is kept 
unchanged

No

Replace the center pixel 
with the output of xEwmf

Yes

Fig. 3  Flowchart of the proposed algorithm
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with the approximated variance, σ2 multiplied by a weighting factor ∂, to give ∂ × σ 2 and 
if �x(p, q)− xmean� ≥ ∂ × σ 2, then the centered pixel x(p,q) is considered to be a noisy 
pixel.

This particular detection algorithm based on ASVMF_MEAN is suitable for higher 
noise region of the image because the approximated variance is calculated based on the 
cumulative difference of the vector pixels from the mean, which means that all the pix-
els whether impulse noise or not are considered and are given similar importance. And 
the vector pixel is treated as impulse noise if it is having a bigger difference from the 
mean, as compared to average of the difference of vector pixels from the mean as seen in 
Eqs. 6 and 7. Then the window where the center pixel is detected as noisy pixel is further 
considered for further classification of the vector pixels among themselves with respect 
to their individual importance in the window. This further classification is helpful for 
window with more number of impulse noises where more number of 0 s and 255 s are 
present as it helps in more efficient detection of noisy pixel. The classification and the 
corresponding assignment of weights to the respective vector pixel according to their 
importance in the window is given by the equation

where

And

Then the noisy pixel is replaced with the output of the exponentially weighted mean fil-
ter given as

Abiding by the normalization procedure, two constraints are necessary to make it sure 
that the output of Ewmf is an unbiased one, namely: (a) each weight yi = wi

∑m× n
i=1 wi

 for a 
respective vector pixel xi is a positive number, yi ≥ 0 and (b) 

∑m × n
i yi = 1. The param-

eters α, η and β are used to tune the amount of weight to be given to the pixels. To obey 
the above constraints so that the output is unbiased, it is made that η = 1− α where 

(8)wi = e
−

(

d(i)α+l(i)η

β

)

for i = 1, 2, 3, . . . , m× n

(9)d(i) =
m×n
∑

j=1

s
(

xi, xj
)

(10)s(xi, xj) =
∥

∥xi − xj
∥

∥

(11)l(i) =
m× n
∑

j=1

c
(

xi, xj
)

(12)c(xi, xj) =
∥

∥i − j
∥

∥

2

(13)xEwmf =
∑m×n

i=1 wixi
∑m×n

i=1 wi
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0 < α < 1 since the values of d(i) and l(i) will be in the range of k where 0 ≤ k < ∞ 
excluding 0 < k < 1. And β is the value of α at which the weighting function wi takes 
the maximum derivative. The value of η = 1 − α also makes it sure that the two compo-
nents in Eq. 8 are dependent and correlated to each other according to the noise prob-
ability of the sliding window. The first component described by Eqs. 9 and 10, depends 
on the cumulative distance of intensity difference of each pixel from its surrounding 
neighboring pixels. If the value of d(i) for a particular pixel xi is larger, than it means that 
the intensity difference of the particular pixel from its surrounding is very large and has 
more tendencies to be an impulse noisy pixel. Therefore less weight is given to the pixel 
and vice versa. Whereas the second component as described by Eqs. 11 and 12, depends 
on the cumulative distance of coordinate or position difference of the pixel from its sur-
rounding pixels. It is based on the fact that a pixel which is far away from the center pixel 
spatially is of less importance. Therefore a pixel xi with a large value of l(i) is far away 
from the center pixel x(p,q) and is of less resemblance or importance, to be assigned 
with less weight. And it can be also seen that the parameters α and η are inversely pro-
portional to the weight wi.

Further for a particular value of d(i) and l(i), the amount of weight assigned is again 
controlled by the respective values of α and η. If any of α or η is having a value of 1 then 
the other will be 0 that avoids the condition for both the components to be considered 
simultaneously. The condition that η = 1− α makes it achievable that, for the window 
with a comparatively lesser number of 0 s and 255 s in the region of pr > TH and with 
a lesser value of d(i), more weight is allowed to be assigned to the pixel by the first com-
ponent of Eq. 8 with a lesser value of α, thus highlighting the first component, that sub-
sequently makes the second component which is made of l(i) to be less important with a 
comparatively higher value of η = 1− α. Whereas in the window with more number of 
0 s and 255 s which usually has a higher value of d(i), less weight is made to be assigned 
by the first component with higher value of α and thus the second component is given 
more importance with a comparatively lesser value of η = 1− α. This fact is supported 
by the results in Tables 1 and 2 where the values of NCD, PSNR, MAE and TIME are 
listed at different noise ratios and at different values of α and η for fixed valued and ran-
dom valued noise correspondingly. And the values of α and η at which the value of PSNR 
and other measuring parameters attain their maximum values is highlighted. The selec-
tion of values for the parameters is further discussed in part C: Parameter selection, of 
section III.

Filter evaluation
The filters are evaluated in this section on a variety of RGB color images, which includes 
scientific images, biomedical images, photographic images, synthetic images and a group 
of images generally used in the color image processing literature, for a better compari-
son on the performance of the filters, by considering a 3 × 3 window size with L1 and L2 
norms. Figure 4 shows the 12 representative images of Lena image, Mandrill, Airplane, 
Aptus, Barbara, Brain, Couple, Girl, Gold hill, House, Lake and Miramar.
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Noise model

An impulse noise model which is commonly used in the literature of filtering of color 
images is used in this work (Viero et al. 1994). Let b be the probability of corruption of 
the color image with the impulse noise. A color image has three vector components, 
where each component has a chance of being corrupted by the impulse noise with a 
respective corruption probability. Let bR, bG and bB be the probabilities of impulse noise 
corruption of the three components R, G and B respectively.

x = {xR, xG , xB} and y =
{

yR, yG , yB
}

 represent the original and the corrupted vec-
tor pixels respectively. And the impulse noise is represented by the random vector 
n = {nR, nG , nB} which can be a vector of 0 or 255 or both. The images are induced with 
both fixed valued noise and random valued noise with noise ratio ranging from 10 to 
90%. For the fixed valued noise, ηk can be either 0 or 225, whereas it can be any random 
value ranging from 0 to 255 for the random valued noise.

Filter performance measurements

Execution time, mean absolute error (MAE) (Singh and Bora 2014), normalized color 
difference (NCD) (Singh and Bora 2014) and peak signal to noise ratio (PSNR) (Platanio-
tis and Venetsanopoulos 2000) are the performance measuring parameters which will be 

(14)y =



















xwith probability 1− b
{nR, xG , xB}with probability b.bR
{xR, nG , xB}with probability b.bG
{xR, xG , nB}with probability b.bB
{nR, nG , nB}with probability [1− (bR + bG + bB)].b

Fig. 4  Test images: a Lena, b Mandrill, c Airplane, d Aptus, e Barbara, f Brain, g Couple, h Girl, i Gold hill, j 
House, k Lake and l Tiffany
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used to evaluate the filters in comparison. Color chromaticity preservation capability of 
a filter is measured with NCD. A filtered image is said to preserve its chromaticity if it 
is free from the shadowy effects whereas MAE represents the noise suppression and the 
signal–detail preservation capability. MAE is mathematically expressed as

x(i, j) and xF (i, j) are the original and the filtered image respectively. 
{

x(i, j)R, x(i, j)G , x(i, j)B
}

 and 
{

xF (i, j)
R, xF (i, j)

R, xF (i, j)
R
}

 are the red, green and blue 
components of the original image x(i, j) and filtered image xF (i, j) respectively. It can be 
seen that with the help of the above equation a slight difference between the original and 
filtered image can be highlighted properly for better comparison between the filters. The 
NCD is defined in the L u∗ v∗ color space by

where 
{

L(i, j),u (i, j), v (i, j)
}

 and 
{

LF (i, j),u F (i, j), vF (i, j)
}

 are the respective values 
of the lightness and two chrominance components of the original image x(i, j) and fil-
tered image xF (i, j). And the signal content of the image is described by PSNR which is 
expressed as

where xmax = 2b − 1 is the maximum intensity for an image in a particular channel. 24 
bits images of size 512 × 512 are considered in this work, where b = 8, is the number of 
bits in a pixel for the particular channel and xmax is equal to 255.

Parameter selection

The exponential weight is found using Eq. 6 where the weight is controlled by the three 
parameters α, η and β. As seen from the weight equation, α and η are inversely pro-
portional to the weight as seen in Eq. 8. Analyzing the simulation results on the vari-
ous images, it is found that at the lower noise ratio, 10% and 20% as representative in 
this work, the PSNR attains its maximum value at lower value of ∝ = 0.4 and compara-
tively higher value of η = 0.6, supported by the fact that more weight is given by the first 
component d(i)α in Eq.  8 to the pixels at lower noise ratio, during which most of the 
pixels in the window tends to be less impulse. Whereas the PSNR attains its maximum 
value at a relatively higher value of around α = 0.6 or 0.7 and comparatively lower value 
of η =  0.4 or 0.3 for higher noise ratio, during which less weight is necessary by the 
pixels in the window from the first component d(i)α and instead more from the second 

(15)MAE =
1

3PQ

P
∑

i=1

Q
∑

j=1

[ ∣

∣x(i, j)R − xF (i, j)
R
∣

∣+
∣

∣x(i, j)G − xF (i, j)
G
∣

∣

+
∣

∣x(i, j)B − xF (i, j)
B
∣

∣

]

(16)

NCD =

∑P
i=1

∑Q
j=1

{

∣

∣L(i, j)− LF (i, j)
∣

∣

2 +
∣

∣u (i, j)− u F (i, j)
∣

∣

2 +
∣

∣v (i, j)− vF (i, j)
∣

∣

2
}1/2

∑P
i=1

∑Q
j=1

{

∣

∣L (i, j)
∣

∣

2 +
∣

∣u (i, j)
∣

∣

2 +
∣

∣v (i, j)
∣

∣

2
}1/2

(17)PSNR = 10 log 10
x2max

1
3PQ

∑P
i=1

∑Q
j=1

∥

∥x(i, j)− xF (i, j)
∥

∥

2
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component l(i)η is considered, since their probability to be impulse is more. Therefore 
α = 0.7 , η = 0.3 and α = 0.6, η = 0.4 are considered for the highest noise ratio (80 
and 90%) with relatively smaller value of α = 0.4 and higher value of η = 0.6 for lower 
noise ratio (10 and 20%) for fixed valued noise and random valued noise respectively 
(see Tables  1, 2). The above discussion concludes that the first component controlled 
the parameter α plays a bigger role as compared to the second component controlled by 
parameter η in Eq. 8. The values of β and ∂ are set as 1 and 0.5 respectively. Considering 
the Eqs. 4 and 5 which represents the expression for ACWVMF, the value of ν is consid-
ered as 3 so that u goes from 3 to 5, for which three different xCWVMF is calculated with 
three different wj(u) respectively. The values of TL and TH in Eq. 3 are set as 0.000 and 
0.111 respectively. The parameters and their respective values selection, for both fixed 
valued and random valued noise, for other filters in comparison are shown in Table 3.

Comparison with other existing filters

The performance comparison of the various filters is shown in Tables 4 and 5. Figure 5 
shows the graphical comparison of the MASVMF_MEAN, VMF, ACWVMF, EVMF, 

Table 3  Filters in comparison (excluding the proposed filter), with their respective param-
eters’ values at which the filters are implemented

Filters Parameters Filters Parameters

MMF RCTDDF l = 5, T = 40

VMF FVMF α = 0.5, β = 1

BVDF FVDF α = 2, β = 1

DDF μ = 0.7 FOVMF α = 0.5, β = 1, l = 4

CWVMF w = 5 AVMMF l = 5, k = 3

CWVDF w = 3 SDM Ta = 40, Tb = 70, Tc = 120, Td = 160

CWDDF w = 3 RSVMF β = 0.15

ACWVMF w = 3, T = 80 NCVMF T = 32

ACWVDF w = 5, T = 0.2 NCRVMF T = 38

ACWDDF w = 5, T = 47 NCVMF_2nc T = 30

MCWVMF w = 1.4 NCVMF_1nc T = 20

PGF T = 40 NCVMF_1c T = 25

FPGF m = 4, T = 30 SVMF_MEAN μ = 1.544

AVMF T = 35 SVMF_RANK μ = 1.475

AVDF ∂ = 1.57, T = 0.12 SVDF_MEAN μ = 1.544

EVMF υ = 0.6 SVDF_RANK μ = 1.475

EVDF υ = 0.2 SDDF_MEAN μ = 1.544

EDDF υ = 0.1 SDDF_RANK μ = 1.475

NVMF T = 90 ASVMF_MEAN δ = 0.6

RCVMF l = 5 ASVMF_RANK δ = 0.65

RCVDF l = 5 ASVDF_MEAN δ = 1

RCDDF l = 5 ASVDF_RANK δ = 0.03

RCTVMF l = 5, T = 40 ASDDF_MEAN δ = 0.6

RCTVDF l = 5, T = 50 ASDDF_RANK δ = 0.5
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ASVMF_MEAN, RCTVMF, NVMF, SDM and NCVMF_1nc. The PSNR which defines 
the signal content of the filtered image has been given more importance for comparing 
the performance. Filters like ACWVMF, ACWVDF, NVMF and PGF perform very well 
in lower noise ratio and also work efficiently in higher noise ratio. The RCTVMF and 
MCWVMF are very efficient in preserving the signal content in the lower noise ratio but 
perform inefficiently in the higher noise ratio. Whereas the EVMF and the vector sigma 

Fig. 5  Comparison of some robust filters graphically: a legends depicting the filters in comparison and b–e 
shows execution time, PSNR, NCD and MAE comparison for fixed valued impulse noise; f–i shows execution 
time PSNR, NCD and MAE for random valued impulse noise
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group of filters namely the ASDDF_RANK, ASVMF_MEAN, ASDDF_MEAN work effi-
ciently in higher noise ratio although not very well in the lower noise ratio as compared 
to the case of ACWVMF and its allies mentioned above. But generally it can be clearly 
seen that the Adaptive switching filters like the Adaptive center weighted vector filters, 
Vector sigma filters, Adaptive vector filters and entropy based vector filters, first detect 
the noisy pixels using certain noise detection algorithm, before replacing the center pixel 
with the output of some vector filter and thus is able to give higher PSNR values than 
those of the non adaptive switching filters like the basic vector filters, fuzzy weighted 
filters etc. Therefore the adaptive switching filters are able to restore the original find 
details of the image better than the non-adaptive filters.

After working on various numbers of images it can be seen that the proposed filter, 
Noise percentage based switching filter maintains a good PSNR value at lower noise 
ratio by outperforming robust filters like ACWVMF, ACWVDF, etc. and also definitely 
overtakes even the most robust filters, which are very efficient in the higher noise ratios, 
like ACWVMF, EVMF and some vector sigma filters. This is supported by the experi-
mental results shown in the Tables  4 and 5, where the results of some efficient filters 
in consideration are christened. Figures  6 and 7 show the original images, corrupted 
images with 90% of fixed valued and random valued impulse noise and filtered images 

Fig. 6  Filtering results for the TIFFANY image corrupted with 90% noise: a original, b 90% noisy, c ASVMF_
MEAN, d ASVMF_RANK, e ASDDF_MEAN, f ASDDF_RANK, g VMF, h MCWVMF, i NVMF, j RSVMF, k RCTVMF and 
l MASVMF

Fig. 7  Filtering results for the TREE image corrupted with 90% noise: a original, b 90% noisy, c ACWDDF, d 
ACWVDF, e ACWVMF, f AVDF, g AVMF, h EDDF, i EVDF, j EVMF, k FVMF and l MASVMF
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of Tiffany and Tree respectively. The filtered images of the proposed filter are shown in 
image l of the Figs. 6 and 7, depicting high signal content and detail preservation. But 
seen precisely the filtered images are little blurred since the noisy pixels are replaced by 
the output of the average of the exponentially weighted filter. And also the proposed fil-
ter can be further improved in terms of preservation of chromaticity by furthering low-
ering the value of NCD.

Conclusions
The proposed filter is able to outperform the other robust filters, in maintaining the 
signal content and preserving the fine details of the image corrupted with fixed valued 
and random valued impulse noise at the lower noise ratios as well as at the higher noise 
ratios. And the filter also maintains the chromaticity of the filtered image at a lower 
value of NCD and MAE as compared to some of the very efficient filters in literature. 
The weighted average output of the filter does not belong to the vectors in the window 
because of which the filter can be extended further for Gaussian noise and mixed Gauss-
ian and impulse noise removal. Other than this, an unwanted commonly occurring issue 
called smoothing can be still further minimized. Future work will be in introducing a 
directional distance factor in the exponential weight function so that the chromaticity 
maintenance of the image is improved further.
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