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noisy pixel is further considered where the pixels are given exponential weights
according to their similarity to the other neighboring pixels, spatially and radio metri-
cally. The noisy pixels are then replaced by the weighted average of the pixels within
the window. The filter is able to preserve higher signal content in the higher noise ratio
as compared to other robust filters in comparison. With a little high in computational
complexity, this technique performs well both in lower and higher noise ratios. Simula-
tion results on various RGB images show that the proposed algorithm outperforms
many other existing nonlinear filters in terms of preservation of edges and fine details.
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Background

Filtering is one of the most essential steps in the applications of image processing. An
image must contain the required data to show the correct information before it is used
for any image processing application. But images are usually corrupted with unwanted
information that causes hindrance to an efficient image processing operations. These
unwanted information which are termed as noise must be removed properly from the
image as a preprocessing step. Additive random noise (Gaussian noise) and salt and pep-
per noise are some of the most common noises found in digital image. Impulse noise
which may be fixed valued noise (FVN) or random valued noise (RVN) is one of the
most naturally occurring noises in digital images and it is induced in the image dur-
ing image acquisition by faulty sensors or during transmission through communica-
tion channels. Noise removal techniques depends on the type of noises degrading the
image and also largely on the percentage of noise corrupting the image. A number of
robust filters have been proposed in literature for filtering the color images corrupted
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with impulse noise. Non-linear filters which actually work in spatial domain suit well for
impulse noise removal from color images (Celebi et al. 2007).

Initial approach like the marginal median filter (MMF) treats the color image chan-
nel wise in a scalar form which often leads to color artifacts (Pitas 1990). The nonlinear
filters like the vector median filter (VMF) (Astola et al. 1990) and the basic vector direc-
tional filter (BVDF) (Trahanias and Venetsanopoulos 1992) which consider the color
pixels as vectors and work on the concept of order-static filters, are very efficient for the
impulse noise removal of color images. The VMF forms a sorted array of the cumula-
tive distance of intensity value of the vector pixels from the surrounding pixels in the
window, and then the corresponding vector pixel which gives the least value of cumula-
tive distance in the sorted array is substituted as the vector median instead of the center
pixel. And in case of VDE, the sorted array is of the cumulative angular distance of the
vector pixels from the surrounding vectors in the window. Thus the output of the VDF is
the vector pixel that corresponds to the least value of cumulative angular distance. The
directional-distance filter (DDF) (Karakos and Trahanias 1995) combines the 4 magni-
tude part from the VMF and the (1 — y) angular part from the VDF in calculating the
cumulative distances from a vector pixel to the other in the filtering window. The center
weighted VMF (CWVMEF) (Smolka et al. 2012a), center weighted VDF (CWVDF) and
the center weighted DDF (CWDDF) highlight the center pixel by assigning more weight.
These filters have a tendency to preserve the center pixel in the filtering window which
reduces the efficiency in higher noise ratio. These are the popular filters where the fil-
tering is done uniformly across the pixels without using an actual noise detection algo-
rithm. These filters tend to modify the uncorrupted pixels which result in blurring of the
edges and loss of fine details of the image.

To overcome this particular issue noise detection schemes are introduced in the rank
order static filters, that check whether the center pixel is noisy or not. Then the noisy
pixel is replaced by the output of a vector filter otherwise it is left unaltered. The adap-
tive CWVMEF (ACWVMEF) (Lukac and Smolka 2003), adaptive CWVDF (ACWVDF)
(Lukac 2004) and adaptive CWDDF (ACWDDF) replace the center pixel by the output
of VME, VDF and DDF respectively, if the difference between the center pixel and the
corresponding center-weighted vector median is greater than a user specified threshold.
A weight in the range of 0-1 is given to cumulative distance of the center pixel, for get-
ting the vector median of the modified CWVMF (MCWVME).

In the peer group filter (PGF) the pixels in the window is sorted according to their dif-
ferences from the center pixel, then a peer group of m = (ﬁ + 1) / 2 is selected from
the sorted array, where 7 is the number of vector pixels in the window. If the difference
between any two pixels from the peer group is greater than user-specified threshold,
then the center pixel is replaced with the output of VME. And if the difference of the
individual pixel, in the peer group m, from the center pixel is less than a user specified
threshold, then the center pixel is replaced with the VMF, which results in the fast PGF
(FPGF) (Kenny et al. 2001; Smolka and Chydzinski 2005; Malinski and Smolka 2015).
The adaptive VMF (AVMF) and adaptive VDF (AVDF) replace the center pixel with the
output of VMF and VDF respectively if their respective cumulative distance is greater
than a user specified threshold d and 7 (Lukac 2002, 2003).
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The entropy VMF (EVME), entropy VDF (EVDF) and entropy DDF (EDDF) are the
group of entropy vector filters which replace the center pixel with the output of VMF,
VDF and DDF respectively, if the local contrast entropy of the center pixel is greater
than its local contrast entropic threshold multiplied by a weighting factor v (Lukac et al.
2003).

The Neuvo VMF (NVMF) (Sun and Neuvo 1994) is that kind of vector filter where
the center pixel is considered to be noisy if its difference from the vector median is big-
ger than a predefined threshold. For the rank-conditioned VMF (RCVMF), rank-condi-
tioned VDF (RCVDF) and rank-conditioned DDF (RCDDF), with respect to ascending
order of the respective cumulative distances, a subset of the vector pixels excluding the
minimum and maximum values is formed (Singh and Bora 2004). If the center pixel
is not in the ordered subset, then it is replaced by the output of VMF, VDF and DDF
respectively. If / is the number of pixels in the ordered set, then position of the noisy
center pixel will be outside the range of /. In the rank-conditioned and threshold VMF
(RCTVME), rank-conditioned and threshold VDF (RCTVDF) and rank-conditioned and
threshold DDF (RCTDDF) (Singh and Bora 2004; Smolka et al. 2012b), the center pixel
is considered as noisy if it does not belong in the trimmed set and its difference from the
respective vector median is greater than a pre-defined threshold.

The group of fuzzy weighted filters namely the fuzzy vector median filter (FVMEF),
fuzzy vector directional filter (FVDF) and fuzzy directional distance filter (FDDF)
weight the pixels in the filtering window according to their respective cumulative dis-
tance before replacing the center pixel with the average of the weighted pixels. These
filters use certain parameters a and 5 to adjust amount of fuzziness in weighting the pix-
els (Plataniostis et al. 1996, 1999). The fuzzy ordered vector filter (FOVMF) picks up the
first [ elements of the ordered set of cumulative distances, and then assigns the weight
only to the corresponding pixels.

In the signal dependent rank-ordered mean (SDM), if the difference between the
center pixel and the first four pixels of the rank-ordered set of pixels is greater than four
separate thresholds T, T}, T, and T, respectively, Moore et al. (1999) then the center
pixel is replaced with the output of VMFE. The robust switching vector median filter
(RSVMF) proposed by Celebi and Aslandogan considers the noisy pixel to be a noisy
pixel if the cumulative distance with respect to the center pixel is greater than a prede-
fined percentage 8 of the cumulative distance associated with the median (Celebi and
Aslandogan 2008).

The non-causal linear predictor based filters use the concept of linear prediction
(Singh 2012; Singh and Bora 2003) for estimating the center pixel as a weighted combi-
nation of past and future vector pixels with respect to the center pixel. It is based on the
fact that there exists a strong correlation among the neighborhood pixels of a window
centered at a vector pixel.

The non-causal vector median filter (NCVMF) (Singh and Bora 2014) first filters the
image using VME, then estimates the center pixel using constrained intra-channel linear
predictor (Hu et al. 1997) by considering the eight second order pixels (see Fig. 1) (David
and Ramamurthi 1991; Asif and Moura 1996; Asif 2004). Then if the difference between
the predicted pixel and the center pixel is greater than or equal to a user-specified
threshold, the center pixel is replaced by the output of VMF, VDF or DDF. In the rank
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Fig. 1 Block of causal and non causal regions showing different orders

conditioned non-causal vector median filter (NCRVMF), the value of index p, which
corresponds to the least valued element from the sorted array of cumulative distance of
the vector pixels in the window, is compared with a threshold, which is calculated based
on the standard deviations of the separate three channels of the image. If the value of k
is greater than that of the threshold T, then the center pixel is predicted considering the
2nd order non-causal regions. The non causal vector median filter 2nd order non causal
(NCVMEF_2nc) considers only the upper four non causal pixels out of the eight, from
the 2nd order region excluding the center pixel. The non causal vector median filter 1st
order non causal (NCVMF_1nc) considers the four 1st order pixels from the non causal
region. The non causal vector median filter 1st order causal (NCVMF_1c) predicts the
center pixel using the two pixels of the 1st order causal region.

The adaptive vector marginal median filter (AVMMEF) compares the cumulative dis-
tance of the center pixel with that of the sorted array of the cumulative distance of all the
pixels in the window, so that center pixel lies in the / index in the sorted array (Morillas
et al. 2011). And if / is greater than the index defining the center of the window, then the
center pixel is replaced by the median of the vector medians for n = 1, 2, ..., k, where n is
the index of the sorted array of cumulative distances of the pixels in the window.

The vector sigma filters (Lukac et al. 2006) which are based on approximated vari-
ance of the vector pixels in the window are grouped into adaptive and non-adaptive.
The multivariate variance is calculated either based on the vector mean or the low-
est ranked vector, vector median. In the non-adaptive group of vector sigma filters the
center pixel is replaced with the output of VMF, VDF and DDF, if the cumulative dis-
tance of the center pixel is greater than a threshold, calculated based on the cumula-
tive distance of the mean vector or the vector median and a parameter y. This results to
the corresponding non-adaptive sigma vector filters as SVMF_MEAN, SVMF_RANK,
SVDF_MEAN, SVDF_RANK, SDDF_MEAN and SDDF_RANK respectively. Then the
groups of adaptive sigma vector filters are ASVMF_MEAN, ASVMF_RANK, ASVDF_
MEAN, ASVDF_RANK, SDDF_MEAN and ASDDF_RANK correspondingly. Here the
center pixel is replaced with output of VMF, VDF and DDF respectively if the differ-
ence between the center pixel and the mean vector or the vector median is greater than
the product of the corresponding approximated variance and a weighting parameter g,
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where the approximated variance is calculated based on the cumulative distance of the
vector pixels in the window from that of the mean vector.

Many robust filters for impulse noise removal have been proposed in the literature but
most of them which work efficiently in the lower noise ratio, lack considerably in the
higher noise ratio. Filters like CWVME, CWVDE, CWDDE, RCTVDE, RCTVDE, RCT-
DDF etc. which perform very well in the lowest noise ratio group, are not efficient in the
higher noise ratio group. On the other hand filters like ASVMF_MEAN, ASDDF_MEAN
and EVMF work quite well both in lowest and highest noise ratio group.

In this work, a simple algorithm checks the impulse noise ratio in the image prior to
the implementation of the noise detection algorithms, depending on which two filters
are switched accordingly from lower noise ratio to higher and vice versa. In the higher
nose ratio, the noisy pixels are identified with the help of noise detection algorithm,
based on how much the center pixel is different from the mean vector of the neighbor-
ing vectors in the widow (Lukac et al. 2006). Then the detected noisy pixels are replaced
with the output of modified exponentially weighted mean filter (Celebi et al. 2007) based
on the concept of bilateral filter (Tomashi and Manduchi 1998; Daniel John 2013; Kaur
et al. 2015), whereas the uncorrupted pixels are kept untouched.

“Proposed method” section describes the proposed method. Noise model perfor-
mance measuring parameters are described briefly in the next “Filter evaluation” section
and finally the details are summarized and concluded in “Conclusions” section.

Proposed method
Let a color image X of size P x Q be represented by a 2-D array of 3 component vectors
represented as,

*0.0) = [ 0,05 (0,0, 4 (,0) (M

where p=1,2,3...P and ¢ = 1,2,3...Q represents the row and column indices. R,
G and B represent the Red, Green and Blue components of the vector pixel #(p,g). As
usual in the basic filtering approach, a window W of odd size m x n centered at x(p,q) is
considered (see Fig. 2). Considering the fact that impulse noise is distributed randomly
which results in the variation of noise content in different parts of the image, before

xi=x(p-1, g-1)| x2=x(p-1, q) |xs5=x(p-1, q+1)

x=x(p, q-1) xs=x(p, q) | xe=x(p, q+1)

x=x(ptl, g-1) xs=x(ptl, @) |xo=x(p+1, g+

Fig.2 A3 x 3 window of color vectors with their coordinates
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checking whether the center pixel is noisy or not, a localized impulse noise probability
P, in the window comprising the center pixel is calculated as,

Pr= Nimp/m X n (2)

where Nimp is the number of 0 s and 255 s in the window. If T} < p, < Tpy, then the
center pixel is replaced with the output of the ACWVME, otherwise it is replaced with
the output of the modified ASVMF_MEAN, MASVMF_MEAN, to give the overall pro-
posed noise percentage based switching filter, NPSF as shown below

XACWVMF if Tr <pr <Tn
XMASVMF_MEAN  Otherwise

XNPSF = { 3)
T; and T}, are the lower and higher threshold value of p,. xypg is the output of NPSF and

%4cwur is the output of ACWVMEF which is defined as

. 2
_Sxvmr i 05 Ixewvirre — 2,91l > T, B
YACWVME = {x(p, q) otherwise vellc—1] (4

where ¢ = ((m x n) + 1) / 2, T is the threshold, with which the difference of the center
pixel from the output of CWVMF is compared with and xcyy,r is the output of
CWVMEF which is given as

mxn

XCWVMF* = afgxlgi‘f}y Z w; (@0). ||; — x|
i j=1

and

el 5)

L mxn=2u+2 forj=c
wj(u) = { 1 otherwise’

represents the weight to be given to the center pixel.

ACWYVME is chosen for the window with less number of impulse noises, like if at the
most one number of 0 or 255 is present. It is a very robust filter which is very efficient
and flexible in removing impulse noise, which actually allows one to design an optimal
filter for a particular domain by adjusting the weights assigned to the center pixel. The
weights are estimated using an optimization procedure in Eq. 5 by using a number of
training images (Celebi et al. 2007). u is used as the smoothing parameter such that if
u = 1 the ACWVMEF becomes an identity filter and so no smoothing will be performed
and if the value of u increases from 1 to 5, the smoothing potential of the filter increases.
When u reaches the value of ¢, lastly the ACWVMF becomes the VMF where the maxi-
mum amount of smoothing is done. In this paper three values of u is chosen from v
to v + 2, for which three respective CWVMF outputs are determined to be subtracted
from their respective center pixel as seen in Eq. 4. And if the sum of the three differ-
ences is greater than the threshold T then the center pixel is replaced with the output of
VME. In the ACWVMEF the center pixel is highlighted or given more importance with-
out a prior knowledge of whether it is a noisy pixel or not, by assigning a variable weight
by Eq. 5, that makes the ACWVMEF more suitable to be considered for windows which
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contain at the most one 0 or 255. The ACWVMEF has a tendency to preserve the center
pixel that makes it more suitable for lower noised region of the image.

And for the window with two or more number of 0 s and 255 s, a detection algorithm
based on ASVMF_MEAN is used where the noisy pixel is detected based on the com-
parison of the center pixel with that of an approximated variance of the vector pixels in
the filtering window (see Fig. 3). Depending on the fact that the impulse noise usually
has very high or very low pixel value as compared to the surrounding pixels, the variance
is calculated based on the mean vector of the pixels in the window, where mean is con-
sidered as one of the most probable values other than the vector median, for substituting
the noisy pixel. Once the noisy pixels are detected, they will be replaced by the output
of an exponentially weighted filter. The complete algorithm of noise detection using the
approximated variance and replacement of the center pixel by the output of the expo-
nentially weighted filter, defines the MASVMF_MEAN.

The variance ¢, which is to be compared with, is calculated as,

mxn
2 1 2
o= Z lx: — Xmean| (6)
mxn ‘
i=1
where,
2 2 2
2 R _ R G_ .G B_ B
% — Xmean I” = X = Xean| T %7 ~ Xmean| T % — Xpean (7N
X,,0an 15 the mean of the vector pixels in the window W. For checking the pixels to be

noisy or not, the difference of the center pixel, #(p,g) from the mean, x is compared

mean

Window W centered at
Xx(p,q) is considered

Y

Localized noise probability Pr of
impulse noise, in Wis calculated

Noise detection based on Replace the center pixel
approximated variance with the output of
ACWVMF

Center pixel is kept
unchanged with the output of Xewmf

Replace the center pixel

Fig. 3 Flowchart of the proposed algorithm
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with the approximated variance, ¢* multiplied by a weighting factor 9, to give d x o 2 and
if [|€(p, §) — Xmean|| = 8 x o 2, then the centered pixel (p,q) is considered to be a noisy
pixel.

This particular detection algorithm based on ASVMF_MEAN is suitable for higher
noise region of the image because the approximated variance is calculated based on the
cumulative difference of the vector pixels from the mean, which means that all the pix-
els whether impulse noise or not are considered and are given similar importance. And
the vector pixel is treated as impulse noise if it is having a bigger difference from the
mean, as compared to average of the difference of vector pixels from the mean as seen in
Egs. 6 and 7. Then the window where the center pixel is detected as noisy pixel is further
considered for further classification of the vector pixels among themselves with respect
to their individual importance in the window. This further classification is helpful for
window with more number of impulse noises where more number of 0 s and 255 s are
present as it helps in more efficient detection of noisy pixel. The classification and the
corresponding assignment of weights to the respective vector pixel according to their
importance in the window is given by the equation

wi=¢€ (d«)a;l(i)n) fori=1,2,3,..., mx n )
where
dl) =Y s(xi,a)) )
j=1
s(xi,x,') = Hxl — x,H (10)
1G) =Y c(xia)) (11)
j=1
And
cnx) = [|i—j° (12)

Then the noisy pixel is replaced with the output of the exponentially weighted mean fil-

ter given as

mxn
_ i=1 WiXi

XEwmf = mxn.,. (13)
i=1 Wi

Abiding by the normalization procedure, two constraints are necessary to make it sure

that the output of Ewmf is an unbiased one, namely: (a) each weight y; = mwix’,,w for a
i=1 i
respective vector pixel &, is a positive number, y; > 0 and (b) >_7" *" y; = 1. The param-

eters a, 7 and S are used to tune the amount of weight to be given to the pixels. To obey
the above constraints so that the output is unbiased, it is made that = 1 — @ where
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0 < o < 1since the values of d(i) and /(i) will be in the range of k where 0 <k < oo
excluding 0 < k < 1. And f§ is the value of & at which the weighting function w; takes
the maximum derivative. The value of # = 1 — a also makes it sure that the two compo-
nents in Eq. 8 are dependent and correlated to each other according to the noise prob-
ability of the sliding window. The first component described by Egs. 9 and 10, depends
on the cumulative distance of intensity difference of each pixel from its surrounding
neighboring pixels. If the value of d(i) for a particular pixel x; is larger, than it means that
the intensity difference of the particular pixel from its surrounding is very large and has
more tendencies to be an impulse noisy pixel. Therefore less weight is given to the pixel
and vice versa. Whereas the second component as described by Egs. 11 and 12, depends
on the cumulative distance of coordinate or position difference of the pixel from its sur-
rounding pixels. It is based on the fact that a pixel which is far away from the center pixel
spatially is of less importance. Therefore a pixel #; with a large value of [(i) is far away
from the center pixel x#(p,q) and is of less resemblance or importance, to be assigned
with less weight. And it can be also seen that the parameters a and 7 are inversely pro-
portional to the weight w;.

Further for a particular value of d(i) and (i), the amount of weight assigned is again
controlled by the respective values of a and #. If any of @ or # is having a value of 1 then
the other will be 0 that avoids the condition for both the components to be considered
simultaneously. The condition that n = 1 — « makes it achievable that, for the window
with a comparatively lesser number of 0 s and 255 s in the region of p, > Ty and with
a lesser value of d(i), more weight is allowed to be assigned to the pixel by the first com-
ponent of Eq. 8 with a lesser value of a, thus highlighting the first component, that sub-
sequently makes the second component which is made of (i) to be less important with a
comparatively higher value of n = 1 — o. Whereas in the window with more number of
0 s and 255 s which usually has a higher value of d(i), less weight is made to be assigned
by the first component with higher value of a and thus the second component is given
more importance with a comparatively lesser value of n = 1 — «. This fact is supported
by the results in Tables 1 and 2 where the values of NCD, PSNR, MAE and TIME are
listed at different noise ratios and at different values of @ and # for fixed valued and ran-
dom valued noise correspondingly. And the values of a and # at which the value of PSNR
and other measuring parameters attain their maximum values is highlighted. The selec-
tion of values for the parameters is further discussed in part C: Parameter selection, of

section III.

Filter evaluation

The filters are evaluated in this section on a variety of RGB color images, which includes
scientific images, biomedical images, photographic images, synthetic images and a group
of images generally used in the color image processing literature, for a better compari-
son on the performance of the filters, by considering a 3 x 3 window size with L, and L,
norms. Figure 4 shows the 12 representative images of Lena image, Mandrill, Airplane,
Aptus, Barbara, Brain, Couple, Girl, Gold hill, House, Lake and Miramar.
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Fig. 4 Test images: a Lena, b Mandrill, ¢ Airplane, d Aptus, e Barbara, f Brain, g Couple, h Girl, i Gold hill, j
House, k Lake and I Tiffany

Noise model

An impulse noise model which is commonly used in the literature of filtering of color
images is used in this work (Viero et al. 1994). Let b be the probability of corruption of
the color image with the impulse noise. A color image has three vector components,
where each component has a chance of being corrupted by the impulse noise with a
respective corruption probability. Let by, b; and by be the probabilities of impulse noise
corruption of the three components R, G and B respectively.

x with probability 1 — b
{ng,xg,xp} with probability b.bg
y = { {*r, ng,xp} with probability b.bg (14)

{xr, xG, np} with probability b.bp

{ng, ng, np} with probability [1 — (br + bg + bp)].b
x = {xg,xG,xp} and y = {yR, YG» yB} represent the original and the corrupted vec-
tor pixels respectively. And the impulse noise is represented by the random vector
n = {ngp, ng, np} which can be a vector of 0 or 255 or both. The images are induced with
both fixed valued noise and random valued noise with noise ratio ranging from 10 to
90%. For the fixed valued noise, 7, can be either 0 or 225, whereas it can be any random

value ranging from 0 to 255 for the random valued noise.

Filter performance measurements

Execution time, mean absolute error (MAE) (Singh and Bora 2014), normalized color
difference (NCD) (Singh and Bora 2014) and peak signal to noise ratio (PSNR) (Platanio-
tis and Venetsanopoulos 2000) are the performance measuring parameters which will be
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used to evaluate the filters in comparison. Color chromaticity preservation capability of
a filter is measured with NCD. A filtered image is said to preserve its chromaticity if it
is free from the shadowy effects whereas MAE represents the noise suppression and the
signal—detail preservation capability. MAE is mathematically expressed as

1
MAE = —

3PQ (15)

L3 [ %G )R — xp ()R] + () — xp ()|
e | @) = e ()

14

Lj
x(i,j) and xp(i,j) are the original and the filtered image respectively.
{x(i,j)R, x(i,j)G,x(i,j)B} and {xp(i,j)R,xp(i,j)R,xp(i,j)R} are the red, green and blue
components of the original image (i, j) and filtered image xr (i, j) respectively. It can be
seen that with the help of the above equation a slight difference between the original and
filtered image can be highlighted properly for better comparison between the filters. The
NCD is defined in the L #* v* color space by

1/2
St S L) = LeGp) [P+ [ Gy = e Gy [P+ v @) = ve @) [P}

NCD = 2 2 2172
S SR {lEan P+ uap P+ v ap )

(16)

where {L(i,j), u (i,)),v (i,j)} and {Lp(i,j), ur (i,j),vr (i,j)} are the respective values
of the lightness and two chrominance components of the original image #(i,) and fil-
tered image xr(i,/). And the signal content of the image is described by PSNR which is
expressed as

2
max

2
3 Lot 2o |5 f) = x|

X
PSNR = 10/og 10

7)

where %, = 20 — 1is the maximum intensity for an image in a particular channel. 24
bits images of size 512 x 512 are considered in this work, where b = 8, is the number of

bits in a pixel for the particular channel and x,,,, is equal to 255.

max
Parameter selection

The exponential weight is found using Eq. 6 where the weight is controlled by the three
parameters «, # and . As seen from the weight equation, « and # are inversely pro-
portional to the weight as seen in Eq. 8. Analyzing the simulation results on the vari-
ous images, it is found that at the lower noise ratio, 10% and 20% as representative in
this work, the PSNR attains its maximum value at lower value of « = 0.4 and compara-
tively higher value of # = 0.6, supported by the fact that more weight is given by the first
component d(i)* in Eq. 8 to the pixels at lower noise ratio, during which most of the
pixels in the window tends to be less impulse. Whereas the PSNR attains its maximum
value at a relatively higher value of around @ = 0.6 or 0.7 and comparatively lower value
of # = 0.4 or 0.3 for higher noise ratio, during which less weight is necessary by the
pixels in the window from the first component d(i)* and instead more from the second
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component [(i)" is considered, since their probability to be impulse is more. Therefore
a=0.7,n =03 and o = 0.6, n = 0.4 are considered for the highest noise ratio (80
and 90%) with relatively smaller value of &« = 0.4 and higher value of # = 0.6 for lower
noise ratio (10 and 20%) for fixed valued noise and random valued noise respectively
(see Tables 1, 2). The above discussion concludes that the first component controlled
the parameter a plays a bigger role as compared to the second component controlled by
parameter # in Eq. 8. The values of 5 and 0 are set as 1 and 0.5 respectively. Considering
the Egs. 4 and 5 which represents the expression for ACWVME, the value of v is consid-
ered as 3 so that u# goes from 3 to 5, for which three different x -y is calculated with
three different w;(u) respectively. The values of T} and T} in Eq. 3 are set as 0.000 and
0.111 respectively. The parameters and their respective values selection, for both fixed
valued and random valued noise, for other filters in comparison are shown in Table 3.

Comparison with other existing filters
The performance comparison of the various filters is shown in Tables 4 and 5. Figure 5
shows the graphical comparison of the MASVMF_MEAN, VMF, ACWVMF, EVME,

Table 3 Filters in comparison (excluding the proposed filter), with their respective param-
eters’ values at which the filters are implemented

Filters Parameters Filters Parameters
MMF RCTDDF |=5T=40
VMF FVMF a=05p8=1
BVDF FVDF a=26=1
DDF u=07 FOVMF a=05p8=1/=4
CWVMF w=5 AVMMF |=5k=3
CWVDF w=3 SDM T,=40,T,=70,T,=120,T,= 160
CWDDF w=3 RSVMF B=0.15
ACWVMF w=3,T=80 NCVMF T=32
ACWVDF w=57T=02 NCRVMF T=38
ACWDDF w=>5T=47 NCVMF_2nc T=30
MCWVMF w=14 NCVMF_1nc T=20

PGF T=40 NCVMF_1c T=25

FPGF m=4,T=30 SVMF_MEAN u=1544
AVMF T=35 SVMF_RANK u=1475
AVDF d=157,T=0.12 SVDF_MEAN u=1544
EVMF v=06 SVDF_RANK u=1475
EVDF v=02 SDDF_MEAN u=1544
EDDF v=01 SDDF_RANK u=1475
NVMF T=90 ASVMF_MEAN 6=06
RCVMF =5 ASVMF_RANK 6=065
RCVDF = ASVDF_MEAN 6=1

RCDDF /=5 ASVDF_RANK 6=0.03
RCTVMF |=5T=40 ASDDF_MEAN 6=06
RCTVDF |=5T=50 ASDDF_RANK 6=05
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Fig. 5 Comparison of some robust filters graphically: a legends depicting the filters in comparison and b-e
shows execution time, PSNR, NCD and MAE comparison for fixed valued impulse noise; f-i shows execution
time PSNR, NCD and MAE for random valued impulse noise

ASVMF_MEAN, RCTVME, NVME, SDM and NCVMF_1nc. The PSNR which defines
the signal content of the filtered image has been given more importance for comparing
the performance. Filters like ACWVME, ACWVDE, NVMF and PGF perform very well
in lower noise ratio and also work efficiently in higher noise ratio. The RCTVMF and
MCWYVME are very efficient in preserving the signal content in the lower noise ratio but

perform inefficiently in the higher noise ratio. Whereas the EVMF and the vector sigma
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group of filters namely the ASDDF_RANK, ASVMF_MEAN, ASDDF_MEAN work effi-
ciently in higher noise ratio although not very well in the lower noise ratio as compared
to the case of ACWVMEF and its allies mentioned above. But generally it can be clearly
seen that the Adaptive switching filters like the Adaptive center weighted vector filters,
Vector sigma filters, Adaptive vector filters and entropy based vector filters, first detect
the noisy pixels using certain noise detection algorithm, before replacing the center pixel
with the output of some vector filter and thus is able to give higher PSNR values than
those of the non adaptive switching filters like the basic vector filters, fuzzy weighted
filters etc. Therefore the adaptive switching filters are able to restore the original find
details of the image better than the non-adaptive filters.

After working on various numbers of images it can be seen that the proposed filter,
Noise percentage based switching filter maintains a good PSNR value at lower noise
ratio by outperforming robust filters like ACWVME, ACWVDE, etc. and also definitely
overtakes even the most robust filters, which are very efficient in the higher noise ratios,
like ACWVME, EVMF and some vector sigma filters. This is supported by the experi-
mental results shown in the Tables 4 and 5, where the results of some efficient filters
in consideration are christened. Figures 6 and 7 show the original images, corrupted
images with 90% of fixed valued and random valued impulse noise and filtered images

Fig. 6 Filtering results for the TIFFANY image corrupted with 90% noise: a original, b 90% noisy, € ASYMF_
MEAN, d ASVMF_RANK, e ASDDF_MEAN, f ASDDF_RANK, g VMF, h MCWVMF, i NVMF, j RSVMF, k RCTVMF and
I MASVMF

Fig. 7 Filtering results for the TREE image corrupted with 90% noise: a original, b 90% noisy, ¢ ACWDDF, d
ACWVDF, e ACWVMF, f AVDF, g AVMF, h EDDF, i EVDF, j EVMF, k FVMF and I MASVMF
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of Tiffany and Tree respectively. The filtered images of the proposed filter are shown in
image [ of the Figs. 6 and 7, depicting high signal content and detail preservation. But
seen precisely the filtered images are little blurred since the noisy pixels are replaced by
the output of the average of the exponentially weighted filter. And also the proposed fil-
ter can be further improved in terms of preservation of chromaticity by furthering low-
ering the value of NCD.

Conclusions

The proposed filter is able to outperform the other robust filters, in maintaining the
signal content and preserving the fine details of the image corrupted with fixed valued
and random valued impulse noise at the lower noise ratios as well as at the higher noise
ratios. And the filter also maintains the chromaticity of the filtered image at a lower
value of NCD and MAE as compared to some of the very efficient filters in literature.
The weighted average output of the filter does not belong to the vectors in the window
because of which the filter can be extended further for Gaussian noise and mixed Gauss-
ian and impulse noise removal. Other than this, an unwanted commonly occurring issue
called smoothing can be still further minimized. Future work will be in introducing a
directional distance factor in the exponential weight function so that the chromaticity
maintenance of the image is improved further.
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