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Abstract 

Background:  In the past few decades, a significant volume of work has been carried 
out on various aspects of the state estimation problem to estimate an optimum state 
vector of the power system. This problem has been focused on, in previous studies 
regarding the computational efficiency and numerical robustness in view to find point 
estimates for system state parameters. This current investigation, constructed confi‑
dence intervals for the unknown state parameters of the system. The research indicates 
that confidence intervals can yield addition useful information about the estimated 
parameters.

Methods:  The feasible interval estimates for the system state parameters have been 
modelled in this study by considering the random uncertainty in the processing meas‑
urements. The statistical assumptions of the measurement errors have been utilized 
to characterize the probabilistic behavior of the estimated parameters in terms of 
confidence intervals. The Gauss–Newton algorithm has been adopted for maximizing 
the likelihood function of the processing measurements and obtaining the confidence 
intervals.

Results:  The usage of the confidence intervals was demonstrated through Monte 
Carlo experiments on a real dataset of the 6-bus and IEEE 14-bus power systems for 
both small and large sample sizes. The confidence intervals were constructed for the 
test networks for the sample of measurements 18, 28, 44 and 68 based on the redun‑
dancy ratio R. The proposed interval estimates outperformed for the sample sizes of 28 
in the 6 bus and 68 in the IEEE 14-bus systems, respectively. The poor performance for 
the constructed interval estimates have been reported even for the large sample sizes 
in the existence of contaminated measurements.

Conclusions:  The results of the study show that the method is effective and practi‑
cally applicable in the state estimation of a power system. The constructed confidence 
intervals for the system state parameters adequately perform for the lager sample size. 
However, the existence of the gross errors in the processing measurements had severe 
effect on the performance of the proposed interval estimates.
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Background
To achieve safe, effective and economic power delivery, it is mandatory for a control 
center to precisely estimate the existing state of the system. State estimation is, there-
fore, routinely practiced within the power industry for estimating the steady state of the 

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3631-1&domain=pdf


Page 2 of 19Khan et al. SpringerPlus  (2016) 5:1943 

system. The purpose of this estimation is to decrease the estimation error with an aim to 
increase the overall accuracy of the estimates. This estimation procedure is concerned 
with obtaining the point estimates of the state parameters. The probabilistic nature of 
the estimated parameters is however, not significantly addressed. The knowledge of the 
variability of these estimates can be served as additional information; so the reliable 
measure of the standard errors of these estimates is also of importance. This void forms 
the essence of the construction of confidence intervals for the state parameters reported 
in this work.

The output results of the state estimation algorithm are point estimates of unknown 
parameter values which are subsequently used in monitoring and planning the analysis 
of the system (Huang et al. 2012). Usually, these results are assumed to be reliable in the 
presence of random errors only for a fully observable system (MíDnguez et  al. 2009). 
Providing the interval estimates along with single optimum estimates serves as additional 
information for an operator to enhance his/her confidence on the estimated results. The 
literature concerning the optimum single vector estimate for the state parameters is very 
rich and many algorithms have been proposed to this end, such as the weighted least 
squares (WLS) estimator (Caro et al. 2011) and robust estimators (Celik and Abur 1992; 
Mili et al. 1996; Baldick et al. 1997; Caro et al. 2013). Nevertheless, infrequent research 
has been carried out on state estimation with an aim to construct the interval estimates 
of state parameters. The work reported by Al-atwan and Koglin (1997) described the 
methodology for constructing the confidence intervals for the measurements used in the 
state estimation problem. The pioneering study of constructing confidence intervals for 
state parameters by considering the statistical uncertainty in measurements, is described 
in Kyriakides and Heydt (2006) for the linear functional forms of the measurement func-
tions. Whereas, interval estimates for the nonlinear functional form are constructed by 
utilizing the concepts of the uncertainty analysis. The resulting intervals are then con-
tained surely the true unknown state parameters (Kieffer and Walter 2005). Uncertainty 
concepts in estimation and optimization are basically by the work of Schweppe (1973) 
which have been extended also to other engineering areas (Brdys and Chen 1994). In 
state estimation context of the power system, the uncertainty study was implemented 
by Al-Othman and Irving (2005) by imposing double inequality constraints on each 
observation and then, solving the optimization problem. Later, more narrower deter-
ministic interval estimates were presented by Wang et al. (2013) for conventional avail-
able measurements. In addition, the solution for the tightest lower and upper bounds 
have also been obtained for the state vector in the presence of synchronized measure-
ments that are considered to be superior to conventional measurements (Rakpenthai 
et al. 2012). All these referenced interval estimates for state parameters, in the case of 
nonlinear measurement functions; rely strictly on the assumption of bounded errors. In 
this context, the uncertainty is bounded in input measurements to obtain deterministic 
confidence range of the upper and lower bounds on the estimated parameters. In real-
ity, every measurement, especially in the case of a power system cannot be corrupted by 
the deterministic magnitude of the error then uncertainty in the parameters could be 
described stochastically by quantifying the probability distribution of the error terms. 
Moreover, one of the objectives of the state estimation is also the detection of bad data. 
Almost all the bad data techniques that are routinely implemented in state estimation 
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rely on the usage of the Chi Square test statistic to decide the presence of bad data (Abur 
and Exposito 2004). The application of the Chi Square test is based on the assumption of 
the stochastic behavior of the noise terms.

Therefore, keeping in view the importance of the statistical assumptions of the error 
terms that are considered in the hypothesized nonlinear data generating model for 
conventional power measurements, this paper has described the confidence intervals 
for system state parameters. In the real world situation, all the observations required 
for estimating the state parameters are not available due to some reason, including 
the unavailability of telecommunication links or failure of devices etc. In the presence 
of the short availability of measurements, state estimation can be applicable however; 
these estimates are not as accurate to the actual values as the estimates based on fully 
observable systems. In order to enhance the operator’s confidence, on the results based 
on the state estimation; an inferential procedure can be implemented in the presence 
of the short availability of measurements. Confidence intervals are then the interval 
estimates which are most likely to include the true state vector which is composed of 
complex voltages at all nodes of the grid.

In the inferential view point, model assumptions of the noise terms play a key role for 
drawing the inference about unknown population parameters. In the statistical perspec-
tive, the state estimation of power system is a resemblance to the multiple nonlinear 
regression analysis with emphasis only on the point optimum estimate of the unknown 
state vector (Caro et al. 2013). Different approaches for obtaining the approximate stand-
ard errors could be used and are subsequently implied in the construction of approximate 
confidence intervals. The usages of each estimation method depend upon the problem at 
hand. In this case, linearization method for the construction of the approximate confi-
dence intervals is applied because of its compatibility to the power flow study and it is less 
expensive in efficiency terms. Although none of the methods is deemed best practice and 
could lead to misleading results as pointed out by Tang and Yeh (2016). In the case of the 
nonlinear measurement functions, the linearization method is still superior in nonlinear 
estimation and has been extensively applied in different engineering problems (Cooley 
1997; Vugrin et al. 2007).

The main contribution of this study is the application of the inference methodology 
in the state estimation environments because of the stochastic behavior of a power sys-
tem. In reality, the state of the system is not stationary but varies instantly due to the 
change in load and other random disturbances. The statistical results of the estimation 
theory therefore, can be applied to describe the stochastic nature of the system state 
parameters.

Methods
Mathematical formulation of the problem

The observations are collected from the different measuring devices of the transmission 
system, inherently they are polluted because of the random noises and hence the actual 
value of any physical measure is not precisely known.

In mathematical form the problem can be written as

(1)Z = h(X)+ ε,
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where Z is m-dimensional vector of measurements, h(X) is a vector of nonlinear mean 
valued functions in terms of k-dimensional unknown state vector X and ε represents a 
Gaussian errors vector.

The details of this model is common in the technical literature on the power systems 
state estimation (Abur and Exposito 2004). However, the assumptions of the error terms 
used throughout this work are listed below:
E(ε) = 0 (mean vector), and Ω = E(εεT) (diagonal covariance matrix) with:

Here the term σi2 is the weight, associated with the accuracy of ith measuring device and 
assumed to be known and σ2 represents the overall variance of the given measurements. 
For the construction of the individual confidence intervals, it is further assumed that the 
system is partially observable however; there is enough redundancy in measurements to 
estimate the system state parameters. Several least squares based methods for estimating 
the state parameters of a power system are conventionally used but the WLS approach 
performs the best in the estimation and identification of bad data (Habiballah and Irving 
2000). In the form of the nonlinearity of h(X), the formulation of the confidence intervals 
could be straightforward but these intervals are not based on the standard Z, T and Fsta-
tistical tests (Montgomery et al. 2012). Therefore, we rely on the results of the asymp-
totic theory that seem to be appropriate and have been used in such types of models 
in the context of other engineering problems (Cooley 1997). Due to the attractive large 
sample properties and great usefulness in drawing inferences in the case of nonlinear 
systems, we have considered the scoring method of maximum likelihood technique.

Construction of the proposed confidence intervals

In this section, we have described the construction of the individual confidence intervals 
for the state parameters. The model given in Eq. (1) is the basic model that is used in the 
state estimation of the power system problem and structurally alike the nonlinear multi-
ple regression model. In correspondence to the model given in Eq. (1), the transformed 
model is given by:

where Zt = Ω− 1
2Z, ht(X) = Ω− 1

2 h(X), εt = Ω− 1
2 ε,Ω− 1

2 is the Cholesky decomposition 
matrix of the weight matrix Ω−1 and εt ∼ N

(

0, σ 2I
)

.

Under the assumptions listed above, the log likelihood function for the observed sam-
ple is given by:

where φ(X) = [Zit − hit(X)]T[Zit − hit(X)] and v = σ−2.
In a power system state estimation, weights are known as nonnegative quantities 

which make us able to vary the influence of various measurements to the sum of squares. 
The maximum likelihood (ML) estimate of the scale parameter ν from Eq. (3) yields:
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Equation (3) is maximum when ν̂ takes the value as given in Eq. (4) for the fixed value of 
the state vector X. The concentrated likelihood function for the elements of X is there-
fore, given by:

The maximization of Eq. (5) is hence equivalent to the minimization of objective func-
tion φ(X) but, there is no closed form solution for obtaining the estimate of the param-
eter vector X. To tackle this nonlinearity in the iterative setting, we have been utilized 
the technique of profiling out the parameter ν from lc(X). In this way the method of the 
generalized least squares could be implemented more conveniently to evaluate the value 
of the optimum state vector X and the corresponding standard errors though a suitable 
iterative algorithm. The expected maximization algorithm, Fisher Information algorithm, 
and Newton–Raphson algorithm are the most common techniques for numerically maxi-
mizing the likelihood function (Wang 2007). In our case, Newton’s method and Fisher 
scoring produce the same results on account of the equivalence of the observed and 
expected Hessian matrix; so, we have been adopted Gauss–Newton algorithm for the 
solution of the nonlinear equations and finding the approximate standard errors.

Now the scoring function of Eq. (5) is given by:

Setting the first order optimality conditions for maximizing Eq. (5) yields the set of n 
nonlinear equations in terms of unknown vector X.

where Ht =
∂ht (X)
∂X  and T signifies transpose.

Let Xr be the rth approximation state vector of the X̂ then the Taylor series expansion 
of S(X) around Xr is given by:

where S′(Xr) = ∂S(X)
∂X

∣

∣

∣

Xr
 and r = 0, 1, 2, . . .

Ignoring the higher order terms in Eq.  (7), could yield the iterative solution for the 
point estimates. In order to find the standard errors of the estimates, we need to find the 
asymptotic variance covariance matrix for the estimated parameters.

In the given setting, we have the following observed Fisher Information matrix at the 
optimum state X*:

By using the ML estimate of v from Eq. (4) and the optimum value of X* from Eq. (7), 
we obtain the following observed Fisher Information matrix:

(4)v̂ =
n

ϕ(X)

(5)ln(X) = constant −
n

2
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Hence, the asymptotic covariance matrix for estimated parameters becomes

where I(X*) = Ht
T(X*)Ht(X*)and σ̂ 2 =

ϕ(X∗)
n−k

 is the unbiased estimator of σ2 and different 
from Eq. (4).

The value of σ̂ 2 in Eq. (10) is independently computed and it measures the degree of 
closeness of the measurements to the fitted equations at estimated value of X. Thus, the 
Gauss–Newton scheme for the individual estimates becomes

Equation (11) can be expressed equivalently in terms of the Gauss–Newton step as:

where δ = [Ht
THt]−1Ht

Trt is called the Newton step.
The approximate Hessian matrix of the Gauss–Newton algorithm is Ht

THt that may be 
infinite. This will eventually cause the Newton step in a non-descent direction. When 
this Hessian is in proximity to a singular form, the Gauss–Newton algorithm can yield 
a huge step which is often in a non-descent direction. The concept of this descent direc-
tion can be applied to establish the convergence of the Gauss–Newton algorithm. The 
convergence can be followed in fact by testing the following condition (Pajic and Cle-
ments 2005).

This condition has also been tested in the proposed method to assess whether the 
algorithm is leading to a descend direction or not. Consequently, a major reduction in 
the values of step norm δ and objective function φ(X) will be resulted by this descend 
direction. In general, the Gauss–Newton scheme is not essential to be in a descent direc-
tion due to the failure of the positive definite status of the Hessian matrix, consequently 
the iteration process may exhibit non-convergence (Chen 2011).

Thereafter, the linearized 100(1  −  α)% confidence interval for the individual state 
parameter xi can be specified as:

where θii is the ith diagonal element of the matrix given Eq.  (10) in correspond to the 
estimate xi, t α2 ,(n−k) is the percentage point for the student t − distribution and (n − k) 
is the degree of freedom. The primary assumption of using the linearized confidence 
intervals (LCIs) is that the measurements are randomly and independently sampled 
from the measuring devices. The validity of these intervals is supported by the results of 
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the asymptotic theory. The intervals calculated in this way are approximated. Their ade-
quacy depends on the good linear approximation to nonlinear functions which means 
that the effect of the curvature and the higher terms of the Taylor expansion would be 
insignificant and to that of the asymptotic result (X̂ ∼ Nk

(

X , σ 2[I(X)]−1
)

 . This asymp-
totic result holds under the appropriate regularity conditions (Seber and Wild 1989). In 
power flow analysis, structures of nonlinear measurement functions h(X) for the real and 
reactive powers are common and well established (Khaitan et al. 2010). The influence of 
the curvature and higher order terms in linearizing the nonlinear functions involved in 
the iterative scheme are negligible in practice (Van Amerongen 1995). Thereby, the first 
order Taylor approximation in the proposed LCIs is sufficed for linearizing these nonlin-
ear measurement functions. Additionally, as we are assuming that the actual value of the 
state vector X is not known, therefore, the Fisher matrix is estimated by I

(

X̂
)

 and σ2 as 
given in Eq. (10). The estimation procedure for the state parameters can be embodied in 
the Gauss–Newton algorithm as follows. 

Algorithm
Set iteration counter 0 and initialize the state vector  
up to termination do
max +1 do
evaluate 
solve the normal equations =

update 1

end while

The aforementioned algorithm is continuously applied in the iterative setting until 
there is no essential change between the successive values of X being observed from one 
iteration to the next iteration.

Simulation experiment and results

In this section, we have developed the simulation experiment for our described intervals 
in order to check their validity in the view to implement them in the state estimation 
environments of the power system. For implementation purposes, we have been taken 
the data of the 6-bus and IEEE 14-bus power systems. The main characteristics of the 
test networks are shown in Table 1, whereas the full set of measurements and system’s 
configuration can be found (Christie 2000; Wood and Wollenberg 2012).

It is assumed that all the measurements for estimating the state vector X are not avail-
able but there is enough redundancy in the measurements to the find interval estimates 
of the actual values. The adequacy of these intervals has been evaluated on the basis of 

Table 1  Main characteristics of the 6-bus and IEEE 14-bus power networks

Characteristics 6-Bus power system IEEE 14-bus power system

Number of nodes 6 14

Number of lines 11 20

Full set of measurements 62 122

Parameters to be estimated 11 27
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the coverage probability. To find the impact of the sample size on the calculated coverage 
probabilities, we have considered the different sample sizes with respect to the unknown 
parameters in X. There is no hard and fast rule for the selection of a suitable sample size 
for the nonlinear least squares problems. However, we have categorized the size as small 
and large in accordance with the redundancy ratio that is defined as below for the sys-
tem having N nodes and B branches:

Here, 3 N + 4B is the total number of observations for the fully observable system and 
2 N − 1 represents the number of parameters in X. The vector of the unknown param-
eters is consisted of all voltage magnitudes for the N nodes and the N − 1, phase angles 
except for the angle of the slack bus which is always assumed to be zero to address the 
problem of the power losses (Dimitrovski and Tomsovic 2005). In mathematical per-
spective, this assumption is allowed for the feasible solution of the nonlinear set of equa-
tions given in (1). The solvability of the algorithm for point estimates and their respective 
standard errors requires at least 2 N − 1 measurements. The program for the proposed 
methodology has been written in MATLAB environment. We set the simulation study 
for the 6-bus system but same discussion is held for the IEEE 14-bus system. In our 
simulation experiment, we observed the reasonable width of our calculated intervals for 
R ≥ 2.5. Therefore, we have presented our results for the samples of sizes 18 and 28 for 
the 6-bus network with redundancy ratio of less than and greater than 2.5 respectively. 
The sample of the 18 observations was consisted of all the voltages, the real and reactive 
power injections whereas, the sample of 28 observations contained all the voltages, and 
the real and reactive power injections and five measurements each on the real and reac-
tive power flows of the system. In order to evaluate the performance of the confidence 
intervals as given in Eq. (11), the true or base value of the state vector X was required. 
For this purpose, the system was solved by using the MATPOWER 5.1 and the output 
for the state vector X based on 62 measurements was assumed to be the actual values 
of the system. For the usage of WLS approach, it assumed that the source of this uncer-
tainty was mainly added in the actual measurements by the expected accuracy standards 
of the measuring devices which were installed at different locations. The variability in 
the measurements that was caused by these measuring instruments is according to the 
following variability standards as shown in Table 2.

This data set was then perturbed by adding the error terms according to model 
Eq. (1). Each noise term had been taken from the Gaussian distribution with the mean 
zero and standard deviation in correspondence to the assumed accuracy standard used 
for the respective measuring device as shown in Table 2. In this way, a set of 18 noisy 

(15)R =
3N + 4B

2N − 1

Table 2  Variability in the measurements from different measuring devices

Measurements Standard deviations in actual units

Pinj, Pflow 3 MW

Qinj, Qflow 3MVAR

Vmg 2 kV
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measurements was used in calculating the point estimates through the Gauss–Newton 
algorithm and the respective standard errors were obtained at the specified tolerance ɛ, 
which was chosen as 10−4.

Since the convergence of the algorithm is highly associated with the reasonable start of 
the unknown vector, we therefore, initialized the state vector with a routinely flat set, i.e., 
zero for each angle and one for every voltage in X. This is routinely exercised in a power 
flow analysis to express the measurements in per unit system (Abur and Exposito 2004). 
The per unit means that 100 MV, 100 MVAR and 230 kV are used as common bases to 
covert the actual measurements of the real power, reactive power and voltages into a per 
unit system. This is more a convenient way for simulation and general practice in the 
power flow study. The simulation was run 10,000 times to find intervals for each param-
eter according to Eq. (14). The results of the coverage probabilities for both sample sizes 
are reported in Tables 3 and 4 at the nominal coverage probability of 95%. 

Likewise, the individual confidence intervals have also been reported in the Tables 5 
and 6 for the IEEE 14-bus system parameters for the samples of sizes 44 and 68 respec-
tively in accordance to the same system’s redundancy ratios.

Table 3  Performance of the interval estimates for the 6-bus system parameters (n = 18)

LCL lower confidence limit, UCL upper confidence limit

Estimated parameters True values Average LCL Average UCL Coverage Prob (%)

θ02 −3.70 −3.98 −3.36 94.20

θ03 −4.30 −4.78 −3.76 94.11

θ04 −4.20 −4.49 −3.89 94.12

θ05 −5.30 −5.66 −4.89 94.26

θ06 −5.90 −6.46 −5.43 94.62

V01 241.50 237.41 243.66 94.12

V02 241.50 239.63 243.42 94.12

V03 246.10 244.33 249.49 94.12

V04 227.60 225.38 229.78 94.02

V05 226.70 224.78 229.65 94.72

V06 231.00 228.86 233.20 94.14

Table 4  Performance of the interval estimates for the 6-bus system parameters (n = 28)

Estimated parameters True values Average LCL Average UCL Coverage Prob (%)

θ02 −3.70 −3.91 −3.42 94.76

θ03 −4.30 −4.68 −3.85 94.94

θ04 −4.20 −4.43 −3.95 94.76

θ05 −5.30 −5.58 −4.96 95.00

θ06 −5.90 −6.36 −5.52 95.06

V01 241.50 239.67 243.39 95.08

V02 241.50 239.82 243.22 94.70

V03 246.10 244.07 248.14 95.02

V04 227.60 225.65 228.56 94.76

V05 226.70 224.56 228.80 95.12

V06 231.00 229.13 232.98 94.96
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The sample of 44 observations was comprised of all voltage magnitudes; all measure-
ments on real and reactive power injections and one measurement each on real and 
reactive power flows. Whereas, the sample of 68 contained all voltage measurements, all 
measurements on the real power injections and the real power flows.

Discussion of the results
The coverage probability is the proportion of the samples which are taken with repeated 
sampling to the total number of samples that contain the true value of the population 
parameter. It is used as one of criteria for the evaluation of the confidence intervals. 
Intervals are said to be exact if (1 - α)100% of such intervals include the true parameter; 
otherwise, the intervals would be characterized as liberal or conservative if the coverage 
probability remains below or exceeds the nominal probability (1  - α) respectively. We 
have explored the performance of the LCIs for the state vector parameters for partially 
observable systems. It has been seen in Table 3, the results of the approximate coverage 
probabilities for the desired parameters in the presence of a small sample is good and 
closed to the nominal coverage of 95%. We constructed the confidence intervals for a 
larger sample, as shown in Table 4, the coverage probabilities move closer to the nominal 

Table 5  Performance of  the interval estimates for  the IEEE 14-bus system parameters 
(n = 44)

Estimated parameters Base case values Average LCL Average UCL Coverage Prob (%)

θ02 −04.98 −05.14 −04.75 97.22

θ03 −12.72 −13.18 −12.11 97.94

θ04 −10.33 −10.64 −09.75 97.92

θ05 −08.78 −09.11 −08.30 98.24

θ06 −14.22 −15.36 −13.09 97.84

θ07 −13.37 −14.11 −12.14 98.30

θ08 −13.36 −14.48 −11.72 97.94

θ09 −14.94 −15.74 −13.62 98.04

θ10 −15.10 −16.08 −13.75 97.80

θ11 −14.79 −15.98 −13.47 97.98

θ12 −15.07 −16.66 −13.62 96.96

θ13 −15.16 −16.53 −13.83 98.14

θ14 −16.04 −17.38 −14.56 97.02

V01 243.80 242.05 246.75 95.78

V02 240.35 238.72 243.14 95.56

V03 232.30 230.28 235.48 96.56

V04 234.14 232.55 236.29 97.48

V05 234.60 233.07 236.87 97.04

V06 246.10 244.57 248.74 95.92

V07 244.26 241.50 245.61 93.60

V08 250.70 247.68 254.17 97.76

V09 242.88 238.65 243.67 80.58

V10 241.73 238.34 242.95 89.72

V11 243.11 240.71 245.76 97.98

V12 242.65 240.19 246.38 97.12

V13 241.50 239.66 244.63 95.98

V14 238.28 235.02 241.00 97.76



Page 11 of 19Khan et al. SpringerPlus  (2016) 5:1943 

value for the liberal and conservative confidence intervals. So, the overall performance 
of the approximate confidence intervals is better irrespective of the large or small sam-
ple sizes. However, this is not true in general because the performance of the LCIs are 
strictly based on the validity of the linear approximation algorithm. In addition to the 
nonlinearity of the model, and the approximation of the Hessian matrix, larger residu-
als could result in a suspicious confidence region. For the 6-bus system, the impact of 
the residual mean square is less and we have been obtained analytically derivatives for 
the approximation of the Hessian matrix in our algorithm. This resulted in better cov-
erage probabilities even in the case of the short redundancy. In order to explore more, 
the Gauss–Newton algorithm has been run on the IEEE 14-bus power system to find 
the adequacy of the LCIs for the state vector parameters. The simulation output of 
the coverage probabilities with the small and large samples are shown in Tables 5 and 
6, respectively. We observed the poor performance of the LCIs in the case of the small 
sample size and most of the intervals for the desired parameters are liberal; whereas, the 
approximate confidence intervals performed adequately in the case of the large sample 
size. The fact behind the discriminate performance in this case, was the large impact of 
the residuals on the standard errors of the estimated parameter for the smaller sample. 

Table 6  Performance of  the interval estimates for  the IEEE 14-bus system parameters 
(n = 68)

Estimated parameters Base case values Average LCL Average UCL Coverage Prob (%)

θ02 −04.98 −05.45 −04.51 94.96

θ03 −12.72 −13.26 −12.19 94.82

θ04 −10.33 −10.85 −09.78 95.22

θ05 −08.78 −09.26 −08.30 94.70

θ06 −14.22 −14.82 −13.61 94.66

θ07 −13.37 −13.96 −12.75 95.08

θ08 −13.36 −14.05 −12.65 94.44

θ09 −14.94 −15.55 −14.31 94.94

θ10 −15.10 −15.88 −14.30 94.60

θ11 −14.79 −15.62 −13.94 95.30

θ12 −15.07 −16.86 −14.03 94.74

θ13 −15.16 −16.05 −14.24 94.74

θ14 −16.04 −16.97 −15.09 95.20

V01 243.80 239.82 247.85 94.54

V02 240.35 236.44 244.19 94.72

V03 232.30 228.48 236.12 95.10

V04 234.14 230.29 237.98 94.72

V05 234.60 231.01 238.32 95.12

V06 246.10 242.53 249.66 94.70

V07 244.26 240.20 248.24 94.98

V08 250.70 246.69 254.74 95.10

V09 242.88 239.13 246.65 95.22

V10 241.73 237.71 245.76 94.82

V11 243.11 239.07 247.13 95.06

V12 242.65 238.96 246.27 94.68

V13 241.50 237.84 245.23 94.66

V14 238.28 234.20 242.26 94.84
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Therefore, the overall performance of the approximate confidence intervals was good for 
the larger samples in terms of coverage probabilities.

The procedure of calculating the desired intervals up to 400 runs can also be seen in 
Figs. 1 and 2 for the parameter v1 (i.e., voltage at node one) of the 6-bus and IEEE 14-bus 
systems, respectively.

The central parallel lines in each graph correspond to the actual values of the esti-
mated parameter v1 of the 6-bus and IEEE 14-bus networks. Each vertical line that is 
across the central parallel lines is equivalent to the interval that holds the true value of 
the parameter. Whereas, the other vertical lines that are below and above the central 
lines are equivalent to the intervals that do not contain the true parameter v1.
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Fig. 1  Simulation of the LCIs for the parameter ν1 of the 6-bus system at n = 28
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Fig. 2  Simulation of the LCIs for the parameter ν1 of the IEEE 14-bus system at n = 68
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Note that, the condition given in Eq.  (13) had been applied successfully for differ-
ent sample sizes of the 6-bus and IEEE 14-bus networks’ data in order to guarantee the 
convergence of the Gauss–Newton algorithm. However, to save the space, the iteration 
results for the sample size of 28 measurements in the case of the 6-bus system and the 
sample size of 68 for the IEEE-14 bus have been considered to view the convergence fea-
ture of the Gauss–Newton algorithm. A seed was set in the algorithm in order to retain a 
fixed random vector for the perturbed measurements. The convergence performance of 
the algorithm for both test cases are shown in Fig. 3.

Figure 3 illustrates that the iterative procedure in either case was proceeding to the 
right direction. In addition, the behaviors of the norm steps during the iteration process 
in each test case and corresponding reduction in their loss functions are given in Table 7.

The results in Table  7 are also in accordance with the gradient behaviors shown in 
Fig.  3 which confirms that the descend directions ultimately caused the reduction in 
both norm step and the loss function.

Here, we are assuming that our available data vector did not contain any gross errors 
as these calculated intervals might not be robust in the presence of bad data. The exist-
ence of outlier values may be rigorously impaired the estimation results and needs an 
adequate caution to be taken. This fact has been studied by many researchers in view of 
point estimation for the unknown state parameters (Anwar and Mahmood 2014). To this 
reason end, the performance of the proposed interval estimation had also been carried 
out in the presence of contaminated measurements.
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Fig. 3  The convergence of the Gauss–Newton algorithm for; a the 6-bus system parameters, b IEEE 14-bus 
system parameters

Table 7  The Gauss–Newton algorithm applied to the 6-bus and IEEE 14-bus test systems

6-bus system IEEE 14-bus system

Iterations φ(X) δ Iterations φ(X) δ

1 7.8904 × 103 0.2223 1 1.850 × 104 0.9305

2 21.6772 0.0120 2 178.5464 0.0840

3 7.2942 3.6055 × 10−4 3 25.0504 2.2321 × 10−4

4 7.2941 2.8976 × 10−5 4 25.0496 5.5801 × 10−6

5 7.2941 2.3286 × 10−10 5 25.0496 1.1191 × 10−7

– – – 6 25.0496 2.9793 × 10−9



Page 14 of 19Khan et al. SpringerPlus  (2016) 5:1943 

Incidentally, the data generating model for the contaminated measurements in accord-
ance with Eq. (1) can be written as follows:

where δ is magnitude of gross error in some multiple of standard deviation i.e., δ = kσi 
and ϑ is a vector of zero elements except one at the ith position for the gross error in the 
measurement from the ith measuring device. To determine the robustness of the calcu-
lated intervals, a bad measurement was interrupted at the real power injection at node 
one by adding the four times standard deviation of its measuring instrument according 
to Eq. (16). The results are shown in Tables 8 and 9 for the 6-bus and IEEE 14-bus sys-
tems respectively.

It can be observed that even for the large samples, the performance of the approximate 
intervals is very poor in the presence of a gross error. This is because of the fact that the 
inclusion of a single bad value, although only causing a slight, increased in the standard 
errors from the Fisher matrix, but substantially enlarged the mean standard errors which 
in return causes the width enlargement for the approximated intervals.

Validity and comparison of the proposed confidence intervals
At the end of this analysis, the question also arises about the correctness of proposed 
interval estimates. Thereby, in view to verify further the correctness of proposed method 
for the construction of individual confidence intervals, we have taken the results of 
the tightest upper and lower bounds obtained by Al-Othman and Irving (2005) for the 
unknown state parameters of the 6-bus system. The numerical simulation results in 
the aforementioned work of Al-Othman and Irving (2005) were obtained by assum-
ing bounded errors in each measurement within the range of [−3, 3%]. The nonlinear 
optimization problem with double inequality was then solved in order to calculate the 
uncertainty intervals of the system state parameters. We took the uncertainty intervals 
as known interval estimates for the true unknown parameters in order to check the 
validity of the proposed technique. The reason behind this choice was that such inter-
val measures surely contain the unknown parameters with the uncertainty band of 
[− 3, 3%] subject to taking the pre-assumption of the deterministic uncertainty in the 

(16)Z = h(X)+ δϑ + ε,

Table 8  Performance of  the interval estimates for  the 6-bus system parameters in  the 
presence of a single bad value (n = 28)

Estimated parameters True values Average LCL Average UCL Coverage Prob (%)

θ02 −3.70 −4.82 −3.26 97.12

θ03 −4.30 −6.10 −4.12 81.56

θ04 −4.20 −5.29 −4.10 89.56

θ05 −5.30 −6.67 −5.23 80.71

θ06 −5.90 −7.68 −5.11 60.67

V01 241.50 238.86 245.72 98.12

V02 241.50 238.22 244.54 98.54

V03 246.10 242.57 249.26 99.10

V04 227.60 224.04 231.18 98.07

V05 226.70 223.06 230.11 96.23

V06 231.00 227.23 234.36 97.44
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measurements within this range. It is essential to note that the proposed LCIs were fol-
lowed as a result of considering the random behavior of the errors in the processing 
measurements rather than modeling such errors in a deterministic manner. Thus in the 
proposed method, uncertainty in the estimated parameters was quantified in terms of 
standard errors rather than describing the deterministic amount of plus minus 3% errors 
in the measurements. Although, the proposed approach and existence method were 
employed to estimate the interval bounds for the state parameters with different view-
points about the error statistics but with the same intent. The results of the LCIs for the 
same unknown parameters of the 6-bus system have been evaluated for a sample of 28 
observations since the large sample had a better performance in view of coverage prob-
ability for the linearized confidence intervals. The individual confidence intervals were 
evaluated at a nominal confidence level of 99% over 10,000 sets of simulations. This cho-
sen level of significance with 17 degree of freedom raised to the corresponding quantiles 
of the t-distribution in the proposed method to approximately ±3. The plausible results 
of the LCIs besides those with the existing method of bounded intervals are reported in 
Table 10.

Table 9  Performance of  the interval estimates for  the IEEE 14-bus system parameters 
in the presence of a single bad value (n = 68)

Estimated parameters True values Average LCL Average UCL Coverage Prob (%)

θ02 −04.98 −06.00 −04.53 93.48

θ03 −12.72 −14.07 −12.40 84.24

θ04 −10.33 −11.70 −10.02 82.08

θ05 −08.78 −10.13 −08.62 72.62

θ06 −14.22 −15.86 −13.98 71.46

θ07 −13.37 −14.93 −13.03 72.92

θ08 −13.36 −15.08 −12.90 89.54

θ09 −14.94 −16.55 −14.60 84.48

θ10 −15.10 −16.98 −14.53 91.58

θ11 −14.79 −16.77 −14.16 92.24

θ12 −15.07 −17.36 −14.17 95.14

θ13 −15.16 −17.24 −14.44 93.76

θ14 −16.04 −18.17 −15.26 94.02

V01 243.80 237.11 249.54 99.16

V02 240.35 233.53 245.50 98.64

V03 232.30 226.27 238.08 97.68

V04 234.14 228.30 240.20 98.62

V05 234.60 230.01 241.28 98.12

V06 246.10 240.84 251.87 97.60

V07 244.26 237.96 250.38 98.64

V08 250.70 244.48 256.95 98.82

V09 242.88 236.90 248.53 98.70

V10 241.73 235.50 247.94 98.74

V11 243.11 236.85 249.31 98.74

V12 242.65 237.98 248.30 98.74

V13 241.50 235.80 247.23 98.75

V14 238.28 232.00 244.46 98.78
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Clearly, the validation of the proposed method can be seen by the results presented in 
Table 10 as most of individual confidences intervals were within range of the bounded 
intervals, which surely contained the true system state parameters. Although, we have 
computed the linearized confidence interval for comparison purposes at a 99% confi-
dence level due to having the identical margins of measurement errors, the same would 
confidently hold for the more narrow bounded intervals calculated in Tables 3 and 4 at 
95%. Notice that the intervals, based on the proposed method representing the confi-
dence bounds which may or may not constrain the unknown system parameters, and 
the probability of 95 or 99% confidence levels relate to the procedure reliability, not to an 
individual estimated interval. The comparative efficiency performance of the individual 
confidence intervals can be closely followed from the corresponding widths of the esti-
mated intervals. To investigate this feature, interval estimates beside the point estimates 
from each method for the unknown system parameters of the 6-bus system are depicted 
in Figs. 4 and 5, respectively.

Figures  4 and 5 clearly exhibit that the proposed method considerably outperforms 
the uncertainty intervals since they provide the shortest widths and typically more 

Table 10  The LCIs and bounded intervals for the unknown system state parameters of the 
6-bus test network

Parameters to be 
estimated

True values LCIs Bounded intervals

Point estimates Interval esti-
mates

Point estimates Interval estimates

θ02 −3.7 −3.67 (−3.99, −3.35) −3.51 (−5.20, −2.52)

θ03 −4.3 −4.23 (−4.83, −3.71) −3.91 (−5.88, −3.21)

θ04 −4.2 −4.19 (−4.52, −3.86) −3.97 (−4.95, −3.09)

θ05 −5.5 −5.27 (−5.69, −4.85) −4.84 (−5.10, −3.88)

θ06 −5.9 −5.94 (−6.50, −5.38) −4.81 (−5.16, −1.47)

V01 241.5 241.53 (238.97, 244.08) 246.97 (239.59, 253.41)

V02 241.5 241.73 (239.17, 243.88) 245.59 (236.09, 250.88)

V03 246.1 246.13 (243.64, 248.62) 243.94 (235.70, 250.49)

V04 227.6 227.57 (224.92, 230.23) 231.33 (222.59, 237.38)

V05 226.7 226.67 (224.05, 229.30) 221.12 (216.08, 230.87)

V06 231.1 231.05 (228.40, 233.71) 231.15 (224.66, 239.45)
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uniform intervals in general. In addition, the point estimates of the proposed method 
seem to match with actual values due to the unbiasedness property of the least squares 
estimators.

Conclusions
We have explored the problem in this paper by considering the random uncertainty in 
the measurements that ultimately originated uncertainty in the estimated parameters. 
In this way we have found the methodology to find the confidence intervals for the esti-
mated parameters by deploying satisfactorily, the results of the nonlinear estimation the-
ory along with the conventional state estimation algorithm. We have observed from our 
case studies, that the LCIs yield an adequate performance in the case of larger sample 
size. However, the lager sample size sample is not only the source of the adequate per-
formance of the LCIs because of the nonlinearity of the estimated model. There may be 
several other sources of uncertainty that could contribute to the difficulty in calculating 
the optimum estimates and their asymptotic standard errors. Since, the output from the 
conventional state estimation algorithm for the point estimates is no more reliable in the 
presence of gross errors. In the same way, we have also been observed in our study, the 
poor performance of the LCIs in the presence of the gross error even for the larger sam-
ple size. This resulted in, an increase in the widths of the confidence intervals and hence 
a loss in the precision. Therefore, prior to the construction of the confidence intervals, 
consideration should be given to analyze the data in order to make sure that it is filtered 
by gross errors.

It is recommended to explore further the robust methods of interval estimation and 
their impact on the state estimation model that is presented in this study to further 
refine the computational technique.
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