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Background
Accurate localization of a vehicle is a fundamental challenge in mobile robot applica-
tions. A robot must maintain knowledge of its position over time to achieve autono-
mous navigation. Therefore, various sensors, techniques, and systems for mobile robot 
positioning, such as wheel odometry, laser/ultrasonic odometry, global position system 
(GPS), global navigation satellite system (GNSS), inertial navigation system (INS), and 
visual odometry (VO), have been developed by researchers and engineers. However, 
each technique has its own weaknesses. Although wheel odometry is the simplest tech-
nique available for position estimation, it suffers from position drift due to wheel slip-
page (Fernandez and Price 2004). INS is highly prone to accumulating drift, and a highly 
precise INS is expensive and an unviable solution for commercial purposes. Although 
GPS is the most common solution to localization as it can provide absolute position 
without error accumulation, it is only effective in places with a clear view of the sky. 
Moreover, it cannot be used indoors and in confined spaces (Gonzalez et al. 2012). The 
commercial GPS estimates position with errors in the order of meters. This error is con-
sidered too large for precise applications that require accuracy in centimeters, such as 
autonomous parking. Differential GPS and real time kinematic GPS can provide position 
with centimeter accuracy, but these techniques are expensive.
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The term “odometry” originated from the two Greek words hodos (meaning “journey” 
or “travel”) and metron (meaning “measure”) (Fernandez and Price 2004). This derivation 
is related to the estimation of the change in a robot’s pose (translation and orientation) 
over time. Mobile robots use data from motion sensors to estimate their position rela-
tive to their initial location; this process is called odometry. VO is a technique (shown in 
Fig. 1) used to localize a robot by using only a stream of images acquired from a single or 
multiple cameras attached to the robot (Scaramuzza and Fraundorfer 2011). The images 
contain a sufficient amount of meaningful information (color, texture, shape, etc.) to 
estimate the movement of a camera in a static environment (Rone and Ben-Tzvi 2013).

The article is organized as follows. The next section presents the six most common 
sensors and technologies utilized for localization in robotic applications and compares 
their advantages and disadvantages. “VO” section provides a detailed discussion on VO 
and its types, approaches, applications, and challenges. Prior related works are presented 
and discussed in “Prior VO Work” section. Finally, the conclusion for this article is pre-
sented in “Conclusions” section.

Localization sensors and techniques
Wheel odometry

The simplest and most widely utilized method to estimate the position of mobile robots 
is wheel odometry. It is used to estimate wheeled vehicle position by counting the num-
ber of revolutions of the wheels that are in contact with the ground. Wheel revolutions 
can be translated accurately into linear displacement relative to the ground (Borenstein 
et al. 1996). Encoders are used to measure wheel rotation, as shown in Fig. 2.

Fig. 1  Visual odometry [Aqel et al. 2016]

Fig. 2  Wheel odometry with an optical encoder [Pololu Corporation 2016]
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Wheel odometry is a relative positioning technique. It suffers from position drift and 
inaccuracy because of wheel slippage, which leads to error accumulation over time (Fer-
nandez and Price 2004; Nourani-Vatani et al. 2009). Translation and orientation errors 
in wheel odometry increase proportionally with the total travelled distance. Wheel 
odometry is simple and inexpensive, allows for high sampling rates, and exhibits good 
short-term accuracy (Borenstein et al. 1997; Aboelmagd et al. 2013).

INS

INS is a relative positioning technique that provides the position and orientation of an 
object relative to a known starting point, orientation, and velocity. As shown in Fig. 3, 
it is a navigation aid that uses a computer, motion sensors (accelerometers), and rota-
tion sensors (rate gyroscopes) to continuously calculate the position, orientation, and 
velocity of a moving vehicle, which could be a ground vehicle, an airplane, a spaceship, 
a rocket, a surface ship, or a submarine. The advantage of INS is that it is self-contained, 
that is, it does not require external references (Wang et al. 2014; Woodman 2007).

However, INS is highly prone to drift accumulation because calculation of the change 
in velocity and position is implemented by performing successive mathematical inte-
grations of acceleration with respect to time. Accelerometer data need to be integrated 
twice to yield the position, whereas rate-gyro data are only integrated once to track the 
orientation. Therefore, any small errors in the measurement of acceleration and angu-
lar velocity are integrated into large errors in velocity, which are compounded into still 
larger errors in position (Rone and Ben-Tzvi 2013; Wang et al. 2014; Woodman 2007). 
The errors are cumulative and increase with time. Thus, the position needs to be peri-
odically corrected with the input of another navigation system.

Consequently, inertial sensors are inaccurate and unsuitable for positioning applica-
tions over an extended period of time and are usually utilized to supplement other navi-
gation systems, such as GPS, to provide a higher degree of accuracy than is possible with 
the use of any single system (Maklouf and Adwaib 2014). Moreover, accurate inertial 
navigation requires high-cost equipment. Thus, the high cost of a highly precise INS 

Fig. 3  Inertial navigation system. a Block diagram of INS. b Miniature INS [SBG Systems 2016]



Page 4 of 26Aqel et al. SpringerPlus  (2016) 5:1897 

makes the method an unviable solution for commercial purposes (Borenstein et al. 1996, 
1997).

GPS/GNSS

GNSS is used as an umbrella term for all current and future global radio-navigation sys-
tems including the U.S. GPS, the Russian global navigation satellite system (GLONASS), 
and the European Georgia Library Learning Online System (GALILEO). At present, 
there are two navigation satellite systems in orbit which are GPS and GLONASS. GALI-
LEO is planned to be deployed and operational by 2013 (Rizos et al. 2010).

Before GPS was invented in the early 1970s by the U.S. Department of Defense (DoD), 
the primary method of navigation revolved around the map and compass. GPS is a sat-
ellite-based navigation system that allows users to accurately determine their location 
anywhere on or slightly above the surface of the Earth (El-Rabbany 2002; Cook 2011).

GPS is utilized for more than simple outdoor navigational exercises; it is used in geol-
ogy, agriculture, landscaping, construction, and public transportation. GPS provides 
accurate position, navigation, and timing information free of charge to anyone who has a 
GPS receiver. GPS consists of a nominal constellation of 24 operational satellites orbiting 
the Earth and transmitting encoded radio frequency (RF) signals. They are arranged so 
that four satellites are placed in each of six orbital planes to ensure continuous world-
wide coverage, as shown in Fig. 4a (El-Rabbany 2002; Aboelmagd et al. 2013).

Only four satellites are needed to provide positioning or location information. Through 
trilateration, ground receivers can calculate their position by using the travel time of the 
satellite’s signals and information about their current location that is included in the 
transmitted signal. Each satellite is equipped with a radio transmitter and receiver and 
atomic clocks. The receiver clocks are not as precise as the atomic clocks and normally 
exhibit bias. This bias generates errors in the travel time of the signals and leads to errors 
in the calculation of the distances to the satellites. Theoretically, by using the principle 
of trilateration/triangulation, a GPS receiver requires the ranges to three satellites only 
to calculate the 3D position (latitude, longitude, and altitude), but a fourth satellite is 
required to estimate the offset of the receiver’s clock from the system clock and to cor-
rect clock bias in the receiver. Figure 4b shows the concept of GPS positioning by trilat-
eration using three satellites (Aboelmagd et al. 2013; Cook 2011).

Fig. 4  Global positioning system [Aboelmagd et al. 2013]. a GPS satellite constellation. b Concept of posi-
tioning by trilateration (red dot represents user’s position)
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GPS provides the absolute position with a known ratio of error. Its main advantages 
are its immunity to error accumulation over time and its long-term stability. GPS is a 
revolutionary technology for outdoor navigation; it is effective in areas with a clear view 
of the sky but is unusable for indoor, confined, underground, and underwater spaces. 
The limitations of GPS include outages caused by satellite signal blockage, occasional 
high noise content, multipath effects, low bandwidth, and interference or jamming. GPS 
outages occur in urban canyons, tunnels, and other GPS-denied environments and con-
fined places (Gonzalez et al. 2012; Maklouf and Adwaib 2014; Cook 2011; Wang et al. 
2014).

Common standalone GPS is used for positioning and has an accuracy within 10  m. 
Differential GPS (DGPS) and real-time kinematic GPS (RTK-GPS) were invented to 
improve GPS accuracy and allow for localization in outdoor open-field environments 
within a sub-meter or centimeter order. They are relative positioning techniques that 
employ two or more receivers simultaneously to track the same satellites. DGPS mainly 
consists of three elements: one GPS receiver (base station) located at a known location, 
one GPS receiver (user receiver) called a rover, and a radio communication medium 
between these two receivers (Fig. 5). DGPS can correct bias errors of the user receiver 
by using measured bias errors at the base station (Aboelmagd et al. 2013; Morales and 
Tsubouchi 2007).

RTK-GPS provides real-time measurements in centimeter accuracy. It provides two 
solutions, namely, float and fix. The first solution requires a minimum of four common 
satellites and provides an accuracy range of approximately 20  cm to 1  m. The second 
RTK-GPS solution requires at least five common satellites and provides accuracy within 
2 cm (Aboelmagd et al. 2013; Cook 2011).

Sonar/ultrasonic sensors

Sonar/ultrasonic sensors utilize acoustic energy to detect objects and measure distances 
from the sensor to the target objects. They have two main parts, namely, transmitter and 
receiver. The transmitter sends a short ultrasonic pulse, and the receiver receives what 
comes back of the signal after it has reflected off nearby objects. The sensor measures 
the time-of-flight (TOF), which is the time from signal transmission to reception. Given 
that the transmission rate of an ultrasonic signal is known, the distance to the target 
that reflects the signal can be computed. Sonar sensors can be utilized to localize mobile 

Fig. 5  Real-time differential global positioning system
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robots through model matching or triangulation by computing the pose change between 
every two sensor inputs acquired at two different poses. By combining many sonar sen-
sors, a sonar array can obtain a detailed picture of the environment and exhibit high 
positioning accuracy (Jiménez and Seco 2005; Kreczmer 2010).

The major drawback of these sensors is the reflection of signal waves that are highly 
dependent on the material and the orientation of the object surface. Moreover, they are 
sensitive to noise from the environment and other robots using ultrasound with the 
same frequency. Many objects in the environment are assumed to be specular reflec-
tors for ultrasonic waves, which cause a sonar sensor to receive a multi-reflected echo 
instead of the first one (Kreczmer 2010; Rone and Ben-Tzvi 2013; Sanchez et al. 2012).

Laser sensors

Laser sensors can be utilized in several applications related to positioning. It is a remote 
sensing technology for distance measurement that involves transmitting a laser toward 
the target and then analyzing the reflected light. Laser-based range measurements 
depend on either TOF or phase-shift techniques. Similar to the sonar sensor, in a TOF 
system, a short laser pulse is sent out, and the time until it returns is measured. This 
type of sensor is often referred to as laser radar or light detection and ranging sensor 
(LIDAR). However, in phase-shift systems, a continuous signal is transmitted. The phase 
of the returned signal is compared with a reference signal generated by the same source. 
The velocity of the target and the distance to it are measured with the Doppler shift 
(Horn and Schmidt 1995; Takahashi 2007).

LIDAR is mostly used in obstacle detection and avoidance, mapping, and 3D motion 
capture. LIDAR can be integrated with GPS and INS to enhance the accuracy of outdoor 
positioning applications. Although sonar sensors have a large beam width that allows for 
increased coverage, the angular resolution with a laser scanner is much better than that 
with an ultrasonic one (Aboelmagd et al. 2013; Lingemann et al. 2005).

A drawback of LIDAR when compared with sonar sensors is that it entails a highly 
expensive solution. Moreover, analysis of LIDAR data has a high computational cost and 
may affect the response of real-time applications. The iterative manner of calculating the 
optimal match between two laser scans increases the computational cost. Furthermore, 
scanning can fail when the material appears as transparent for the laser, such as glass, 
because the reflections on these surfaces lead to suspicious data (Takahashi 2007; Horn 
and Schmidt 1995; Lingemann et al. 2005).

Optical cameras

Cameras and vision systems can be employed in mobile robotic applications for locali-
zation and to perform various tasks. Recently, many researchers have been showing 
interest in visual-based localization systems because these systems are more robust and 
reliable than other sensor-based localization systems. Camera images can be utilized 
for indoor and outdoor vehicle navigation, such as to detect road edges, lanes, and their 
transitions as well as road intersections. The images captured by a camera can provide 
a large amount of information to be used for several purposes, including localization. 
Compared with proximity sensors, optical cameras are low-cost sensors that provide 
a large amount of meaningful information. Moreover, they are passive; that is, visual 
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localization systems do not suffer from the interferences often encountered when active 
ultrasonic or laser proximity sensors are used (Frontoni 2012; Rone and Ben-Tzvi 2013).

Vision-based navigation of mobile robots is one of the main goals of computer vision 
and robotics research (Campbell et al. 2005). This approach is a non-contact method for 
the effective positioning of mobile robots, particularly in outdoor applications (Naga-
tani et  al. 2010). For autonomous navigation, a robot needs to track its own position 
and motion. VO provides an incremental online estimation of the vehicle position by 
analyzing the image sequences captured by a camera (Campbell et  al. 2005; Gonzalez 
et al. 2012). Vision-based odometry is an inexpensive alternative technique that is rela-
tively more accurate than conventional techniques, such as GPS, INS, and wheel odome-
try (Howard 2008). VO has a good trade-off among cost, reliability, and implementation 
complexity (Nistér et al. 2004). It can estimate robot location inexpensively by using a 
consumer-grade camera instead of expensive sensors or systems, such as GPS and INS 
(Nistér et al. 2006; Nourani-Vatani et al. 2009).

However, image analysis is typically computationally expensive. In visual localization, 
the computations involve several steps, namely, (1) acquisition of camera images, (2) 
extraction of several image features (edges, corners, lines, etc.), (3) matching between 
image frames, and (4) calculation of the position by calculating the pixel displacement 
between frames. Moreover, vision algorithms are highly sensitive to operating and envi-
ronmental conditions, such as lightning, textures, illumination changes throughout the 
day, presence of blurs in images, presence of shadows, and presence of water or snow 
on the ground. Therefore, these algorithms may perform well under several conditions, 
but in other environmental conditions, it will not work well and thus become unreliable 
(Aboelmagd et al. 2013).

Table 1 shows a summary of the features and drawbacks of the six most commonly 
used localization technologies.

The process of estimating ego-motion (translation and orientation of an agent (e.g., 
vehicle, human, and robot)) by using only the input of a single or multiple cameras 
attached to it is called VO (Scaramuzza and Fraundorfer 2011).

VO
Localization is the main task for autonomous vehicles to be able to track their paths and 
properly detect and avoid obstacles. Vision-based odometry is one of the robust tech-
niques used for vehicle localization. This section comprehensively discusses VO and its 
types, approaches, applications, and challenges.

What is VO?

VO is the pose estimation process of an agent (e.g., vehicle, human, and robot) that 
involves the use of only a stream of images acquired from a single or from multiple cam-
eras attached to it (Scaramuzza and Fraundorfer 2011). The core of VO is camera pose 
estimation (Ni and Dellaert 2006). It is an ego-motion online estimation process from 
a video input (Munguia and Gra 2007). This approach is a non-contact method for the 
effective positioning of mobile robots (Nagatani et al. 2010). VO provides an incremen-
tal online estimation of a vehicle’s position by analyzing the image sequences captured 
by a camera (Campbell et al. 2005; Gonzalez et al. 2012).
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The idea of estimating a vehicle’s pose from visual input alone was introduced and 
described by Moravec in the early 1980s (Nistér et al. 2004; Scaramuzza and Fraundorfer 
2011). From 1980 to 2000, VO research was dominated by NASA in preparation for the 
2004 Mars Mission. The term “visual odometry” was coined by Nistér et al. (2004). The 
term was selected because vision-based localization is similar to wheel odometry in that 
it incrementally estimates the motion of a vehicle by integrating the number of turns of 
its wheels over time (Scaramuzza and Fraundorfer 2011). In the same manner, VO inte-
grates pixel displacements between image frames over time.

Why VO?

VO is an inexpensive and alternative odometry technique that is more accurate than 
conventional techniques, such as GPS, INS, wheel odometry, and sonar localization 
systems, with a relative position error ranging from 0.1 to 2% (Scaramuzza and Fraun-
dorfer 2011). This method is characterized by good balance among cost, reliability, and 
implementation complexity (Nistér et  al. 2004). The use of a consumer-grade camera 
instead of expensive sensors or systems, such as GPS, INS, and laser-based localization 
systems, is a straightforward and inexpensive method to estimate robot location (Nis-
tér et al. 2006; Gonzalez et al. 2012; Nourani-Vatani et al. 2009). Although GPS can be 
utilized for outdoor localization, lost GPS information causes significant errors (Taka-
hashi 2007).

Images store large amounts of meaningful information, which are sufficient to esti-
mate the movement of a camera (Rone and Ben-Tzvi 2013). VO is unaffected by wheel 
slippage in uneven terrains or other unfavorable conditions. Furthermore, VO works 

Table 1  Comparison of commonly used localization sensors

Sensor/technology Advantages Disadvantages

Wheel odometry Simple to determine position/orientation
Short term accuracy, and allows high 

sampling rates
Low cost solution

Position drift due to wheel slippage
Error accumulation over time
Velocity estimation requires numerical 

differentiation that produces additional 
noise

INS Provides both position and orientation 
using 3-axis accelerometer and gyro-
scope

Not subject to interference outages

Position drift (position estimation requires 
second-order integral)

Have long-term drift errors

GPS/GNSS Provides absolute position with known 
value of error

No error accumulation over time

Unavailable in indoor, underwater, and 
closed areas

Affected by RF interference

Ultrasonic sensor Provides a scalar distance measurement 
from sensor to object

Inexpensive solution

Reflection of signal wave is dependent on 
material or orientation of obstacle surface

Suffer from interference if multiple sensors 
are used

Low angular resolution and scan rate

Laser sensor Similar to sonar sensors but has higher 
accuracy and scan rate

Return the distance to a single point 
(rangefinder) or an array of distances 
(scanner)

Reflection of signal wave is dependent on 
material or orientation of obstacle surface

Expensive solution

Optical camera Images store a huge meaningful informa-
tion

Provide high localization accuracy
Inexpensive solution

Requires image-processing and data-
extraction techniques

High computational-cost to process images
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effectively in GPS-denied environments (Scaramuzza and Fraundorfer 2011). The rate 
of local drift under VO is smaller than the drift rate of wheel encoders and low-precision 
INS (Howard 2008). VO can be integrated with GPS and INS for maximum accuracy.

Different from laser and sonar localization systems, VO does not emit any detecta-
ble energy into the environment. Moreover, compared with GPS, VO does not require 
the existence of other signals (Ni and Dellaert 2006). Compared with the use of other 
sensors, the use of cameras for robot localization has the advantages of cost reduction, 
allowing for a simple integration of ego-motion data into other vision-based algorithms, 
such as obstacle, pedestrian and lane detection, and without the need for calibration 
between sensors (Wang et  al. 2011). Cameras are small, cheap, lightweight, low pow-
ered, and versatile. Thus, they can also be employed in any vehicle (land, underwater, air) 
and for other robotic tasks (e.g., object detection and recognition).

VO challenges

Although indoor robot localization has been implemented successfully, robot locali-
zation in outdoor environments remains a challenging problem. Many factors, (e.g., 
terrains are usually not flat, direct sunlight, shadows, and dynamic changes in the 
environment caused by wind and sunlight) make localization difficult in outdoor envi-
ronments (Takahashi 2007). The main challenges in VO systems are mainly related to 
computational cost and light and imaging conditions (Gonzalez et  al. 2013; Nagatani 
et al. 2010; Nourani-Vatani and Borges 2011; Yu et al. 2011).

For VO to work efficiently, sufficient illumination and a static scene with enough tex-
ture should be present in the environment to allow apparent motion to be extracted 
(Scaramuzza and Fraundorfer 2011). In areas that have a smooth and low-textured sur-
face floor, directional sunlight and lighting conditions are highly considered, leading to 
non-uniform scene lighting. Moreover, shadows from static or dynamic objects or from 
the vehicle itself can disturb the calculation of pixel displacement and thus result in erro-
neous displacement estimation (Gonzalez et al. 2012; Nourani-Vatani and Borges 2011).

Monocular vision systems suffer from scale uncertainty (Kitt et al. 2011; Cumani 2011; 
Zhang et al. 2014). If the surface is uneven, the image scale will fluctuate, and the image 
scaling factor will be difficult to estimate. According to Kitt et al. (2011), estimation of 
the scaling factor may become erroneous when a large change in the road slope occurs, 
which may lead to incorrect estimation of the resulting trajectory.

VO applications

VO has a wide range of applications and has been effectively applied in several fields. 
Its application domains include robotics, automotive, and wearable computing (Scara-
muzza and Fraundorfer 2011; Fraundorfer and Scaramuzza 2012). VO is applied in many 
types of mobile robotic systems, such as ground, underwater, aerial, and space robots. 
In space exploration, for example, VO is used to estimate the ego-motion of the NASA 
Mars rovers (Maimone et al. 2007). NASA utilizes VO to track the motion of the rovers 
as a supplement to dead reckoning.

VO is mainly used for navigation and to reach targets efficiently as well as to avoid 
obstacles while driving. It is also applied in unmanned aerial vehicles (UAVs) to perform 
autonomous take-off and landing and point-to-point navigation. Moreover, VO plays a 
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significant role in autonomous underwater vehicles and coral-reef inspection systems 
(Dunbabin et al. 2005). Given that the GPS signal degrades or becomes unavailable in 
underwater environments, underwater vehicles cannot rely on GPS for pose estimation; 
therefore, VO is considered a cost-effective solution for underwater localization systems.

In the automotive industry, VO also plays a big role. It is applied in numerous driver 
assistance systems, such as vision-based assisted braking systems. VO is considered a 
cost-effective solution compared with LIDAR systems (Fraundorfer and Scaramuzza 
2012). In ground vehicle robotics, the effective use of visual sensors for navigation and 
obstacle detection is the main goal (Nistér et al. 2006). VO is employed in cases where 
the GPS signal is unavailable (in planetary environments), too heavy to carry (on a small 
air vehicle), or insufficiently accurate at a low cost (in agricultural applications) (Zhang 
et al. 2014; Jiang et al. 2014a). It is also used in agricultural field robots to estimate the 
robot’s position relative to the crops (Ericson and Astrand 2008; Jiang et al. 2014a).

Types of camera used in VO

VO can be classified according to the type of camera/data sensor utilized to estimate the 
robot trajectory (Valiente García et al. 2012). Various types of camera, such as stereo, 
monocular, stereo or monocular omnidirectional, and RGB-D cameras (Fig. 6), can be 
used for VO purposes.

Most VO methods that have been proposed in existing literature use either stereo 
or monocular cameras and can be roughly classified as stereo or monocular VO sys-
tems. The systems that utilize a binocular camera are considered stereo VO systems, as 
implemented by Nistér et al. (2006), Howard (2008), Azartash et al. (2014), Golban et al. 
(2012), Soltani et  al. (2012), Siddiqui and Khatibi (2014), Mouats et  al. (2014), Alonso 
et al. (2012), McManus et al. (2013), Jiang et al. (2013), García-García et al. (2008), Mar-
tinez (2015); those that use a monocular camera are considered monocular VO systems, 

Fig. 6  Different types of camera used in VO systems. a Stereo camera [courtesy of VOLTRIUM]. b Stereo 
omnidirectional [courtesy of Occam]. c Monocular camera [courtesy of Microsoft]. d Monocular omnidirec-
tional [courtesy of Occam]
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as applied by Yu et al. (2011), Gonzalez et al. (2012, 2013), Lovegrove et al. (2011), Mar-
tinez (2013), Nagatani et al. (2010), Nourani-Vatani et al. (2009), Royer et al. (2007), Jiang 
et al. (2014b).

A binocular camera has two lenses, with a separate image sensor for each lens. It 
has been used on Mars to estimate robot motion since early 2004 (Nistér et al. 2006). 
Given that information on the third dimension (i.e., depth) can be extracted from a sin-
gle frame, the image scale can be immediately and instantaneously retrieved because 
the size of the stereo baseline is fixed and known, thereby resulting in an efficient and 
accurate triangulation process. Moreover, the various features present in both types of 
cameras increase the tracking ability in subsequent frames (Gonzalez et al. 2012; Nistér 
et  al. 2006). However, stereo cameras are more expensive than conventional cameras. 
In addition, binocular cameras require more calibration effort than monocular cameras, 
and errors in calibration directly affect the motion estimation process (Kitt et al. 2011). 
Furthermore, it is very important for stereo VO that the two images of the stereo pair to 
be acquired at exactly the same time interval. That can be achieved by synchronizing the 
shutter speed of the two cameras of stereo vision or by synchronizing the two cameras 
by an external trigger signal provided by the controlling PC through serial or parallel 
port (Krešo et  al. 2013; Cumani and Guiducci 2008). Much more effort is required to 
maintain a calibrated constant baseline between the pair of cameras than to maintain a 
single calibrated camera. Stereo VO can be degraded to the monocular case when the 
stereo baseline is much smaller than the distances to the scene from the camera. Ste-
reo vision becomes ineffective in this case, and monocular methods are recommended 
(Scaramuzza and Fraundorfer 2011; Sünderhauf and Protzel 2007).

Using a monocular camera mitigates the effect of calibration errors in motion estima-
tion. Low cost and easy deployment are the main motivations for using the monocular 
camera in many common applications, such as cellular phones and laptops. However, 
monocular vision systems suffer from scale uncertainty (Kitt et al. 2011; Cumani 2011). 
As discussed by Nagatani et  al. (2010), Kitt et  al. (2011), Nourani-Vatani et  al. (2009), 
Gonzalez et al. (2012), Cumani (2011), if the surface is uneven, the image scale will fluc-
tuate, and the image scaling factor will become difficult to estimate. According to (Kitt 
et al. 2011), estimation of the scaling factor may become erroneous if a large change in 
the road slope occurs, which may lead to incorrect estimation of the resulting trajec-
tory. Monocular VO systems, compared with stereo VO systems, are essentially good for 
small robotics because they conserve the space of the baseline between the pair of stereo 
cameras. Moreover, interfacing and synchronization are more difficult with stereo cam-
eras than with monocular cameras.

Several VO systems utilize omni-directional cameras, as presented by Scaramuzza 
and Siegwart (2008a), Valiente García et al. (2012), Bunschoten and Krose (2003), Scara-
muzza and Siegwart (2008b), Scaramuzza et al. (2010), Tardif et al. (2008), and several 
others employ RGB-D cameras that provide both color and dense depth images, as pre-
sented by Fabian and Clayton (2014a), Steinbrücker et  al. (2011), Huang et  al. (2011), 
Fang and Zhang (2015), Fabian and Clayton (2014b), Dryanovski et al. (2013), Kerl et al. 
(2013), Whelan et al. (2013). Omni-directional cameras can represent a scene with a very 
wide field of vision (FOV) (up to 360° FOV). Given that omni-directional cameras can 
provide more information than common cameras and their features stay in the camera 
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FOV for a longer period of time, a well refined 3D model of the world structure can be 
generated (Valiente García et al. 2012).

Table 2 shows a summary of the features and drawbacks of the three most commonly 
used cameras for VO. Each type of camera has advantages and disadvantages, so no sin-
gle type can provide a 100% perfect solution.

Approaches of VO

Estimating the position of a mobile robot with vision-based odometry can generally 
be approached in three ways: through a feature-based approach, an appearance-based 
approach, or a hybrid of feature- and appearance-based approaches (Scaramuzza and 
Fraundorfer 2011; Valiente García et al. 2012).

Feature‑based approach

The feature-based approach, as used by Nistér et  al. (2006), Howard (2008), Cumani 
(2011), Benseddik et al. (2014), Naroditsky et al. (2012), Jiang et al. (2013), Villanueva-
Escudero et  al. (2014), Parra et  al. (2010), involves extracting image features (such as 
corners, lines, and curves) between sequential image frames, matching or tracking the 
distinctive ones among the extracted features, and finally estimating the motion. In this 
approach, matching an image with a previous one is accomplished by comparing each 
feature in both images and calculating the Euclidean distance of feature vectors to find 
the candidate matching features. Afterward, the displacement is obtained by calculat-
ing the velocity vector between the identified pairs of points (Lowe 2004; Nistér et al. 
2004, 2006). If stereo VO is implemented, the extracted features from the first frame 
are matched with the corresponding points in the second frame, thus providing the 
3D position of the points in space. The camera motion is estimated based on feature 
displacement where relative pose of camera can be estimated by finding the geomet-
ric transformation between two images acquired by the camera using a set of corre-
sponding feature points. To compute the matching between the feature points of two 
images, nearest neighbour pairs among their feature descriptors have to be determined. 
An 8-point algorithm was proposed by Longuet-Higgins to compute the pose via the 

Table 2  Comparison between types of cameras used for VO

Type of VO camera Pros Cons

Monocular Low cost and easy deployment
Light weight: good for small robotics
Simple calibration

Suffer from image scale uncertainty

Stereo Image scale and depth information is easy 
to be retrieved

Provide 3D vision

More expensive and needs more calibration 
effort than monocular cameras

It is degraded to the monocular case when 
the stereo baseline is much smaller than 
the distances to the scene from the 
camera

Difficult interfacing and synchronization.

Omnidirectional Provides very wide field of vision (FOV) (up 
to 360° FOV)

Can generate well refined 3D model of the 
world structure

Rotational invariance

Complex system
Multiple cameras calibrating and synchro-

nizing
Needs high bandwidth
Expensive
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essential matrix (Longuet-Higgins 1981). This method is similar to the structure from 
motion (SfM) method (Kicman and Narkiewicz 2013). Many works have been imple-
mented to improve the robustness of Longuet-Higgins approach (Hartley 1997, Wu et al. 
2005) or to solve it efficiently in a closed-form algorithm with the minimal set of five 
points (Nistér 2004). In (Nistér 2004), the relative camera pose was estimated from five 
matching feature points. However, several algorithms use 6, 7, and 8 feature pairs for 
relative motion estimation (Stewenius et al. 2006). Feature-based VO has been success-
fully utilized as the navigation system of Mars exploration rovers (Maimone et al. 2007) 
as well as in the missions of the Mars Science Laboratory (Johnson et al. 2008).

Kalman filter is one of the important Bayesian filters used to improve the accuracy 
and refine the VO estimation results (Van Hamme et  al. 2015). It uses a prior vehicle 
state estimate to predict current feature locations and then compares this prediction 
to current observations to calculate an updated vehicle state. The state estimates deliv-
ered by the Kalman Filter utilizes any available information to minimize the mean of 
the squared error of the estimates with regard to the available information (Lin et  al. 
2013). In Helmick et  al. (2004), a Kalman filter pose estimator has been implemented 
with VO system for autonomous rover in high slip environments. In this Helmick work, 
salient features in stereo images were tracked and a maximum likelihood motion estima-
tion algorithm was used to estimate rover motion between successively acquired stereo 
image pairs. The Kalman filter merges data from an Inertial Measurement Unit (IMU) 
and VO. This merged estimate is then compared to the kinematic estimate to determine 
if and how much slippage has occurred. If slippage has occurred then a slip vector is cal-
culated by differencing the current Kalman filter estimate from the kinematic estimate 
to be used for calculating the necessary wheel velocities and steering angles to compen-
sate for slip and follow the desired path.

Appearance‑based approach

The appearance-based approach, as implemented by Gonzalez et  al. (2012, 2013), 
Lovegrove et  al. (2011), Yu et  al. (2011), Nourani-Vatani et  al. (2009), Nourani-Vatani 
and Borges (2011), McManus et  al. (2013), Zhang and Kleeman (2009), Bellotto et  al. 
(2008), monitors the changes in the appearance of acquired images and the intensity of 
pixel information therein instead of extracting and tracking features. It focuses on the 
information extracted from the pixel intensity (Valiente García et al. 2012). The camera 
motion and vehicle speed can be estimated using optical flow (OF). OF algorithm uses 
the intensity values of the neighboring pixels to compute the displacement of brightness 
patterns from one image frame to another (Campbell et  al. 2004; Barron et  al. 1994). 
Algorithms that estimate the displacement for all the image pixels are known as dense 
OF algorithms such as the Horn-Schunck algorithm which calculates the displacement 
at each pixel by using global constraints (Horn and Schunck 1982). However, algorithms 
that calculate the displacement for a selected number of pixels in the image are called 
sparse optical flow algorithms such as the Lucas-Kanade method (Lucas and Kanade 
1981). Dense algorithms avoid feature extraction but are less robust to noise compared 
to sparse OF algorithms. Therefore, sparse OF algorithms are desirable over dense OF 
algorithms for many VO applications (Campbell et al. 2005, Corke et al. 2004, Nourani-
Vatani and Pradalier 2010). In sparse algorithms, the features should be chosen carefully, 
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considering that pixels in regions with more variance between the neighbors will pro-
duce more reliable displacement estimation.

The commonly used method in appearance-based approach is the template matching 
method. The template matching method selects a patch or a template from the current 
image frame and attempts to match this patch in the next frame. Vehicle displacement 
and rotation angle are retrieved by matching a template between two consecutive image 
frames. Template matching is a main task in various computer vision applications. It is 
extensively applied in various areas, such as object detection, video compression, and 
automatic inspection (Yoo et al. 2014; Brunelli 2009). Template matching is the process 
of determining the existence and position of a sub-image or an object inside a larger 
scene image (Choi and Kim 2002; Goshtasby et  al. 1984). The sub-image is called the 
template, and the larger image is called the search area. Template matching decides 
whether the template exists in the search area and determines its location if it does. It 
computes the degree of similarity between the template and search area by shifting the 
template over the search area and calculating the degree of similarity in each location 
based on various similarity measures. The shift position that has the largest similarity 
degree is the likely position of the template found in the search area (Yoo et al. 2014; 
Jurie and Dhome 2002; Goshtasby et al. 1984; Choi and Kim 2002).

The main similarity measures that are widely used in template matching are sum of 
squared or absolute differences (SSD/SAD) and normalized cross correlation (NCC) 
(Yoo et al. 2014; Goshtasby et al. 1984). NCC as a measure is more accurate than SSD/
SAD. However, NCC algorithms are computationally slower than SSD/SAD algorithms 
(Goshtasby et al. 1984; Choi and Kim 2002; Yoo et al. 2014). Given that NCC-based tem-
plate matching computes the normalized cross correlation of intensity values between 
two windows, it is considered one of the most common template matching methods that 
are invariant to linear brightness and contrast variations (Mahmood and Khan 2012; 
Zhao et al. 2006a, b).

Figure  7 presents the flowchart of the required steps of the VO system algorithm 
using correlation-based template matching (Aqel et al. 2016). The algorithm begins by 

Fig. 7  Flowchart of visual odometry system algorithm
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acquiring a pair of consecutive image frames. Thereafter, the template is selected from 
the first frame and then matched with the next frame through normalized cross correla-
tion. Then, the pixel displacement between the template and the maximum correlation 
point is calculated. Once the horizontal and vertical pixel displacements (Δu and Δv) are 
measured, these pixel displacements are converted to the physical horizontal and verti-
cal camera displacement (in meters) by using the intrinsic and extrinsic camera calibra-
tion parameters through the following equations:

The 2D image coordinate frame is converted to the camera coordinate frame by 
reversing the directions of the X and Y axes because image and camera coordinates are 
opposite each other.

For the camera coordinate plane (Xc,Yc,Zc) to be converted to the vehicle coordinate 
plane (Xv,Yv,Zv) with the application of Euler angles, rotation matrix Rc was calculated 
by rotating the camera coordinate plane 180° around the Z-axis and then by 180° around 
the new Y-axis, as depicted in Eqs. (2) and (3).

As the motion model was assumed to be as an Ackerman-steered model, the physical 
vehicle displacement (translation ΔX and rotation Δθ) in the vehicle coordinate plane is 
then calculated using Eq. (4).

where ΔXv and ΔYv are the vehicle displacement in the vehicle coordinate frame, and 
Lcam is the distance between the camera center and the vehicle’s center of rotation. 
Finally, the new position (Pnew) of the vehicle in the world coordinate plane is calculated 
using Eq. (5) which is equal to the previous position (Pprevious) plus the incremental trans-
lation (Tincremental) in the X-axis direction and, using the rotation matrix RZ-axis, rotated 
around the Z-axis by a heading angle equal to θi + 1.

Hybrid of feature‑ and appearance‑based approaches

The feature-based approach is suitable for textured scenarios, such as rough and urban 
environments (Johnson et al. 2008; Gonzalez et al. 2012). However, this approach fails to 
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deal with texture-less or low-textured environments of a single pattern (e.g., sandy soil, 
asphalt, and concrete). The few salient features that can be detected and tracked in these 
low-textured environments make the feature-based approach inefficient in such envi-
ronments (Nourani-Vatani et al. 2009; Nourani-Vatani and Borges 2011; Gonzalez et al. 
2012; Johnson et al. 2008). By contrast, the appearance-based approach is more robust 
and superior to feature tracking methods in low-textured (Kicman and Narkiewicz 2013; 
Nourani-Vatani and Borges 2011). Given that a large template can be employed in the 
matching process with this method, the probability of successful matching between two 
consecutive image frames is high.

In some scenarios, hybrid approach is the best solution which is a combination of fea-
ture- and appearance- based approaches. They combine between tracking salient fea-
tures over the frames and using the pixel intensity information of the whole or batch 
of image. For example, in Scaramuzza and Siegwart (2008a), the hybrid approach was 
implemented because the appearance-based approach alone was not very robust to 
image occlusions. Therefore, in their work, image features from the ground plane was 
used to estimate the vehicle translation while the image appearance was used to estimate 
the rotation of the vehicle.

Prior VO work
Vision-based odometry can estimate robot location inexpensively by using a consumer-
grade camera instead of expensive sensors or systems, such as GPS and INS (Nistér et al. 
2006; Gonzalez et al. 2012; Nourani-Vatani et al. 2009). It provides an incremental online 
estimation of the vehicle position by analyzing the image sequences captured by a cam-
era (Campbell et al. 2005; Gonzalez et al. 2012). VO as an effective non-contact position-
ing method, particularly in outdoor applications, is one of the main goals in computer 
vision and robotics research (Campbell et al. 2005; Nagatani et al. 2010). It is character-
ized by good trade-off among cost, reliability, and implementation complexity (Nistér 
et al. 2004).

Camera attachment to vehicle

In existing literature, most VO systems have cameras mounted and attached to the vehi-
cle, either oriented toward the ground or faced forward. A downward-facing camera 
was utilized by Nourani-Vatani et al. (2009), Yu et al. (2011), Nourani-Vatani and Borges 
(2011), Lovegrove et al. (2011), Nagatani et al. (2010), Kadir et al. (2015), Zienkiewicz 
and Davison (2014) for vehicle position estimation with an appearance-based template 
matching approach. Two monocular cameras were used by Gonzalez et  al. (2012): a 
downward-facing monocular camera for displacement and a front-facing camera as a 
visual compass to estimate the vehicle orientation. Although the forward-facing cam-
era provides more information than the downward-facing camera, template matching 
or feature tracking with the forward-facing camera can be disturbed by shadows and 
dynamic changes in the environment caused by wind and sunlight (Piyathilaka and 
Munasinghe 2010; Dille et al. 2010). Moreover, a forward-facing VO system under low-
light conditions requires the surrounding environment to be illuminated and possibly 
requires more power than the vehicle can provide.
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Stereo VO

Estimating a vehicle’s ego-motion by using only visual inputs was introduced in the early 
1980s by Moravec (1980). Most of the early VO research was driven by NASA to develop 
a VO system for planetary rovers with the capability to estimate motion in Mars, which 
has uneven and rough terrains. Moravec used a planetary rover equipped with a single 
camera sliding on a rail, which is called a slider stereo. The rover moved in a stop-and-go 
manner. In each stop location, the camera slid horizontally and captured nine images at 
equidistant intervals. By using his proposed corner detector, the corners were detected 
in an image and matched through NCC. Finally, motion was estimated by triangulation 
of the 3D points seen at two consecutive robot positions. Although Moravec utilized a 
single sliding camera, his work is related to the class of stereo VO algorithms.

Matthies and Shafer (1987) utilized a stereo system and Moravec’s approach to detect 
and track corners; he obtained good results with 2% relative error on a 5.5  m trajec-
tory for a planetary rover. Nistér et  al. (2004) coined the term “visual odometry” and 
demonstrated the first real-time long-run implementation with a robust outlier rejection 
scheme. They did not use Moravec’s approach to track features among stereo frames, but 
they detected features independently in all frames and only allowed matches between 
features. This scenario avoids feature drift during cross correlation-based tracking. In 
Cheng et al. (2005), the importance of stereo VO during NASA’s missions with the rov-
ers Spirit and Opportunity was presented. Other recent work on stereo VO for different 
types of robots in different environments were presented by Nistér et al. (2006), Howard 
(2008), Azartash et al. (2014), Golban et al. (2012), Soltani et al. (2012), Li et al. (2013). 
A real-time stereo VO system was implemented by Howard (2008) for ground vehicles 
through feature matching rather than tracking and employing stereo range data for inlier 
detection.

Stereo VO was implemented by Helmick et al. (2004) to allow a Mars rover to accu-
rately follow paths in high-slip environments and to estimate its travelling motion. 
It depends on tracking distinctive scene features in stereo imagery and estimates the 
change in the position and altitude of two or more pairs of stereo images by using maxi-
mum likelihood motion estimation. A correlation-based search and tracking based on 
an affine template was implemented to precisely determine the 2D positions of selected 
features in the second image pair and to eliminate the tracking error caused by a large 
roll and scale change between images. Stereo matching was then performed on these 
tracked features in the second pair to determine their new 3D positions. The slippage 
rate was computed with the Kalman filter, which merges the estimates from VO and 
IMU and compares the estimates with the motion estimate from vehicle kinematics.

Monocular VO

When the distance to the scene from the stereo camera is much larger than the stereo 
baseline, stereo VO can be degraded to the monocular case, and stereo vision becomes 
ineffectual (Scaramuzza and Fraundorfer 2011, Sünderhauf and Protzel 2007). In 
monocular VO, both the relative motion and 3D structure are computed from 2D bear-
ing data (Scaramuzza and Fraundorfer 2011). Successful works that employed VO with 
a single camera have been conducted in the last decade by using both monocular (Yu 
et al. 2011; Gonzalez et al. 2012, 2013; Lovegrove et al. 2011; Martinez 2013; Nagatani 



Page 18 of 26Aqel et al. SpringerPlus  (2016) 5:1897 

et al. 2010, Nourani-Vatani et al. 2009; Van Hamme et al. 2015; Lee et al. 2015; Forster 
et al. 2014; Villanueva-Escudero et al. 2014) and omnidirectional cameras (Yu et al. 2011; 
Gonzalez et al. 2012; 2013; Lovegrove et al. 2011; Martinez 2013; Nagatani et al. 2010; 
Nourani-Vatani et al. 2009; Scaramuzza and Siegwart 2008a; Corke et al. 2004; Bunscho-
ten and Krose 2003; Valiente García et al. 2012).

In Nistér et  al. (2004), a real-time VO that can estimate motion from a monocular 
or stereo camera has been developed. Furthermore, the first real-time large-scale VO 
with a monocular camera was presented. It uses feature tracking approach and random 
sample consensus (RANSAC) for outlier rejection. The new upcoming camera pose 
was computed through 3D to 2D camera-pose estimation. The developed algorithm, 
which consists of three phases (feature detection, feature tracking, and motion estima-
tion), can be applied to either monocular or stereo vision systems, with a slight change 
in the motion estimation phase. The algorithm begins by extracting corners from each 
image frame and then tracking the detected features between frames. A matching cri-
terion is implemented to successfully track features from one image to the next. Finally, 
the motion estimation phase is executed. In the case of a monocular vision system, the 
motion estimation phase calculates the pose for each tracked feature by using a five-
point pose algorithm. Afterward, the 3D position of each detected feature is calculated 
with the first and last acquired images. Next, 3D point information is used for the esti-
mation of the 3D pose of the camera. In a stereo vision system, the 3D position of each 
extracted feature is calculated through stereo matching of the features between the two 
images obtained by each of the cameras.

Van Hamme et al. proposed a monocular VO algorithm which uses planar tracking of 
feature points on the world ground plane surrounding the vehicle rather than traditional 
3D pose estimation (Van Hamme et al. 2015). For easy consistency of motion among fea-
tures, feature tracking was applied not in the image coordinates of the perspective cam-
era but in the ground plane coordinates. An online self-learning approach of monocular 
VO and ground classification for ground vehicles were presented by Lee et  al. (2015). 
A constrained kinematic model was utilized to solve the motion and structure problem 
and to estimate the ground surface. A probabilistic appearance-based ground classi-
fier that is learned online was used for effective sampling in the geometric search for 
the ground points. Thus, a combination of geometric estimates with appearance-based 
classification was performed to achieve an online self-learning scheme from monocular 
vision. Forster et al. presented a semi-direct monocular VO algorithm that is applied to a 
micro aerial vehicle (Forster et al. 2014). This algorithm operates directly on pixel inten-
sities and eliminates the need for feature extraction and matching techniques in motion 
estimation. It uses a probabilistic mapping method that explicitly models outlier meas-
urements to estimate 3D points.

A monocular omnidirectional VO using a hybrid combination of feature- and appear-
ance-based approaches was developed by Scaramuzza and Siegwart (2008a). The fea-
tures from the ground plane were used by tracking scale-invariant feature transform 
(SIFT) points to estimate the translation and absolute scale. An image appearance visual 
compass was used to estimate the rotation of the vehicle. The feature-based approach 
was also utilized to detect failures of the appearance-based method because it is not 
robust to obstructions.
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In Piyathilaka and Munasinghe (2010), an experimental study on the use of VO for 
short-run self-localization of field robots was presented. Fast Fourier transform (FFT) 
based on image registration techniques was applied to calculate the relative translation 
and orientation between consecutive frames captured from a ground surface by a down-
ward-facing monocular camera. The results of this study showed that FFT fails when the 
ground surface is low-textured and has repeated features, such as cut grass, gravel, and 
sand.

Simultaneous localization and mapping (SLAM) is a technique allows robots to oper-
ate in an environment without a priori knowledge of a map (Souici et  al. 2013). By 
SLAM, robot can localize itself in an unknown environment and incrementally gener-
ate a map of this environment while at the same time using this map to estimate its new 
pose relative to this map. Visual SLAM use camera sensors to acquire observation data 
to be used in building the map. In features-based SLAM, SLAM use environment to 
update the position of the robot by extracting features from the environment and re-
observing when the robot moves around. For example, LSD-SLAM and ORB-SLAM are 
real-time algorithm for simultaneous localization and mapping with a monocular freely-
moving camera (Engel et al. 2014; Mur-Artal et al. 2015). ORB-SLAM is a feature-based 
approach robust to severe motion clutter, allows wide baseline loop closing and re-local-
ization, and includes full automatic initialization. ORB features have enough recognition 
power to enable place recognition from severe viewpoint change and very fast to extract 
and match (without the need of multithreading acceleration) that enable real-time accu-
rate tracking and mapping. However, LSD-SLAM uses direct approach which does not 
need feature extraction and thus avoid the corresponding artefacts. It is able to generate 
semi-dense reconstructions of the environment, while the camera is localized by opti-
mizing directly over image pixel intensities. Moreover, it is robust to blur, low-texture 
environments like asphalt.

VO limitations

According to Gonzalez et al. (2013), Nagatani et al. (2010), Nourani-Vatani and Borges 
(2011), Yu et al. (2011), the main limitations of VO systems are related to the computa-
tional cost and light and imaging conditions (i.e., direct sunlight, shadows, image blur, 
and image scale variance). In areas that have a smooth and low-textured surface floor, 
the directional sunlight and lighting conditions are highly considered, which leads to 
non-uniform scene lighting. Moreover, the shadows from static or dynamic objects and 
from the vehicle itself can disturb the calculation of pixel displacement, which causes 
errors in displacement estimation (Gonzalez et  al. 2012, Nourani-Vatani and Borges 
2011).

In Gonzalez et  al. (2012, 2013), Yu et  al. (2011), Nourani-Vatani et  al. (2009), Nou-
rani-Vatani and Borges (2011), Siddiqui and Khatibi (2014), a monocular VO was imple-
mented through NCC template matching for ground car-like vehicles. In these studies, 
the best positioning accuracy was achieved with less than 3% error of the total travelling 
distance. The limitations of these systems are related to the negative effects of shadows, 
image blur, and deficiency in dealing with scale variance at uneven surfaces. These limi-
tations lead to false matching, which increases the estimation errors.



Page 20 of 26Aqel et al. SpringerPlus  (2016) 5:1897 

Scale uncertainty

According to Kitt et  al. (2011), Cumani (2011), Choi et  al. (2015), monocular vision 
systems are negatively affected and may fail because of scale uncertainty. In stereo VO 
systems, the scale of motion can be recovered by using the baseline between the two 
cameras as a reference. However, in monocular VO systems, scale ambiguity is unsolva-
ble when camera motion is unconstrained (Zhang et al. 2014). As discussed by Nagatani 
et al. (2010), Kitt et al. (2011), Nourani-Vatani et al. (2009), Gonzalez et al. (2012), Cum-
ani (2011), estimating the fluctuated image scale factor on an uneven terrain is difficult. 
According to Kitt et al. (2011), when a large change in road slope occurs, estimation of 
the scaling factor may become erroneous, which may lead to incorrect estimation of the 
resulting trajectory. The relative scale with respect to the previous frames is determined 
using either knowledge of the 3D structure or the trifocal tensor because the absolute 
image scale is unknown. Therefore, the absolute scale can be determined from direct 
measurements (e.g., measuring the size of an object in the scene), motion constraints, or 
integration with other sensors, such as inertial measurement unit (IMU) and range sen-
sors (Scaramuzza and Fraundorfer 2011; Hartley and Zisserman 2004). Scale ambiguity 
can be overcome by using independent information on the observed scene, such as the 
actual size of known objects (Cumani 2011). As discussed by (Nagatani et al. 2010, Nou-
rani-Vatani et al. 2009), image scale variance occurs when a robot moves on non-smooth 
or loose soil floors that make the wheels go up or down; then, the distance between the 
camera and the ground changes, and the image zooms in and out. This image scale fluc-
tuation affects the images (makes them shorter and wider than the actual scene), pre-
vents correct matching for visual tracking, and results in poor and unreliable motion 
estimation. Several sensors, such as laser range finder, acceleration, and IMU sensors, 
can be utilized to measure the camera height fluctuation (Gonzalez et al. 2012).

Recovering the image scale is possible when the camera motion is constrained to a 
surface. For example, in Kitt et al. (2011), image scale ambiguity was solved by using the 
Ackermann steering model and assuming that the vehicle drives on a planar road sur-
face. In Nourani-Vatani and Borges (2011), the planar motion of a vehicle was estimated 
by using a downward-facing camera and the Ackermann steering model for estimation. 
Moreover, an INS system is used to obtain vehicle pitch and roll angles. To resolve the 
image scale variation problem, (Nourani-Vatani and Borges 2011; Gonzalez et al. 2012) 
regarded the distance between the downward-facing camera and the ground as almost 
constant because the differences in camera height were cancelled throughout the experi-
ment as zero mean. In Scaramuzza et al. (2009), a monocular camera positioned with 
an offset to the vehicle rotation center was used to recover scale as the vehicle turns. 
However, the formulation degenerates in straight driving, and the scale is no longer 
recoverable. In Zhang et al. (2014), a method that does not require the imaged terrain to 
be flat was demonstrated. The method can simultaneously recover the inclination angle 
of the ground and estimate the motion. Wheel odometry deals with cases in which the 
detected terrain is not flat. Recently, a new approach was designed and applied by Naga-
tani et  al. (2010). The author developed a telecentric camera by using a CCD camera 
and telecentric lens that maintains the same FOV regardless of the variation in camera 
height from the ground.
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In Guo and Meng (2012), a system for VO and obstacle detection that involves the 
use of only a single camera was proposed. The Kanade–Lucas–Tomasi (KLT) feature 
tracker was utilized for feature extraction, and the RANSAC algorithm was used for 
outlier rejection. The relative pose between two consecutive frames was extracted from 
the essential matrix through SVD decomposition. Given that the absolute scale of the 
translation cannot be derived from monocular motion estimation, the scale ambiguity 
problem was solved by using the constraints of camera mounting and ground planar 
assumption. To detect obstacles and separate the ground and obstacle areas from each 
other, the image was segmented into regions. Each region was classified as either ground 
or off-ground according to three criteria: homography constraint, feature point distribu-
tion, and boundary point reconstruction.

Table  3 is a summary table of some VO prior works which illustrated in “Prior VO 
work” section.

Conclusions
VO and its types, approaches, and challenges were presented and discussed. The most 
common positioning sensors and techniques were presented, and their features and 
limitations were discussed and compared. Different sensors and techniques, such as 
wheel odometry, GPS, INS, sonar and laser sensors, and visual sensors, can be utilized 
for localization tasks. Each technique has its own drawbacks. VO is the localization of a 
robot using only a stream of images acquired from a camera attached to the robot. VO is 
a highly accurate solution to estimate the ego-motion of robots; it can avoid most of the 
drawbacks of other sensors. VO is an inexpensive solution and is unaffected by wheel 
slippage in uneven terrains.

Although GPS is the most common solution to localization because it can determine 
the absolute position without error accumulation, it is only effective in areas with a clear 
view of the sky. It cannot be used indoors and in confined spaces. The commercial GPS 
estimates position with errors in the order of meters. These errors are considered too 
large for precise applications that require accuracy in centimeters, such as autonomous 
parking. Differential GPS and real-time kinematic GPS can determine the position with 
centimeter accuracy, but these techniques are expensive. Meanwhile, VO works effec-
tively in GPS-denied environments.

INS is highly prone to accumulating drift, and a highly precise INS is an expensive and 
unviable solution for commercial purposes. The rate of local drift under VO is smaller 
than the drift rate of wheel encoders and low-precision INS.

Generally, estimating the position of a mobile robot using the vision-based odome-
try technique can be approached in three ways: through a feature-based approach, an 
appearance-based approach, or a hybrid of feature- and appearance-based approaches. 
The feature-based approach is suitable for textured scenarios. Template matching 
method is highly appropriate for low-textured scenarios and is superior to feature track-
ing methods because it works robustly on almost texture-less surfaces.

The main challenges in VO systems are related to computational cost and light and 
imaging conditions (i.e., directional sunlight, shadows, image blur, and image scale/rota-
tion variance). Most of the VO systems proposed in existing literature fail or cannot work 
effectively in outdoor environments with shadows and directional sunlight. Shadows and 
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directional sunlight have negative effects that disturb the estimation of pixel displace-
ment between image frames and lead to errors in vehicle position estimation.
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