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Background
The notion of a fuzzy subset of a set was introduced by Zadeh (1965). His seminal paper 
has opened up new insights and applications in a wide range of scientific fields. Rosen-
feld (1971) used the notion of a fuzzy subset to set down corner stone papers in several 
areas of mathematics. Mordeson and Malik (1998) published a remarkable book, Fuzzy 
commutative algebra, presented a fuzzy ideal theory of commutative rings and applied 
the results to the solution of fuzzy intersection equations. The book included all the 
important work that has been done on L-subspaces of a vector space and on L-subfields 
of a field.

In the study of groupoids (X , ∗) defined on set X, it has also proven useful to investi-
gate the semigroups (Bin(X),�) where Bin(X) is the set of all binary systems (groupoids) 
(X , ∗) along with an associative product operation (X , ∗)� (X , •) = (X ,�) such that 
x� y = (x ∗ y) • (y ∗ x) for all x, y ∈ X. Thus, e.g., it becomes possible to recognize that 
the left-zero-semigroup (X , ∗) with x ∗ y = x for all x, y ∈ X acts as the identity of this 
semigroup [see Kim and Neggers (2008)]. Fayoumi (2011) introduced the notion of the 
center ZBin(X) in the semigroup Bin(X) of all binary systems on a set X, and showed that 
a groupoid (X , •) ∈ ZBin(X) if and only if it is a locally-zero groupoid. Han et al. (2012) 
introduced the notion of hypergroupoids (HBin(X),�), and showed that (HBin(X),�) 
is a supersemigroup of the semigroup (Bin(X),�) via the identification x ←→ {x}. They 
proved that (HBin∗(X),⊖, [∅]) is a BCK-algebra.

In this paper, we introduce fuzzy rank functions for groupoids, and we investigate 
their roles in the semigroup of binary systems by using the notions of right parallelisms 
and ρ-shrinking groupoids.
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Preliminaries
Given a non-empty set X, we let Bin(X) denote the collection of all groupoids (X , ∗), 
where ∗ : X × X → X is a map and where ∗(x, y) is written in the usual product form. 
Given elements (X , ∗) and (X , •) of Bin(X), define a product “�” on these groupoids as 
follows:

where

for any x, y ∈ X. Using that notion, H. S. Kim and J. Neggers proved the following 
theorem.

Theorem 1  (Kim and Neggers 2008) (Bin(X),�) is a semigroup, i.e., the operation “�
” as defined in general is associative. Furthermore, the left- zero-semigroup is the identity 
for this operation.

Fuzzy rank functions for groupoids
Given a groupoid (X , ∗) in Bin(X), a map ρ : X → [0,∞) (or ρ : X → [0, 1]) is said to be:

(i)		  a (fuzzy) rank-subalgebra: ρ(x ∗ y) ≥ min{ρ(x), ρ(y)},
(ii)		 a (fuzzy) rank-co-subalgebra: ρ(x ∗ y) ≤ max{ρ(x), ρ(y)},
(iii)	 a (fuzzy) rank-d-function: ρ(x ∗ y) = max{ρ(x)− ρ(y), 0},
(iv)	� a (fuzzy) symmetric-rank-function: ρ(x ∗ y) = max{ρ(x)− ρ(y), ρ(y)− ρ(x)}

for all x, y ∈ X .

Note that if ρ : X → [0,∞) is a fuzzy subset of X, then it is a fuzzy rank-subalgebra 
as well. Thus these algebraic structures are special cases of the classes of fuzzy rank-
subalgebras. Each of the types listed above serve as some idea of measure of size when 
the binary operation “∗” is considered as corresponding very roughly to a (group) sum 
(product), a left-zero-semigroup, a d-algebra (BCK-algebra) or an absolute (value) dif-
ference. For the sake of being able to make comparisons in the behavior of interactions 
of rank-type and groupoid it seems a better idea to consider these simultaneously rather 
than study only isolated cases without considering common aspects as well as distin-
guishing ones.

Example 2  (a)	 Let (X , ∗) be a left-zero-semigroup, i.e., x ∗ y = x for all x, y ∈ X . 
If ρ : X → [0,∞) is any map, then ρ(x ∗ y) = ρ(x) for all x, y ∈ X. It follows that 
ρ(x ∗ y) ≥ min{ρ(x), ρ(y)} and ρ(x ∗ y) ≤ max{ρ(x), ρ(y)} for all x, y ∈ X, which shows 
that every function ρ : X → [0,∞) is both a (fuzzy) rank-subalgebra and a (fuzzy) rank-
co-subalgebra.

(b)	 Let (X , ∗) be a left-zero-semigroup and let ρ : X → [0,∞) be a (fuzzy) rank-d-func-
tion. Then it is a zero function. In fact, if we assume that there exists an x0 ∈ X such 
that ρ(x0) > 0, then 0 < ρ(x0) = ρ(x0 ∗ y) = max{ρ(x0)− ρ(y), 0} for all y ∈ X. If 
we take y := x0, then it leads to a contradiction.

(X , ∗)� (X , •) = (X ,�)

x� y = (x ∗ y) • (y ∗ x)
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(c)	 Let (X , ∗) be a left-zero-semigroup and let ρ : X → [0,∞) be a (fuzzy) sym-
metric-rank-function. Assume that there exists x0 ∈ X such that 0 < ρ(x0).  
Since ρ is a (fuzzy) symmetric-rank-function, we have ρ(x) = ρ(x ∗ y) =

max{ρ(x)− ρ(y), ρ(y)− ρ(x)} for all x, y ∈ X. If we take x := x0, y := y0, then 
0 < ρ(x0) = ρ(x0 ∗ x0) = max{ρ(x0)− ρ(x0), ρ(x0)− ρ(x0)} = 0, a contradic-
tion. This shows that ρ is a zero function.

If (X , ∗) is a right-zero-semigroup, i.e., x ∗ y = y for all x, y ∈ X, then any function 
ρ : X → [0,∞) is both a (fuzzy) rank-subalgebra and a (fuzzy) rank-co-subalgebra of 
(X , ∗), while if ρ is either a (fuzzy) rank-d-function or a (fuzzy) symmetric-rank-function, 
then it is a zero function.

A groupoid (X , ∗) is said to be selective (Neggers 1976; Neggers and Kim 1996) if 
x ∗ y ∈ {x, y} for all x, y ∈ X. For example, every left-(right-)zero-semigroup is selective. 
Given a selective groupoid (X , ∗), we may construct a digraph via x → y ⇔ x ∗ y = y for 
all x, y ∈ X. Hence selective groupoids are interpretable as digraphs on the (vertex) set X.

Proposition 3  Let (X , ∗) be a selective groupoid and let ρ : X → [0,∞) be a (fuzzy) 
rank-d-function of X. If x ∈ X such that ρ(x) > 0, then any vertex y(�= x) in X with x � y 
has ρ(y) = 0.

Proof  Let y(�= x) in X with x � y. Since (X , ∗) is selective and x � y , 
we have x ∗ y = x. It follows from the fact that ρ is a rank-d-function that 
ρ(x) = ρ(x ∗ y) = max{ρ(x)− ρ(y), 0} and hence that ρ(x) = ρ(x)− ρ(y), proving that 
ρ(y) = 0.�  �

Theorem 4  Let (X , ∗) be a selective groupoid and let ρ : X → [0,∞) be a (fuzzy) rank-
d-function of X. If x ∈ X such that ρ(x) > 0, then there exists at most one vertex x ∈ X 
such that ρ(x) > 0.

Proof  Assume that there are two vertices x and y in X such that ρ(x) > 0, ρ(y) > 0.  
It follows that x → y, y → x by Proposition  3. Now x → y implies that x ∗ y = y.  
Hence 0 < ρ(y) = ρ(x ∗ y) = max{ρ(x)− ρ(y), 0} = ρ(x)− ρ(y). This shows that  
2ρ(y) = ρ(x) . Similarly, y → x implies 2ρ(x) = ρ(y). Thus we obtain 
ρ(x) = 2ρ(y) = 4ρ(x), which implies ρ(x) = 0, a contradiction.�  �

Proposition 5  If (X , ∗) is a selective groupoid, then every (fuzzy) rank-d-function of 
(X , ∗) is a zero function.

Proof  If (X , ∗) is a selective groupoid, then x ∗ x = x for all x ∈ X. Since ρ is a (fuzzy) 
rank-d-function, we obtain ρ(x) = ρ(x ∗ x) = max{ρ(x)− ρ(x), 0} = 0, proving the 
proposition.�  �

Given a map ρ : X → [0,∞), we define

Proposition 6  (
∑

i(ρ),�) is a subsemigroup of (Bin(X),�) where i = 1, 2, 3.

∑

i

(ρ) :=
{
(X , ∗) ∈ Bin(X)|the condition (i)holds for (X , ∗)

}
(i = 1, 2, 3, 4).
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Proof  Let (X , ∗), (X , •) ∈
∑

1(ρ). Then ρ(x ∗ y) ≥ min{ρ(x), ρ(y)} and ρ(x • y) ≥

min{ρ(x), ρ(y)} for all x, y ∈ X. If we let (X ,�) := (X , ∗)� (X , •), then for any x, y ∈ X, 
we have x� y = (x ∗ y) • (y ∗ x). It follows that

This shows that (X , ∗)� (X , •) = (X ,�) ∈
∑

1(ρ). Hence (
∑

1(ρ),�) is a subsemi-
group of (Bin(X),�). Similarly, we may obtain that (

∑
i(ρ),�) is also a subsemigroup of 

(Bin(X),�) where i = 2, 3.�  �
Note that (

∑
4(ρ),�) need not be a subsemigroup of (Bin(X),�). Let 

(X , ∗), (X , •) ∈
∑

1(ρ) and let (X ,�) := (X , ∗)� (X , •). If we take x, y ∈ X such that 
ρ(x) > ρ(y), then we have

which shows that (
∑

4(ρ),�) is not a subsemigroup of (Bin(X),�).
Let ρ : X → [0,∞) be a map. A groupoid (X , ∗) is said to have a ρ-chain n if there 

exist x1, . . . , xn ∈ X such that ρ(x1) < ρ(x2) < · · · < ρ(xn). We denote the ρ-chain by 
〈x1, . . . , xn〉. A groupoid (X , ∗) is said to have the ρ-height n if 〈x1, . . . , xn〉 is the largest 
maximal ρ-chain in (X , ∗).

Proposition 7  Let ρ : X → [0,∞) be a map and let Bin(X) =
∑

1(ρ). Then the ρ
-height of (X , ∗) is ≥2 for any (X , ∗) ∈ Bin(X).

Proof  Assume there exist x, y, z ∈ X such that ρ(x) < ρ(y) < ρ(z). Let (X , ∗) 
be a groupoid such that x = y ∗ z. Then (X , ∗) ∈ Bin(X) =

∑
1(ρ). It follows that 

ρ(y ∗ z) = ρ(x) < ρ(y) = min{ρ(y), ρ(z)}. This shows that (X , ∗) �∈
∑

1(ρ) = Bin(X), a 
contradiction.�  �

Proposition 8  Let ρ : X → [0,∞) be a map and let Bin(X) =
∑

1(ρ). If ρ has two val-
ues a, b ∈ [0,∞) with a < b, then there exists uniquely an x̂ ∈ X such that ρ(x̂) = b and 
ρ(y) = a for all y �= x̂ in X.

Proof  Let x̂ ∈ X such that ρ(x̂) = b > a. If y ∈ X such that x̂ �= y, then ρ(y) = a. In 
fact, if ρ(y) = b, then we may take a groupoid (X , ∗) in Bin(X) such that ρ(x̂ ∗ y) = a, 

ρ(x� y) = ρ((x ∗ y) • (y ∗ x))

≥ min{ρ(x ∗ y), ρ(y ∗ x)}

≥ min{min{ρ(x), ρ(y)}, min{ρ(y), ρ(x)}}

= min{ρ(x), ρ(y)}

ρ(x� y) = ρ((x ∗ y) • (y ∗ x))

= max{ρ(x ∗ y)− ρ(y ∗ x), ρ(y ∗ x)− ρ(y ∗ x)}

= max{max{ρ(x)− ρ(y), ρ(y)− ρ(x)}

−max{ρ(y)− ρ(x), ρ(x)− ρ(y)},

max{ρ(y)− ρ(x), ρ(x)− ρ(y)}

−max{ρ(x)− ρ(y), ρ(y)− ρ(x)}}

= min
{
[ρ(x)− ρ(y)] − [ρ(x)− ρ(y)],

[ρ(x)− ρ(y)] − [ρ(x)− ρ(y)]
}

= 0 < ρ(x)− ρ(y)

= max{ρ(x)− ρ(y), ρ(y)− ρ(x)},
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since Bin(X) =
∑

1(ρ). It follows that a = ρ(x̂ ∗ y) ≥ min{ρ(x̂), ρ(y)} = b, a contradic-
tion. We claim that such an x̂ is unique. Assume that there are two elements x′, x̂ in 
X such that ρ(x̂) = b = ρ(x′). A groupoid (X , •) satisfying ρ(x̂ • x′) = a may then be 
selected. It follows that a = ρ(x̂ • x′) ≥ min{ρ(x̂), ρ(x′)} = b, a contradiction.�  �

Proposition 9  Let (X , ∗) ∈ Bin(X) and let ρ : X → [0,∞) be a (fuzzy) rank-d-function 
of X. Then

(1)	 Ker(ρ) �= ∅,
(2)	 if ρ(x) ≤ ρ(y) then x ∗ y ∈ Ker(ρ),
(3)	 Ker(ρ) is a right ideal of (X , ∗).

Proof  (1) Given x ∈ X, ρ(x ∗ x) = max{ρ(x)− ρ(x), 0} = 0. It follows that x ∗ x ∈ Ker(ρ) .  
(2) If ρ(x) ≤ ρ(y) then ρ(x ∗ y) = max{ρ(x)− ρ(y), 0} = 0 and hence x ∗ y ∈ Ker(ρ). (3) 
Given x ∈ Ker(ρ), y ∈ X, we have ρ(x ∗ y) = max{ρ(x)− ρ(y), 0} = max{0− ρ(y), 0} = 0,  
which shows x ∗ y ∈ Ker(ρ).�  �

Right parallelisms
Let ρ1, ρ2 be mappings from X to [0,∞). The map ρ1 is said to be right parallel to ρ2 if 
ρ1(a) ≤ ρ1(b) implies ρ2(a) ≤ ρ2(b), and we denote it by ρ1 || ρ2.

Proposition 10  If ρ1 is a (fuzzy) rank-subalgebra of (X , ∗) and ρ1||ρ2, then ρ2 is also a 
(fuzzy) rank-subalgebra of (X , ∗).

Proof  If ρ1 is a rank-subalgebra of (X , ∗), then ρ1(x ∗ y) ≥ min{ρ1(x), ρ1(y)} for all 
x, y ∈ X. Without loss of generality, we let ρ1(x ∗ y) ≥ ρ1(x). Since ρ1||ρ2, we obtain 
ρ2(x ∗ y) ≥ ρ2(x). It follows that ρ2(x ∗ y) ≥ min{ρ2(x), ρ2(y)}.�  �

Given maps ρi : X → [0,∞), we define

for all x ∈ X.
Note that ρ1 + ρ2 need not be a (fuzzy) rank-subalgebra of (X , ∗) even though ρ1 and ρ2 

are (fuzzy) rank-subalgebras of (X , ∗). In fact,

and

In the real numbers, it is not always true that min{a, b} +min{c, d} ≥ min{a+ c, b+ d}, 
which shows that ρ1 + ρ2 need not be a (fuzzy) rank-subalgebra of (X , ∗).

(ρ1 + ρ2)(x) : = ρ1(x)+ ρ2(x)

(ρ1 • ρ2)(x) : = ρ1(x)ρ2(x)

(ρ1 + ρ2)(x ∗ y) = ρ1(x ∗ y)+ ρ2(x ∗ y)

≥ min{ρ1(x), ρ1(y)} +min{ρ2(x), ρ2(y)}

min{(ρ1 + ρ2)(x), (ρ1 + ρ2)(y)} = min{ρ1(x)+ ρ2(x), ρ1(y)+ ρ2(y)}
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Proposition 11  Let ρ1, ρ2 be mappings from X to [0,∞). If ρ1 is a constant for all x ∈ X 
and if ρ1||ρ2, then ρ2 is also a constant function on X.

Proof  Straightforward.�  �

Note that any map ρ1 is right parallel to ρ2 if ρ2 is a constant function. The ‘right paral-
lel’ relation “||” is reflexive and transitive, but it is not an anti-symmetric, i.e., || is a quasi 
order, but not a partial order on {ρ|ρ : X → [0,∞) : a map }.

For example, we let X := [0,∞) and let ρ1 : X → [0,∞) be the identity map, and 
let ρ2 : X → [0,∞) be a map defined by ρ2(x) := ex. Then ρ1(a) ≤ ρ1(b) if and only if 
ρ2(a) ≤ ρ2(b) for all a, b ∈ X, i.e., ρ1||ρ2, ρ2||ρ1, but ρ1 �= ρ2.

Proposition 12  If ρ1 is a (fuzzy) rank-subalgebra of (X , ∗) and ρ1||ρ2, then ρ1 • ρ2 is 
also a (fuzzy) rank-subalgebra of (X , ∗).

Proof  If ρ1 is a rank-subalgebra of (X , ∗), then ρ1(x ∗ y) ≥ min{ρ1(x), ρ1(y)} for all 
x, y ∈ X. If we assume ρ1(x ∗ y) ≥ ρ1(x), then

which proves the proposition. � �

Corollary 13  If ρ1 is a (fuzzy) rank-co-subalgebra of (X , ∗) and ρ1||ρ2, then ρ1 • ρ2 and 
ρ2 are also (fuzzy) rank-co-subalgebras of (X , ∗).

Proof  The proofs are similar to Propositions 10 and 12.�  �

In the above note, we mentioned that ρ1 + ρ2 need not be a rank-subalgebra of (X , ∗). 
Using the notion of the right parallelism, we prove the following.

Proposition 14  If ρi is a rank-subalgebra of (X , ∗) (i = 1, 2) and if ρ1||ρ2, then ρ1 + ρ2 is 
also a rank-subalgebra of (X , ∗).

Proof  Since ρ1 is a rank-subalgebra of (X , ∗), we have ρ1(x ∗ y) ≥ min{ρ1(x), ρ1(y)} 
for all x, y ∈ X. Without loss of generality, we let ρ1(x ∗ y) ≥ ρ1(x). Since ρ1||ρ2, we 
obtain ρ2(x ∗ y) ≥ ρ2(x). It follows that ρ1(x ∗ y)+ ρ2(x ∗ y) ≥ ρ1(x)+ ρ2(x) and hence 
(ρ1 + ρ2)(x ∗ y) ≥ min{(ρ1 + ρ2)(x), (ρ1 + ρ2)(y)}, proving the proposition.�  �

Corollary 15  If ρi is a rank-co-subalgebra of (X , ∗) (i = 1, 2) and if ρ1||ρ2, then ρ1 + ρ2 
is also a rank-co-subalgebra of (X , ∗).

Proof  Similar to Proposition 14.�  �

(ρ1 • ρ2)(x ∗ y) = ρ1(x ∗ y)ρ2(x ∗ y)

≥ ρ1(x)ρ1(y)

= (ρ1 • ρ2)(x)

≥ min{(ρ1 • ρ2)(x), (ρ1 • ρ2)(x)},
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Proposition 16  Let X := R be the set of all real numbers. Let ρ1, ρ2 be mappings from 
X to [0,∞) and let ρ2(x) := x for all x ∈ X. If ρ1||ρ2, then ρ1 is strictly increasing.

Proof  Assume that there are x, y ∈ X such that x < y, ρ1(x) ≥ ρ1(y). Since ρ1||ρ2, we 
obtain x = ρ2(x) ≥ ρ2(y) = y, a contradiction.�  �

Theorem 17  If ρi is a rank-d-function of (X , ∗) (i = 1, 2) and if ρ1||ρ2, then ρ1 + ρ2 is 
also a rank-d-function of (X , ∗).

Proof  Given x, y ∈ X, we have four cases: (i) ρ1(x) ≥ ρ1(y), ρ2(x) ≥ ρ2(y) ; (ii)  
ρ1(x) ≥ ρ1(y), ρ2(x) < ρ2(y); (iii) ρ1(x) < ρ1(y), ρ2(x) ≥ ρ2(y); (iv) ρ1(x) < ρ1(y),

ρ2(x) < ρ2(y). Since ρ1||ρ2, the cases (ii) and (iii) are removed. For the case (i), we have 
ρ1(x ∗ y) = ρ1(x)− ρ1(y) and ρ2(x ∗ y) = ρ2(x)− ρ2(y). It follows that

For the case (iv), we have ρ1(x ∗ y) = 0 = ρ2(x ∗ y). It follows that 
(ρ1+ρ2)(x ∗ y) = ρ1(x ∗ y)+ρ2(x ∗ y) = 0 = max{(ρ1+ρ2)(x)− (ρ1+ρ2)(y), 0}, prov-
ing the theorem.�  �

Note that if ρ1||ρ2, ρ2||ρ3, then ρ1||ρ2 + ρ3, and if ρ1||ρ2, ρ1||ρ3, then ρ1||ρ2 + ρ3.

ρ‑Shrinking groupoids
A groupoid (X , ∗) is said to be ρ-shrinking if ρ : X → [0,∞) is a map satisfying the 
condition:

for all x, y ∈ X.

Example 18  Let X := [0,∞) and let x ∗ y := x + y for all x, y ∈ X. If we 
define ρ(x) := x for all x ∈ X, then ρ(x ∗ y) ≥ max{ρ(x), ρ(y)}. It follows that 
(e−ρ)(x ∗ y) = e−xe−y ≤ min{e−x, e−y} = min{(e−ρ)(x), (e−ρ)(y)}, which shows that 
(X , ∗) is e−ρ-shrinking.

Theorem 19  If (X , ∗) is both ρ1-shrinking and ρ2-shrinking and if ρ1||ρ2, then (X , ∗) is 
both (ρ1 + ρ2)-shrinking and ρ1 • ρ2-shrinking.

Proof  Since (X , ∗) is ρ1-shrinking, we have ρ1(x ∗ y) ≤ min{ρ1(x), ρ1(y)} for all x, y ∈ X. 
The condition ρ1||ρ2 implies that ρ2(x ∗ y) ≤ min{ρ2(x), ρ2(y)}. Hence

(ρ1 + ρ2)(x ∗ y) = ρ1(x ∗ y)+ ρ2(x ∗ y)

= ρ1(x)− ρ1(y)+ ρ2(x)− ρ2(y)

= (ρ1 + ρ2)(x)− (ρ1 + ρ2)(y)

≤ max{(ρ1 + ρ2)(x)− (ρ1 + ρ2)(y), 0},

ρ(x ∗ y) ≤ min{ρ(x), ρ(y)}

(ρ1 + ρ2)(x ∗ y) = ρ1(x ∗ y)+ ρ2(x ∗ y)

≤ min{ρ1(x), ρ1(y)} +min{ρ2(x), ρ2(y)}



Page 8 of 9Kim et al. SpringerPlus  (2016) 5:1865 

Without loss of generality, we may assume ρ1(x) ≤ ρ1(y). Then ρ2(x) ≤ ρ2(y), since 
ρ1||ρ2. It follows that (ρ1 + ρ2)(x ∗ y) ≤ ρ1(x)+ ρ2(y) = (ρ1 + ρ2)(x). Hence (X , ∗) is 
(ρ1 + ρ2)-shrinking. Similarly, if we assume ρ1(x) ≤ ρ1(y), then

which shows that (X , ∗) is ρ1 • ρ2-shrinking.�  �

Proposition 20  If (X , ∗) and (X , •) are ρ-shrinking and if (X ,�) := (X , ∗)� (X , •), then 
(X ,�) is also ρ-shrinking.

Proof  If (X ,�) := (X , ∗)� (X , •), then for all x, y ∈ X, we have

showing that (X ,�) is ρ-shrinking. � �

Proposition 20 shows that the collection of all ρ-shrinking groupoids forms a subsemi-
group of (Bin(X),�).

Given maps ρ : X → [0,∞) and σ : Y → [0,∞), we define a map 
[ρ, σ ] : X × Y → [0,∞) by [ρ, σ ](x) := ρ(x)+ σ(y) as a sort of “inner product” rank-
ing. Given groupoids (X , ∗) and (Y , •), we define a Cartesian product (X × Y ,∇) where 
(x, y)∇(x′, y′) := (x ∗ x′, y • y′) for all (x, y), (x′, y′) ∈ X × Y .

Proposition 21  If (X , ∗) is ρ-shrinking and (Y , •) is σ-shrinking, then (X × Y ,∇) is [ρ, σ ]
-shrinking.

Proof  Since (X , ∗) is ρ-shrinking and (Y , •) is σ-shrinking, we have 
ρ(x ∗ y) ≤ min{ρ(x), ρ(y)} and σ(x • y) ≤ min{σ(x), σ(y)} for all x, y ∈ X. It follows that

which proves the proposition.�  �

Conclusions
Above, we introduced four (fuzzy) rank functions in the semigroup of all binary sys-
tems (i.e., groupoids), and we investigated their roles related to selective groupoids and 
the notion of Bin(X). Using the notion of “right parallelism”, we showed that if ρi is a 
(fuzzy) rank-subalgebra (resp., (fuzzy) rank-d-function) of (X , ∗) (i = 1, 2) and if ρ1||ρ2 , 
then ρ1 + ρ2 is also a (fuzzy) rank-subalgebra (resp., (fuzzy) rank-d-function) of (X , ∗). 

(ρ1 • ρ2)(x ∗ y) = ρ1(x ∗ y)ρ2(x ∗ y)

≤ ρ1(x)ρ1(x)

= (ρ1 • ρ2)(x)

= min{(ρ1 • ρ2)(x), (ρ1 • ρ2)(y)},

ρ(x� y) = ρ((x ∗ y) • (y ∗ x))

≤ min{ρ(x ∗ y), ρ(y ∗ x)}

≤ min{min{ρ(x), ρ(y)}, min{ρ(y), ρ(x)}

= min{ρ(x), ρ(y)},

ρ(x ∗ y)+ σ(x • y) ≤ min{ρ(x), ρ(y)} +min{σ(x), σ(y)}

≤ min{ρ(x)+ σ(x), ρ(y)+ σ(y)}

= min{[ρ, σ ](x), [ρ, σ ](y)},
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By introducing the notion of ρ-shrinking to groupoids, we found that if (X , ∗) is both ρ1
-shrinking and ρ2-shrinking and if ρ1||ρ2, then it is both (ρ1 + ρ2)-shrinking and ρ1 • ρ2

-shrinking. This research may provide hyper-fuzzy rank functions in the set of all binary 
systems naturally, and thus several well-developed theorems/propositions in the areas 
of soft fuzzy theory and intuitionistic fuzzy set theory can then possibly be applied in 
future research also.
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