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Background
Modern power systems with ever increasing power demands require power with satis-
factory standards of quality and economy with feasible cost cutting measures (Hor et al. 
2010; Nurdin et  al. 2012). In developing countries, the optimized use of transmission 
system investments is very important. Practical application of FSC has been found it as 
the suitable choice not only to achieve the desired power increment, but also to stabi-
lize the two interconnected strong networks by reducing the connecting line impedance 
of the given corridor’s transmission capacity (Oliveira 2008). In addition to this, FSC is 
the simplest and cost-effective solution of increasing the power transfer capability of a 
power system that has long (250 km or more) transmission lines (Oliveira 2008).

Abstract 

In this article, a novel and accurate scheme for fault detection, classification and fault 
distance estimation for a fixed series compensated transmission line is proposed. The 
proposed scheme is based on artificial neural network (ANN) and metal oxide varistor 
(MOV) energy, employing Levenberg–Marquardt training algorithm. The novelty of 
this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to 
train the ANN. Such approach has never been used in any earlier fault analysis algo-
rithms in the last few decades. Proposed scheme uses only single end measurement 
energy signals of MOV in all the 3 phases over one cycle duration from the occurrence 
of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault dis-
tance estimation. Feasibility and reliability of the proposed scheme have been evalu-
ated for all ten types of fault in test power system model at different fault inception 
angles over numerous fault locations. Real transmission system parameters of 3-phase 
400 kV Wardha–Aurangabad transmission line (400 km) with 40 % FSC at Power Grid 
Wardha Substation, India is considered for this research. Extensive simulation experi-
ments show that the proposed scheme provides quite accurate results which demon-
strate complete protection scheme with high accuracy, simplicity and robustness.
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Estimation of the impedance to the fault point is influenced by the series compensa-
tion (Vyas et al. 2014a, b). Series compensation affects the fault location estimation in 
an unpredictable manner. Most of the reactance-based topologies suffer from mal-oper-
ation under reach due to DC offset current. Also, these schemes require measurement 
from both ends if the transmission line is having two end sources. In addition, the prob-
lem gets worse if the overvoltage protection of a series capacitor starts to operate due to 
high fault currents introducing nonlinearities in the measurement (Hosny and Safiuddin 
2009). All of these nonlinear behavior due to series capacitor and its protection contrib-
utes to the distortion in phase voltage and line current waveforms. So, false tripping and 
mal-operation of circuit breakers is dominant due to series compensation. Hence con-
ventional impedance based protection systems are most likely to malfunction (Hosny 
and Safiuddin 2009).

Fault classification and fault location estimation increases system stability, reliability 
and availability. Accurate location of faults on overhead transmission lines for inspection 
maintenance purposes is of vital importance for expediting service restoration to reduce 
service outage time and operating costs. Accurate fault analysis with location estimation 
will surely improve overall transient stability and reduce the switching overvoltage in the 
power system. Therefore, the fault type classification and fault distance estimation have 
become very important aspects of protection of series compensated transmission line.

MOV energy signals are never implemented before in any of the earlier conventional 
fault classification and location estimation algorithms. In order to find some new solu-
tion, authors have considered a new measurement scheme on FSC side rather than con-
ventional line side voltage and current measurement.

A bibliographical survey of relevant background, effect of series compensation on 
transmission line protection and protection efforts for series compensated line is pre-
sented in Vyas et al. (2014a). Various fault-location algorithms for series-compensated 
lines have been developed so far. They apply one-end (Hosny and Safiuddin 2009; Ray 
2014; Ray et al. 2013; Parikh et al. 2008; Abdelaziz et al. 2005; Vyas et al. 2014b; Moravej 
et  al. 2012) and two-end measurements (Izykowski et  al. 2011; Rubeena et  al. 2014; 
Ahsaee and Sadeh 2011; Kang et al. 2015; Eldin 2010; Hussain and Osman 2014; Al-Dab-
bagh and Kapuduwage 2005; Yusuff et  al. 2011; Ma et  al. 2015; Abdelaziz et  al. 2013) 
for two-terminal lines. In general, the impedance-based approach is the mostly applied. 
Multilayer perceptron neural networks (MLPNN) based scheme with two neural net-
works to address fault classification and location is proposed in Hosny and Safiuddin 
(2009). Fault location by extreme learning machine with genetic algorithm based feature 
selection method is depicted in Ray (2014). Wavelet transform (WT) and wavelet packet 
transform (WPT) combining ANN method for fault distance estimation has been con-
sidered in Ray et  al. (2013) while a combined wavelet-support vector machine (SVM) 
technique for fault zone identification in series compensated transmission line has been 
investigated in Parikh et al. (2008), Yusuff et al. (2011). Two approaches based on trav-
elling waves and two level ANN for fault type classification and faulted phase selec-
tion of series compensated transmission lines have been proposed in Abdelaziz et  al. 
(2005). A new approach based on hyperbolic S-transform for extracting useful features 
from the input signals and support vector regression for fault location is presented in 
Moravej et  al. (2012). A more general case of unsynchronized measurements utilizing 
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two subroutines for locating a fault has been presented in Izykowski et al. (2011). Direct 
Prony analysis and four-cycle discrete Fourier transform algorithm based new offline 
technique is proposed for accurate estimation of fault current and voltage phasors of the 
series compensated transmission system in Rubeena et al. (2014). In Eldin (2010), a new 
system with wavelet MRA coefficients for fault detection and classification and adaptive 
neuro-fuzzy inference system (ANFIS) to obtain accurate fault location has been stud-
ied. A generalized fault loop method using pre-fault PMU measurements is considered 
in algorithm (Al-Mohammed and Abido 2014). A fault direction estimation technique 
for a series compensated line using phase change in positive-sequence current and mag-
nitude change in the positive-sequence voltage at fault is provided in Jena and Pradhan 
(2010). Detailed analysis of a new method for fault event detection and optimum relay 
coordination in wind farm using genetic algorithm is given in Perven et  al. (2015). A 
new concept of integrated impedance based intelligent relaying for transmission line 
with TCSC is introduced in Jena and Samantaray (2015). The technique in Moravej et al. 
(2011) presents a new combined S-Transform and Logistic Model Tree techniques for 
fault classification and fault section identification in transmission system with TCSC. 
Both schemes in Jena and Samantaray (2015), Moravej et al. (2011) lack to give fault dis-
tance estimation. In Ray (2014), Ray et al. (2013), post fault one cycle voltage and current 
signals have been taken while in Parikh et al. (2008), Ma et al. (2015) post fault one cycle 
current signals have been considered. Post fault half cycle window signals are used in 
Vyas et al. (2014a, b), Yusuff et al. (2011).

ANN is powerful in pattern recognition, classification and generalization tool (Vyas 
et al. 2014a, b). Off-line data training is very useful feature of ANN. Immunity to noise, 
robustness and tolerance to fault are a few of the advantages of ANN over other pattern 
recognition tools. Nonlinearity and variations in system parameters will not seriously 
affect an ANN-based relay decision. So, various ANN-based algorithms have been inves-
tigated and implemented in power systems in recent years Jain et al. (2009).

In this research work, an equivalent model of 400  kV Wardha–Aurangabad line 
(400 km) which is under construction with end buses and 40 % fixed series capacitors 
at Wardha Substation end, i.e. relaying end with protection scheme has been devel-
oped based on the real time parameters of the actual installed system. This FSC is being 
installed at 1200/765/400/220  kV Wardha Substation, Power Grid, Western Region 
(WR)—I, India. Figure 1 shows the considered equivalent schematic of series compen-
sated transmission line with two 400 kV end buses as described above.

This paper presents the application of ANN for fault distance location in a double end 
fed single circuit transmission line. All the ten types of internal shunt faults using only 
one terminal data, i.e. mainly MOV energy signals from relaying end have been con-
sidered. These MOV energy signals are taken over only one cycle window from the 
inception of fault which makes this scheme rapid. The effects of varying fault type, fault 
location and fault inception angle have been studied.

At present, quadrilateral characteristic distance relays are used for distance protection 
of 400  kV fixed series compensated transmission line and is reported to perform less 
accurate in estimating fault location distance. Line side voltage and current measure-
ment get affected abruptly in series compensated line, whereas, MOV energy signals are 
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not affected as compared to impedance measurement signals used in other distance pro-
tection schemes due to fixed series compensation.

The performance of the proposed scheme has been investigated by a number of offline 
tests for internal faults. Percent absolute error criterion is chosen to evaluate the pro-
posed method performance. The simulation results show that all the ten types of internal 
faults can be correctly classified and located after one cycle from the inception of fault. 
In addition, the proposed scheme does not require a communication link to recover 
the remote end data. Such comprehensive work has not been reported earlier for fault 
classification and fault location estimation of fixed series compensated line using MOV 
energy signals of fixed series capacitors (FSC) as input to train the ANN with soft com-
puting paradigm.

This paper is structured into 7 main sections; the first section is an introduction. In 
the “Working philosophy of FSC” section we discuss the basic protection scheme of FSC 
and in “System configuration and modeling” section system configuration and modeling 
in Matlab/Simulink with above mentioned real time system parameters is explained. 
Section “Implementation of ANN” focuses on ANN and learning rule implemented in 
this novel scheme while “Proposed algorithm” section introduces the detailed explana-
tion of the proposed scheme of fault classification and fault location estimation with 
complete algorithm. Also, the details of training the ANN with MOV energy signals at 
various fault conditions to get the minimum error is explained in “Proposed algorithm” 
section. Section “Performance evaluation and results” presents the performance evalu-
ation and simulation results of the proposed scheme in terms of percent absolute error. 
Finally, “Conclusions” section clarifies the extracted conclusions with this new superior 
proposed protection scheme of series compensated transmission line.

Working philosophy of FSC
Fixed series compensation has been utilized for many years with excellent results in AC 
power transmission. As show in Eqs. (1) and (2), series compensated transmission sys-
tem will increase the active power transmission capability over the given corridor with-
out affecting angular or voltage stability (Nurdin et al. 2012).

(1)Power transmitted without FSC = Vs × Vr × sinδ/Xl

(2)Power transmitted with FSC = Vs × Vr × sinδ/(Xl − Xc)

Wardha S/s
400 KV Bus

Aurangabad
S/s 400 KV

Bus
40 % FSC

400 Kms

AC

ANN-Based
Relaying End

AC

Source 1 Source 2

MOV

MOV
Energy

CTs

Fig. 1  Schematic of series compensated transmission line with FSC
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where, δ = Angular difference between voltages, Vs = Sending end voltage, Vr = Receiv-
ing end voltage, Xl = Line reactance, Xc = Series capacitor reactance, P, Q = Received 
active and reactive powers respectively, Qc = Reactive power of series capacitor

In Fig. 2, single-line scheme of actual installation of 400 kV FSC is shown. The series 
capacitor banks in FSC are protected with MOV and forced triggered spark gap protec-
tion (IEEE Standards 2013; Haddad et  al. 2001; Ahmed et  al. 2012). In case of a fault 
in the transmission line, high short circuit current will flow also through the capacitor 
bank which will increase the voltage across the capacitors. It is not economically feasi-
ble to design the capacitors to withstand very high voltages. Therefore the MOV having 
Zinc Oxide (ZnO) discs are connected in parallel with the capacitor bank having highly 
non linear Voltage vs. Current characteristics. As long as the voltage across the capacitor 
is below the protective level, the MOV presents a very high resistance. Having the volt-
age across the capacitor terminals greater than the protective level, the MOV resistance 
becomes very low, and in turn, diverting a significant portion of the fault current away 
from the capacitor.

In case of external fault (fault outside the line section, where the series capacitor is 
located), the MOV is so designed that it will limit the voltage to the protective voltage 
level, keeping capacitor banks in circuit until the line circuit breakers in the external line 
will clear the fault.

In case of internal fault (fault inside the same line section, where the series capacitor 
bank is located), the forced triggered spark gap will bypass the MOV and the capacitor 
bank only when the fault current crosses the maximum current rating of the capacitor 
units (i.e. 3000 A in this case) and MOV dissipation energy level crosses its threshold 
limit (i.e. 15 MJ) thus protecting them. At the same time, the closing command is given 
to the bypass circuit breaker (BPCB) in order to protect and extinguish the spark gap.

The damping circuit helps to limit and dampen the discharge current of the capac-
itor bank in case the spark gap operates or the BPCB is closed. Current transformers 

(3)V = f (P,Q)

(4)Qc = 3XcI
2
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Fig. 2  Single-line scheme of actual installation of 400 kV FSC
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(CTs) are provided at different locations to measure the current for different protection 
systems. The two Isolators are used to connect the platform and platform equipments 
to the line or to isolate the platform and platform equipments from the line. The earth 
switches are used for earthing the platform and platform equipments, as soon as the 
platform is completely isolated from the line.

System configuration and modeling
Feasibility and reliability of the proposed scheme are investigated using fault data set 
of 400 kV power system simulated in Matlab/Simulink software. Actual 400 kV series 
compensated Wardha–Aurangabad transmission line (400 km) is considered for power 
system modeling. A two bus three phase 400 kV, 50 Hz transmission system as shown 
in Fig. 2, has been simulated for the study of fault classification and location problem. 
The power system comprises two sources, 400 km transmission line and FSC with its 
associated protecting components. The transmission line is simulated using a distrib-
uted parameter line model. A discrete sampling frequency of 2 kHz is used in simula-
tion. The FSC installation is located at the Wardha substation end of the transmission 
line. 40 % series compensation is achieved with this FSC. The transmission line param-
eters and other real time data at bus used for simulation are given in the “Appendix” sec-
tion. Table 1 gives ratings of various components of FSC installed at Wardha Substation.

Total line reactance is Xl = 107.6 Ω. The capacitance of FSC, C = 73.96 μF and capaci-
tive reactance of FSC is Xc = 43.04 Ω which is 40 % of Wardha–Aurangabad total line 
reactance. The capacitor bank is designed for maximum current rating of 3000 A. The 
MCOV of MOV is kept 130  kV in this case. Since the MOV is a non-linear resistive 
element and it has an energy dissipation limit, it is protected against excessive heat by 
an overload protection. The overload protection calculates the energy absorbed by the 
MOV and triggers a parallel air gap if the energy exceeds a threshold value i.e. 15 MJ 
used in this study.

The MOV energy in the model is calculated in Eq. (5) over one cycle after inception of 
fault as,

where, Vmov = Voltage across MOV, Imov = By-pass current through MOV.
In practice, these measurements are done with 0.2 accuracy class current and capaci-

tive voltage transformers (CVT) which gives highly accurate measurements and satura-
tion effects of measuring current and voltage transformers can be avoided.

(5)MOV Energy = ∫ (Vmov × Imov)dt

Table 1  Ratings of various components of FSC

MCOV maximum continuous operating voltage, FOV flash over voltage

Sl. no Description Rating

1 Fixed compensation capacitor bank 43.04 Ω, 73.96 μF, 3000 A, 387.36 MVAR/phase

2 MOV for capacitor bank MCOV = 130 kV rms, E = 15 MJ/phase

3 Spark gap FOV = 400 kVp

4 Damping resistor 10 Ω

5 Damping reactor 700 μH, 3000 A

6 By-pass circuit breaker 400 kV, 3 phase, SF6, 3150 A
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Implementation of ANN
ANN is a family of models motivated by biological neural networks which can be used to 
approximate the functions that can depend on a large number of inputs which are gen-
erally unknown and random. ANN is an efficient random function approximation tool 
(Vyas et al. 2014a, b). ANN can be powerfully used in online learning and large data set 
base applications. After appropriate mapping of inputs and outputs in ANN, the connec-
tions will enclose the non-linearity of the desired mapping.

The ANN structural design is set by experimenting different network cases and con-
figurations with the number of inputs and the number of hidden layer neurons. A two-
layer feed-forward network with sigmoid hidden neurons and linear output neurons is 
used here in order to solve multi-dimensional mapping problems. Figure 3 gives the gen-
eral structure of ANN to be used. The input parameter for the ANN is per phase MOV 
energy, calculated over one cycle post fault. The output parameter of ANN is the fault 
distance from relaying point. For each type of faults, the number of hidden neurons in 
the hidden layer is selected based on the performance of the ANN for each case. For 
all the single line to ground (L–G) faults, the best performance is found with 3 hidden 
neurons in the hidden layer. For all the double line to ground (L–L–G) faults, 4 hidden 
neurons provided the best results, for all line to line (L–L) faults, 5 hidden neurons in 
hidden layer gave best results. Similarly, in case of three phase faults, 7 hidden neurons 
are found to give best performance. The selection of the number of hidden neurons w.r.t 
best performance is arrived after testing for numerous cases with increasing number of 
hidden neurons in hidden layer up to 50. The presented ANN has two layer feed forward 
network, one hidden layer with sigmoid transfer function and one output layer with lin-
ear transfer function purelin as depicted in Fig. 3.

Advantages of ANN over other classifiers are (1) it can be easily implemented in par-
allel architectures which reduces the processing time compared to other kind of algo-
rithms, attaining comparable results, (2) it is able to obtain non-linear and complex 
relationships, (3) response is better and (4) it can handle large amount of data sets result-
ing in easy implementation in a digital relaying system.

It has been proven that approximation of any nonlinear function to arbitrary accu-
racy can be achieved by backpropagation learning with sufficient hidden layers. This 
makes backpropagation learning neural network a good investment for system modeling 
and signal prediction. The back-propagation learning rule is therefore used in perhaps 
80–90 % of practical applications. The most suitable training method for the algorithm of 
this research work is carried on with the Levenberg–Marquardt optimization technique. 
It is fast and has stable convergence. It has become a standard method for non-linear 

Per
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MOV

Energy
(MJ)

Fault
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(km)

3 Inputs 1 Output
W

b

W

b

Hidden Layer
with sigmoid function

Output Layer with
purelin function

Fig. 3  Generalized structure of ANN
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least-squared problems and is widely adopted in various applications and streams for 
tackling with real time data-fitting problems.

Proposed algorithm
Series compensation affects the impedance estimation due to the fault and causes dis-
tortion of phase voltage and line current waveforms resulting in the fault location esti-
mation in an unpredictable manner. Whereas, MOV energy signals are not affected as 
compared to impedance measurement signals used in protection schemes due to fixed 
series compensation. MOV energy signals are never implemented before in any of the 
earlier conventional fault classification and location estimation algorithms which make 
this online scheme distinctive. The use of online MOV energy signals with relaying end 
neutral current makes this scheme very easy and unique.

The proposed algorithm consists of two stages, namely fault detection with classifi-
cation and accurate fault location estimation. Figure 4 shows the main structure of the 
proposed algorithm.

Fault detection and classification

Whenever there is an internal fault on the specified line, only respective phase 
MOV energy increases above threshold. This principle is used for the detection and 

Ea IgEcEb
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and Eb≈Ec≈ 0;
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Fig. 4  Proposed algorithm
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classification of fault here and is illustrated in Result section. Provision of MOV energy 
measurement at FSC end is made. The MOV energy per phase is continuously moni-
tored per cycle by the relay and as soon as the energy crosses the specified threshold 
value, the fault is detected and maximum value of MOV energy over one cycle from that 
instant is measured. Ea, Eb, Ec and Ig are the MOV energy signals per phase and neu-
tral current at relaying end respectively. These signals are assumed to be passed through 
antialiasing filter. To classify the type of the fault, the magnitudes of these input signals 
are continuously compared with the predefined respective threshold values (which are 
given in Table 3) as follows:

1.	 If the magnitudes of MOV energy in only one phase and Ig are greater than the 
threshold, then the fault is classified as single phase to ground (L–G) fault.

2.	 If the magnitudes of MOV energy in any two phases and Ig are greater than the 
threshold while the magnitude of MOV energy in third phase is negligible, then the 
fault is classified as a double phase to ground (L–L–G) fault.

3.	 If the magnitudes of MOV energy in any two phases are greater than the threshold 
while the magnitude of MOV energy in third phase is negligible and Ig is less than 
the threshold, then the fault is classified as phase to phase (L–L) fault.

4.	 If the magnitudes of MOV energy in all the three phases are greater than the thresh-
old simultaneously, then the fault is classified as 3-phase fault.

Fault location estimation

In this stage, the output of fault classification stage and MOV energy signals are used 
as input to the respective fault ANN to estimate accurate fault distance from relaying 
end. Four efficiently trained ANN networks for L–G, L–L, L–L–G and 3-Phase faults 
respectively are considered. Respective ANN is then activated according to the type of 
fault which then detects accurate fault location as the output of the proposed scheme 
as shown in algorithm Fig. 4. If there is an external fault, i.e. fault in another line behind 
the FSC then the main relay will recognize it as a reverse fault (as followed in industry 
at present) and the main relay will not let the proposed relay operate for such external 
fault proper logical coordination assigned. Further the fault point outside the line, it will 
have less impact on MOV energy and following this convention, the change in the MOV 
energy will not cross the set threshold value of the proposed algorithm and this relay will 
not operate for any external fault.

To design the best ANN, it is crucial to train it efficiently and correctly. The training 
sets are carefully chosen so that all fault conditions, i.e. different FIA and fault locations, 
are considered. The performance of this soft computation ANN scheme is then tested 
using random fault conditions in the training set. The approach adopted here is based on 
the Levenberg–Marquardt (Trainlm) optimization technique. To find the optimum val-
ues of the ANN parameters, input signals of Ea, Eb and Ec corresponding to a particular 
fault condition are fed to the ANN and its output is compared with the desired output 
corresponding to that fault condition. The ANN is re-trained after each set of new fault 
conditions.

The expert system database is obtained by extensively simulating the system under 
normal and fault conditions of a transmission line during the investigation. The inputs 



Page 10 of 16Khadke et al. SpringerPlus  (2016) 5:1834 

are combined and also linked with the output, based on the expert system database to 
find the accurate ANN output. Accuracy of ANN outputs was also tested with various 
numbers of hidden layer neurons (up to 50 neurons). Best accuracy is found with 3 neu-
rons in hidden layer for L–G fault, 4 neurons in hidden layer for L–L–G fault, 5 neurons 
in hidden layer for L–L fault and 7 neurons in hidden layer for 3-phase fault. The various 
extensive fault conditions considered to train the ANN are explained in Performance 
evaluation and result section.

Performance evaluation and results
In order to test the validity of the proposed scheme, the model with the above men-
tioned system parameters is designed using Matlab/Simulink. Different fault types, such 
as single line to ground, double line to ground, double line and three-phase faults at dif-
ferent locations in front of the series compensator and different inception angles with 
realistic fault resistance are extensively investigated. To validate the robustness of the 
computational intelligent technique in the proposed algorithm, it is tested on a variety 
of fault cases as given in Table 2 and outputs are checked at random fault conditions for 
more than 9300 fault cases.

In most of the earlier algorithms, only few inception angles are considered. In order to 
get a more comprehensive vision on the effect of FIA on the proposed scheme, different 
inception angles over complete cycle are considered as listed in Table 2. For a particu-
lar distance, all the MOV energies simulated at above mentioned inception angles are 
averaged for simplicity. All such MOV energy values at various fault locations are given 
as input to train respective ANN network accurately. The threshold values used for the 
proposed scheme are calculated by simulating with severe fault conditions at the other 
end of relaying bus i.e. very near to 400 kV Aurangabad substation bus. These threshold 
values found by precise simulations are depicted in Table 3.

Table 2  FSC data generation for fault cases

Sl. no Variation Range Cases

1 Type of faults a–g, b–g, c–g, a–b–g, b–c–g, a–c–g, a–b, b–c, a–c, a–b–c 10

2 MOV energy All 3 phases 3

3 Fault locations 10–390 km (in step of 10 km) 39

4 Fault inception angle 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315° 8

Total cases = 10 × 3 × 39 × 8 = 9360

Table 3  Threshold values

Sl. no Description Threshold values

1 MOV energy for L–G fault 0.3 MJ

2 MOV energy for L–L fault 4.2 MJ

3 MOV energy for L–L–G fault 3.5 MJ

4 MOV energy for 3-phase fault 5 MJ

5 Ig for L–G fault 2000 A

6 Ig for L–L fault 100 A

7 Ig for L–L–G fault 1400 A
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These threshold values are flexible and can be varied according to various system 
parameters and requirements of the particular transmission line. Even if there is involve-
ment of ground due to another reason for the short time, threshold MOV energy value 
will not be crossed and proposed scheme will not treat it as a fault and the same has 
been checked.

An absolute error criterion is used in assessing the quality of the fault location schemes 
and the same is adopted in most of the referred work in the literature. So, the perfor-
mance criterion for evaluating the fault location scheme was selected to be the percent-
age absolute error. The percentage absolute error is defined as Eq. (6),

Tables  4, 5, 6 and 7 show the ANN estimated fault locations for L–G (a–g), L–L 
(a–b), L–L–G (a–b–g) and 3-Phase (a–b–c) faults respectively. In Tables 4, 5, 6 and 
7, the column with ‘FIA’ heading gives the inception angle at which the fault has been 
created. The column with ‘Actual Fault Location’ heading gives the fault location where 
the respective fault has been created on the transmission line in simulations. The 
column with ‘ANN Fault Location’ heading gives the estimated fault location which 
is the final output of trained ANN. As we have considered an absolute value for % 
error calculation in the fault distance estimation, all the values in ‘Abs. error’ column 
in Tables  4, 5, 6 and 7 are positive (+ sign). The fault distance was calculated from 
trained ANN which was trained for all types of faults with input of MOV energy. After 
fault detection and classification, respective fault type ANN was called in the algo-
rithm which estimated the fault location. ANN for L–G fault was trained by one phase 
MOV energy inputs, ANN for L–L–G and L–L faults were trained with two fault 
phase MOV energy inputs and ANN for 3-phase fault was trained with three phase’s 
MOV energy input signals.

(6)

∣

∣Actual fault distance − ANN fault distance
∣

∣

(

Total line length
) × 100

Table 4  Test results of ANN-based fault locator for a–g (L–G) fault

MOV energy  
a-ph (MJ)

FIA (°) Actual fault  
location (km)

ANN fault  
location (km)

Abs. error 
(%)

13.7300 90 20 20.519 0.129

13.4156 45 30 26.235 0.941

13.3172 225 50 46.961 0.759

13.2108 90 100 99.475 0.131

12.7592 0 130 131.865 0.466

10.2576 135 150 150.220 0.055

8.4633 315 170 169.362 0.159

6.4414 135 200 198.982 0.254

4.4918 135 240 238.469 0.383

2.9581 225 280 280.917 0.229

2.1387 45 310 310.097 0.024

1.6873 225 330 328.969 0.259

1.0738 45 360 358.835 0.291

0.7078 315 380 379.548 0.113



Page 12 of 16Khadke et al. SpringerPlus  (2016) 5:1834 

MOV energy measured at various locations at different inception angles was given 
as input to the trained ANN and output was given as soft computation estimated fault 
location by ANN. Outputs at randomly selected fault inception angles were checked and 
presented so as to get further clarified vision and more accuracy. The faults were cre-
ated at 8th cycle. A realistic fault resistance of 0.1 Ω was utilized considering the high 
severity of the faults and previously recorded real fault resistance values at the Wardha 
Substation.

Since the proposed scheme employed in this analysis is based on a distributed line 
model, exact transmission line parameters and results are accurate, this scheme can be 
implemented in a real fixed series compensated line.

Table 5  Test results of ANN-based fault locator for a–b (L–L) fault

MOV energy 
a-ph (MJ)

MOV energy  
b-ph (MJ)

FIA (°) Actual fault  
location (km)

ANN fault  
location (km)

Abs. error 
(%)

14.2421 14.0606 45 20 19.110 0.223

13.7765 13.9279 315 30 30.743 0.186

13.5285 13.4685 45 50 47.259 0.685

13.3872 13.3830 0 80 78.854 0.286

13.3412 13.3794 180 100 95.783 1.054

13.2796 13.3006 45 120 118.079 0.480

13.2383 13.1856 0 200 200.987 0.246

13.2290 13.1802 315 210 211.025 0.256

13.1400 13.1790 180 240 244.489 1.122

10.2597 11.2266 0 280 276.632 0.842

8.2746 9.2286 135 310 316.215 1.554

6.8715 7.4042 270 330 332.083 0.521

5.9364 6.4356 90 360 356.125 0.969

5.7576 6.5339 0 380 376.758 0.810

Table 6  Test results of ANN-based fault locator for a–b–g (L–L–G) fault

MOV energy  
a-ph (MJ)

MOV energy 
b-ph (MJ)

FIA (°) Actual fault  
location (km)

ANN fault 
location (km)

Abs. error 
(%)

14.3241 14.4362 45 20 23.041 0.760

14.0472 13.7246 315 30 29.135 0.216

13.4605 13.5245 225 50 52.025 0.506

13.3956 13.3809 315 90 87.154 0.711

13.3502 13.3528 45 100 99.118 0.220

13.3489 13.3012 135 120 122.265 0.566

13.2493 13.2646 90 150 149.099 0.225

13.2002 13.2403 90 170 168.850 0.287

13.1720 13.2105 135 200 194.404 1.399

13.1466 13.1619 180 240 242.428 0.606

10.4166 11.4689 45 280 273.366 1.658

8.7512 9.8457 225 310 305.064 1.234

7.4371 8.3886 135 330 330.146 0.036

6.4755 7.6890 0 360 353.889 1.527

5.1643 6.2444 0 380 377.318 0.670
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Figure  5 shows simulation results of phase-a capacitor voltage with MOV Energies 
in a, b and c phases, respectively, for an internal a–b (L–L) fault on 400 kV Wardha–
Aurangabad line at 25 km from Wardha substation relaying end. It was seen in Fig. 5, as 
soon as the internal faults occur, MOV started conducting thus bypassing and protect-
ing the series capacitor banks. For a–b phase to phase fault in Fig. 5, it was seen that 
the magnitudes of MOV energy in only phase-a and phase-b were increased above the 
threshold value while the magnitude of phase-c MOV energy was found nearly zero. The 
same principle was used in fault classification method of this scheme as explained in 
Proposed Algorithm section.

The FSC protection scheme was found working effectively for all the fault simula-
tions performed. Evidently, the design settings for FSC were found correct. At various 

Table 7  Test results of ANN-based fault locator for a–b–c (3-phase) fault

MOV energy 
a-ph (MJ)

MOV energy 
b-ph (MJ)

MOV energy 
c-ph (MJ)

FIA (°) Actual fault 
location (km)

ANN fault 
location (km)

Abs. error 
(%)

14.6019 14.9586 14.0781 45 20 20.767 0.192

13.7642 13.7174 14.0401 90 40 37.319 0.670

13.6367 13.5339 13.8629 270 50 49.129 0.217

13.4283 13.4839 13.3938 225 70 72.997 0.749

13.4112 13.4025 13.3124 90 100 98.142 0.464

13.3317 13.3024 13.2847 0 130 125.238 1.190

13.2924 13.2707 13.2742 270 150 143.380 1.654

13.2509 13.2450 13.2677 180 170 174.765 1.191

13.1822 13.2299 13.2264 225 210 214.327 1.082

10.3153 9.6280 12.5491 315 300 307.514 1.878

7.8287 7.2297 9.8042 135 350 358.165 2.041

7.6658 9.2136 6.2101 45 370 373.314 0.828

7.2897 8.7731 5.8070 45 380 381.924 0.481
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Fig. 5  a-Phase capacitor voltage, per phase MOV Energy in for an internal a–b fault
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locations, different types of faults were tested to find out the maximum deviation of the 
ANN estimated distance measured from the relay location, from the actual fault loca-
tion. All the absolute errors were found to be well within 2 %. Tabulated results show 
that the soft computation technique of ANN captures the nonlinear relationship of input 
signals properly as evidenced by absolute error calculations. It can easily be seen from all 
the tables that the scheme is robust and accurate for varying fault conditions.

Fault classification accuracy aspect of the proposed algorithm has been compared with 
some of the methods in the literature in Table 8. Also, Fault location % absolute error 
aspect comparison of the proposed algorithm w.r.t fault location of other schemes is pre-
sented in Table 9.

The overall superiority of the proposed algorithm is stated as follows:

• • This algorithm requires only local per phase MOV energy measurement which is 
easily available at substation end.

• • It does not need any feature extraction process from input signals which is mostly 
used in other algorithms in literature and hence the computational burden is reduced.

• • No need of other end measurement, i.e. synchronized or unsynchronized data. So, 
the two end communication delay problems are avoided and cost is saved.

• • MOV energy signals are not much affected as compared to impedance measurement 
signals used in other distance protection schemes due to fixed series compensation.

• • The system considered in the proposed algorithm is modeled using real 400 kV grid 
parameters.

Conclusions
A new online ANN–MOV energy based accurate scheme for fault detection, classifica-
tion and fault location estimation in a series compensated transmission line has been 
proposed. The proposed algorithm provides a novel method for accurately estimating 
the fault location using only one end measurement where the FSC is installed. This novel 

Table 8  Fault classification comparision

References FIA range (°) Fault classification 
accuracy (%)

Parikh et al. (2008) 0–115 93.92

Vyas et al. (2014a, b) 0–85 99.39

Moravej et al. (2012) 0–360 99.21

Proposed method 0–360 100

Table 9  Fault Location Comparitive analysis

References FIA range (°) Compensated  
(yes/no)

Max. Abs. 
error (%)

Al-Mohammed and Abido (2014) 0–150 Yes >2

Jain et al. (2009) 0–90 No 2.6

Reddy and Mohanta (2008) 0–180 No 6

Reddy and Mohanta (2007) 0–180 No 6.5

Meyar-Naimi (2012) Not specified Yes 10

Proposed method 0–360 Yes <2
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scheme proves that it suits well in such fixed series compensated transmission system 
for complete protection application. The proposed algorithm has been suggested to the 
competent testing authority at the substation and the same has agreed to test run the 
algorithm with real time fault data during test commissioning.

The proposed scheme requires measurement data of MOV energy over only a short 
duration of post fault to classify and estimate the location of fault accurately. This fault 
location scheme gives estimates for fault distances which are well within the 2 % error 
margin with proposed high accuracy 0.2 class measuring devices mentioned. The pro-
posed online scheme, with simplicity, high accuracy and fast performance, is a smart 
investment for power system protection application. Thus, this ANN based scheme is 
proposed as a potential solution to detect, classify and locate faults accurately in 400 kV 
series compensated line.
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Appendix
Transmission line parameters:

• • Series compensation degree—40 %
• • Line length—400 km
• • Conductor type—quad aluminium conductor steel reinforced (ACSR) Moose
• • Thermal limit of quad Moose conductor—3000 A
• • Xl = 91.85 Ω (line reactance)
• • R1  =  0.0146  Ω/km, X1  =  0.2530  Ω/km, B1  =  4.5777 micro-mho/km (positive 

sequence values)
• • R0 = 0.2479 Ω/km, X0 = 1.0001 Ω/km, B0 = 2.6345 micro-mho/km (zero sequence 

values)

Real time data for Simulation:

• • Bus Voltage level—400 kV
• • Fault MVA level—2.45 GVA
• • Frequency—50 Hz
• • Total MOV columns in parallel—5 + 1 hot spare
• • Reference current per MOV column—500 A
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