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Abstract 

Small giant clam, Tridacna maxima, widely distributed from French Polynesia to East Africa, has faced population 
declines due to over-exploitation. Comoros islands are an important biogeographic region due to potential rich-
ness of marine species, but no relevant information is available. In order to facilitate devising effective conservation 
management plan for T. maxima, nine microsatellite markers were used to survey genetic diversity and population dif-
ferentiation of 72 specimens collected from three Comoros islands, Grande Comore, Moheli and Anjouan. A total of 51 
alleles were detected ranged from 2 to 8 per locus. Observed and expected heterozygosity varied from 0.260 to 0.790 
and from 0.542 to 0.830, respectively. All populations have high genetic diversity, especially the population in Moheli, 
a protected area, has higher genetic diversity than the others. Significant heterozygote deficiencies were recorded, 
and null alleles were probably the main factor leading to these deficits. FST value indicated medium genetic differ-
entiation among the populations. Although significant, AMOVA revealed 48.9 % of genetic variation within individu-
als and only a small variation of 8.9 % was found between populations. Gene flow was high (Nm = 12.40) between 
Grande Comore and Moheli, while lower (Nm = 1.80) between Grande Comore and Anjouan, explaining geographic 
barriers to genetic exchanges might exist in these two islands. Global gene flow analysis (Nm = 5.50) showed that 
larval dispersal is enough to move between the islands. The high genetic diversity and medium population differen-
tiation revealed in the present study offer useful information on genetic conservation of small giant clams.
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Background
The giant clam subfamily Tridacninae (Schneider and 
Foighil 1999) is the most widespread of the bivalves and 
is distributed throughout the Red sea and Indo-Pacific 
Ocean, from French Polynesia to East Africa (bin Oth-
man et al. 2010). There are currently eight species from 
the genus Tridacna in the world: Tridacna. gigas (Lin-
naeus, 1758), T. maxima (Röding, 1798), T. crocea 

(Lamarck, 1819), T. squamosa (Lamarck, 1819), T. 
derasa (Röding, 1798), T. tevoroa (Lucas, Ledua and Bra-
ley, 1991), T. rosewateri (Sirenko and Scarlato, 1991), T. 
costata (Roa-Quiaoit, Kochzius, Jantzen, Zibdah and 
Richter, 2008) (bin Othman et  al. 2010). Recently, T. 
noae was separated from T. maxima by their genetic 
and morphological description (Su et  al. 2014). Among 
these bivalves, T. maxima has commonly the largest dis-
tribution range (Lucas 1988). All those giant clams are 
settled on the coral reef in shallow water and live in sym-
biotic photosynthetic with xanthophyllae algae (genus 
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Symbiodinium) that grow in the mantle tissues (Soo and 
Todd 2014).

Like other marine bivalves, small giant clam species (T. 
maxima) are sedentary as adults, reproduce by broadcast 
spawning with high fecundity (>106 eggs per female), and 
have pelagic larval dispersal about 9  days (Lucas 1988). 
Based on these aspects, population genetics studies can 
provide more information about the ecological interac-
tions, larval dispersal, distribution patterns, as well as 
evolution of the species. To date, most of studies have 
been conducted on T. maxima about spawning (Lucas 
1994; Soo and Todd 2014), larval and post-larval devel-
opment (Jameson 1976), and growth (Hart et  al. 1998; 
Smith 2011; Toonen et  al. 2011). Whereas only a few 
studies have been done on genetic diversity and genetic 
structure of T. maxima. Indeed, genetic variations stud-
ies using allozyme analysis (Campbell et al. 1975; Laurent 
et al. 2002) and, recently, mitochondrial markers (Nury-
anto and Kochzius 2009), have provided information on 
highly genetic variability, larval dispersal and also the 
connectivity of different sites of Indo-Pacific Ocean that 
can be explained by marine currents or geographic isola-
tion (Benzie and Williams 1992a, b).

Small giant clam is listed in Appendix II of CITES 
(United Nations Convention on International Trade in 
Endangered Species of Wild Fauna and Flora) and clas-
sified as lower risk conservation dependent on the IUCN 
(International Union for Conservation of Nature) Red 
List of Threatened Species. This status indicates that the 
population densities have declined in a large geographi-
cal region by their overexploitation and the degrada-
tion of their natural habitat (Lucas 1994; bin Othman 
et al. 2010; Hui et al. 2011). It seems to be still abundant 
according to the population densities data in some part 
of countries (Australia, up to 3.83 × 101 individuals per 
m2 and French Polynesia, 5.84 per m2, for instance, see 
bin Othman et al. 2010). Therefore, it is crucial to inten-
sify the conservation efforts of marine biodiversity as well 
as to preserve the natural marine species for sustainable 
development.

Comoros islands are separated from each other by a 
small distance, which indicate that the area is relatively 
narrow geographically (Fig.  1). Despite that, the area 
benefit a considerable interest in conservation due to the 
presence of abundant marine species, such as T. maxima 
but no relevant information is available to now. Recently, 
a research was conducted to identify and determine the 
marine mollusks species in Comoros islands using the 
photo-identification method and documentation of pre-
vious studies (Ramadhoini and Nirina, unpublished). 
Likewise an ecologic description have been studied on 
Tridacnidea family from Mayotte island (Deuss et  al. 

2013). Some microsatellite primers were developed from 
T. maxima by Grulois et al. (2014) and showed very high 
genetic diversity. In this study, we selected nine micros-
atellite markers (Grulois et al. 2014) to estimate the level 
of genetic diversity of T. maxima distributed in three 
islands of Comoros including Grande-Comore (Gc popu-
lation), Anjouan (An population) and Moheli (Mo popu-
lation). At the same time, we investigated the population 
differentiation in order to implement the conservation 
strategies of the T. maxima.

Methods
Sample collection and DNA extraction
Small giant clams (n  =  72) were collected randomly 
between intertidal and subtidal zones at depth range of 
0–20  m either by snorkeling or hand picking in three 
different localitions through the coral reefs of Grande-
Comore (Gc), Anjouan (An) and Moheli (Mo) in June 
2015 (Fig. 1; Table 1). The geographic distance between 
the study areas is approximatively 100, 140 and 70  km, 
between Gc-Mo, Gc-An, and Mo-An, respectively. For all 
specimens found, GPS positions were recorded and shells 
were measured (maximum length) using Vernier calipers.

Adductor muscles were taken, rinsed and preserved 
in 95  % ethanol until DNA preparation. Genomic DNA 
was extracted following the protocol described by Zhan 
et  al. (2009). The DNA was checked on 1 % agarose gel 
and the concentration was determined for each sample 
using NanoView spectrophotometer, afterwards stored at 
−20 °C prior to genetic analysis performed.

SSR amplification and genotyping
Individual genotypes were assessed using nine micro-
satellite markers (Grulois et  al. 2014) (Table  2). PCR 
amplifications were performed in a final volume of 10 μl 
containing 20–50  ng of genomic DNA, 10  μM of each 
primer, 0.2  mM dNTPs (Takara Bio Inc.), 10× PCR 
buffer (Takara Bio Inc.), and 0.5 U Taq DNA polymerase 
(Takara Bio Inc.). Reactions were carried out on a ther-
mal cycler (Bio-Rad Laboratories, Inc.) using the follow-
ing steps: an initial denaturing step at 95  °C for 5  min, 
followed by 35 cycles of 95 °C for 30 s, 54 °C for 45 s and 
72  °C for 45 s with a final extension at 72  °C for 5 min. 
PCR products were electrophoresed on 10 % polyacryla-
mide gel using 1× TBE buffer for 1 h, stained with eth-
idium bromide and visualize under ultraviolet light.

Data analysis
For each marker, allele number (Na), allele frequency, 
observed heterozygosity (HO), expected heterozygosity 
(HE), Nei’s unbiased genetic distance and genetic similar-
ity between populations were calculated using POPGENE 
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1.32 (Yeh et  al. 1999). Allele richness (AR) was carried 
out using FSTAT 2.9.3 (Goudet 2001). Hardy–Weinberg 
equilibrium (HWE) and linkage disequilibrium were 
conducted using or GENEPOP 4.2 program (Rousset 
2008). Sequential Bonferroni correction was conducted 
to adjust the significant level (Holm 1979; Rice 1989). 
The presence of null allele was detected using MICOR-
CHECKER 2.2.3 (Van Oosterhout et al. 2004). F-statistics 
(FIS, FST and FIT) and gene flow (Nm) were calculated 
using GENETIX 4.05. Hierarchical Analysis of Molecular 
Variance (AMOVA) was conducted with ARLEQUIN 3.5 
(Excoffier and Lischer 2010) to investigate regional popu-
lation differentiation. Cluster analysis was performed to 
construct dendrogram using the unweighted pair group 
method average (UPGMA) by MEGA 6.06.

Results
Among 72 individuals, a total of 51 alleles were detected. 
The alleles number per locus ranged from 2 to 8 
(mean = 5.6). Overall, Mo specimens showed the highest 
HO and HE, 0.460 and 0.715, respectively. While Gc had 
the lowest value of HO and HE, 0.320 and 0.695, respec-
tively (Table 4). Specimens from Mo revealed the highest 
mean value of Allelic richness (AR = 5.262).

Significant deviations from HWE (P  <  0.05) were 
detected in 21 cases of the 27 locus-population combi-
nation after Sequential Bonferroni correction (Table  2). 
Null alleles decreased the number of significant devia-
tions from HWE from 21 to 12 locus-population. Link-
age disequilibrium was significant in only 4 out of 36 
pairwise comparisons at the P < 0.05 level (Tm23637 vs 

Fig. 1  Map showing the sampling collections of T. maxima in Comoros islands

Table 1  Sample details of  T. maxima. For  each sampling location, geographical coordinates, number (n) of  individuals, 
shell length (L) and collection time are shown

Sample locality (abbreviation used) Geographical coordinates n L (cm) Collection time

Grande-Comore (Gc) From 11°23′S and 43°17′E to 11°29′S and 43°24′E 24 16.85 ± 4.34 June 2015

Moheli (Mo) From 12°22′S and 43°44′E to 12°22′S and 43°52′E 20 17.08 ± 3.68 June 2015

Anjouan (An) 12°05′S and 44°25′E 28 18.80 ± 5.50 June 2015
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Tm23670; Tm20025 vs Tm25349; Tm23637 vs Tm25349 
and Tm24224 vs Tm25349), indicating virtually no link-
age among loci.

F-statistics over all loci among all populations fixed 
the average values for FIS, FST and FIT at 0.460, 0.090 
and 0.510, respectively. Pairwise comparison revealed 
that FST  =  0.090 (0.05  <  FST  <  0.15) showed a moder-
ate genetic differentiation among the three populations 
(Wright 1978) with significant level at P  <  0.05 value. 
AMOVA analysis revealed that 48.9 % of the genetic vari-
ation originated within individuals whereas among the 
populations, the variation showed only 8.9  % (Table  3). 
The number of migrants per generation (Nm) placed the 
mean value at 5.50.

The distance matrix showed that populations from Gc 
and Mo had the smallest genetic distance (0.120) and 
the highest genetic similarity (0.885) values, whereas Gc 
and An populations indicated the highest genetic dis-
tance (0.480) and the smallest genetic similarity (0.620) 
(Table  6). Furthermore, the unweighted pair group 
method average dendrogram revealed that Gc and 
Mo populations clustered together and An population 
formed one group.

Discussion
Genetic diversity and deviation from HWE
Previous studies have indicated a high level of genetic 
diversity on T. maxima in Indo-Pacific Ocean (Ayala 
et al. 1973; Campbell et al. 1975; Nuryanto and Kochzius 

2009) and other species on Tridacnidae family (Kochzius 
and Nuryanto 2008; DeBoer and Barber 2010; Hui et al. 
2011). This present study shows a high level of genetic 
diversity for the small giant clams (HE  =  0.699–0.714) 
within populations. Grulois et  al. (2014) made the first 
attempt to investigate the genetic diversity of T. maxima 
using microsatellite markers, and observed a high value 
of expected heterozygosity (HE =  0.591–0.935) in New 
Caledonia. Comparing these two populations of T. max-
ima, one from Comoros islands in West Indian Ocean 
showed lower genetic diversity than the population from 
New Caledonia in Pacific Ocean. Vicariance process due 
to Pleistocene sea level fluctuation might be the main 
factor to affect the genetic diversity among populations 
of indo-Pacific Ocean (Williams and Benzie 1998; Car-
penter et  al. 2011). Oceanographic conditions and lim-
ited larval dispersal distance could be also an important 
factors to explain the genetic variability of populations 
(Froukh and Kochzius 2007).

The phenomenon of heterozygote deficits relative 
to HWE in microsatellite survey is most common in 
marine bivalves (Lemer et  al. 2011). Significant devia-
tions have been reported in T. maxima populations 
(Grulois et  al. 2014), also in others species of Tridac-
nidae family (DeBoer and Barber 2010; Hui et  al. 2011; 
Tiavouane et al. 2014). In our study, six of the nine loci 
were deviated from HWE, and heterozygote deficiency 
was recorded for almost all loci and in all populations. 
Therefore, our data (positive FIS values in Table  4) sug-
gested that inbreeding might occur. Additionally, defi-
cits of heterozygotes in HWE tests could be caused by 
the presence of null alleles. Among the nine loci used in 
this present study, four including Tm11666, Tm23637, 
Tm23670 and Tm24162 showed a presence of null alleles 
by Micro-checker analysis. Null alleles are frequently 
detected in many studies of marine bivalves assessed by 
microsatellite analysis (Gruenthal and Burton 2008) and 
are randomly laid to different nucleotides in primers, 
which are unlikely to be eliminated from all individu-
als (Hedgecock et  al. 2004). In addition, populations of 
Pacific oysters (Crassostrea gigas) showed heterozygote 
deficiencies due to null alleles at microsatellites loci 

Table 2  Respective sequences of  nine microsatellite loci 
of  T. maxima developed by  Grulois et  al. (2014) using 
in our study

Locus Primer sequence 5′-3′ Size

Tm06526 F: TCCCATTGAAAAGTCTACGCAC
R: GCTGCAGAAATTTGTTCGACATC

263–295

Tm11666 F: ATCGCACTTCCGCTTTGATG
R: ATTTATCGTGAACCCTATATCGC

217–253

Tm14538 F: AGCCTAGAGAGAAATACAGAAAGG
R: GTCTCACCGAACTAGATCCCC

88–120

Tm20025 F: GCGCGAGAAATCTAAGGCAC
R: ACATCTGTAGAAAGTCTTGTTATCATC

240–282

Tm23637 F: GTCCTTGGGCAGGAGATTTTG
R: ACTCTGAGGGTGTTGATTGAC

199–243

Tm23670 F: GGTCGGTAGAGAAGGTGTCC
R: CCGCCTTCAAATCCATCCAC

143–217

Tm24162 F: TGGACAGATTCAGTGTCGGC
R: GACCGGTTTGAATGGAGCTG

193–260

Tm24224 F: TGTATGCCGTCCACAAAAGC
R: TTCGAAGAAAGTCCACACCG

258–292

Tm25349 F: TCCGTTTCCTATTGATGTTGTCC
R: CATCTCTGGCGGCAGTTTG

105–133

Table 3  Pairwise Fst values (below diagonal) and  number 
of migrants per generation (above diagonal) among three 
populations of T. maxima

* Significant at P < 0.05

Gc An Mo

Gc 1.80 12.40

An 0.120* 2.35

Mo 0.020* 0.095*
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(Hedgecock et al. 2004), which is similar with the results 
of T. maxima (Grulois et  al. 2014). Therefore, it seems 
likely that null alleles may be the major cause of heterozy-
gotes deficiencies.

Genetic differentiation among populations
FST, Nm and genetic distance are commonly used to 
measure the genetic differentiation. Indeed, our data 
showed that genetic differentiation was moderate among 
all populations from global pairwise FST value. AMOVA 
also indicated that most variation is attributed to genetic 
difference within individuals (48.9  %), while variation 
among populations is low, accounting for only 8.9  % of 

the total variations (Table  5). Hence, it is indicating the 
presence of genetic heterogeneity among these three 
populations. Therefore, the assumption of panmixia 
was rejected among all populations. In addition, our 
data have revealed an average gene flow value (5.51) 
greater than 1, confirming genetic drift is not the factor 
to explain the genetic exchanges between these popula-
tions (Slatkin 1985). Therefore, due to the sedentary of T. 
maxima such as others marine bivalves, larval dispersal 
can be the main factor influencing gene flow and popula-
tion differentiation. Although it was demonstrated that T. 
maxima have pelagic larvae dispersal about 9 days (Lucas 
1988) to travel long distance about 500 km, which means 

Table 4  Allele number (NA), observed heterozygoty (HO), expected heterozygoty (HE), allelic richness (AR), population 
inbreeding coefficient (FIS) and Hardy–Weinberg equilibrium (HWE)

Value in italic indicates significant deviations from HWE (P < 0.05) after sequential Bonferroni corrections

Site (code) GeneBank accession/locus Mean

KM267264 KM267265 KM267266 KM267268 KM267269 KM267270 KM267271 KM267272 KM267273

Tm06526 Tm11666 Tm14538 Tm20025 Tm23637 Tm23670 Tm24162 Tm24224 Tm25349

Grande Comore (Gc)

 NA 6 6 5 5 5 4 5 5 2 4.777

 HO 0.444 0.350 0.500 0.761 0.090 0.318 0.368 0.050 0.000 0.320

 HE 0.836 0.792 0.794 0.794 0.778 0.760 0.763 0.783 0.102 0.695

 AR 5.997 5.692 4.998 4.998 4.904 4.000 4.992 4.942 1.960 4.720

 FIS 0.568 0.555 0.580 0.628 0.510 0.552 0.560 0.502 0.549 0.555

 HWE (P value) 0.000 0.007 0.008 0.525 0.000 0.000 0.000 0.000 0.0280 –

Anjouan (An)

 NA 5 6 8 4 6 4 5 4 3 5

 HO 0.708 0.480 0.478 0.777 0.153 0.407 0.440 0.000 0.000 0.382

 HE 0.778 0.766 0.848 0.754 0.725 0.748 0.721 0.728 0.222 0.699

 AR 4.953 5.444 7.419 4.000 5.228 4.000 4.883 3.998 2.824 4.750

 FIS 0.509 0.468 0.460 0.525 0.414 0.459 0.465 0.385 0.438 0.460

 HWE (P value) 0.143 0.000 0.002 0.692 0.000 0.000 0.019 0.000 0.000 –

Moheli (Mo)

 NA 5 7 7 5 7 4 5 5 3 5.333

 HO 0.800 0.250 0.588 0.833 0.611 0.470 0.466 0.117 0.000 0.460

 HE 0.802 0.681 0.714 0.804 0.850 0.768 0.726 0.736 0.349 0.715

 AR 5.000 6.810 6.850 5.000 6.833 4.000 5.000 4.872 3.000 5.262

 FIS 0.415 0.331 0.387 0.420 0.376 0.360 0.364 0.302 0.327 0.365

 HWE (P value) 0.4441 0.000 0.270 0.479 0.000 0.003 0.000 0.000 0.000 –

Table 5  AMOVA analysis for three populations of T. maxima

* Significant at P < 0.05

Source of variation d.f. Sum of squares Variance components Percentage of variation

Among populations 2 34.151 0.315 8.9*

Among individuals within populations 67 278.063 1.491 42.2*

Within individuals 70 107.000 1.727 48.9*

Total 139 419.214 3.534
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that population differentiation should become detectable 
among the three islands (approximately 80  km between 
them). However, gene flow along the dispersal route 
between Gc and An islands is lower than that between 
Gc and Mo islands, and also Mo and An islands (Table 4). 
It indicates limited larval dispersal and geographic bar-
riers like marine currents restricted gene exchanges 
among these islands. Additionally, the topology of the 
UPGMA tree (Fig. 2) and the genetic distance (Table 6) 
also suggested that gene flow between Gc and An pop-
ulations was limited and barriers to genetic exchanges 
might exist among these two populations. Moreover, 
another possible reason to explain the high gene flow 
and the clustering between the populations of Gc and 
Mo could be caused by the angling boats traffic massive 
moving between the two lands, suggesting the high larval 
dispersal.

Implication for conservation
Tridacnid species are listed in Appendix II of CITES 
and are classified as vulnerable on the IUCN Red List 
of Threatened Species due to their extreme exploitation 
for the food and marine ornamental trade. According to 
the CITES data, international trade of Giant clams non-
captive bred increased from about 40,000 to 100,000 
individuals between 1993 and 2001 (Wabnitz et al. 2003). 
In Comoros islands, despite the existence of the legisla-
tions for marine resources, T. maxima were especially 
exploited for food and their big shells were used for dif-
ferent purposes such as ornamental objects. Further-
more, over-exploitation, pollution, reef degradation by 
trampling or destructive fishing practices, and coral 
bleaching event due to rising sea temperature by El-nino 
event in 1997/1998 are likely to lead negative effects 
(ASCLME 2012). Therefore, one protected area (Moheli 
Marine Park) covering a total area of 403.6  km2 was 

created in Comoros to ensure the sustainable use of liv-
ing marine resources (Beudard 2003).

In our study, the genetic diversity in the three islands 
showed that population from Mo (HE = 0.714; AR = 5.26) 
is higher than Gc and An (HE  =  0.694; AR  =  4.720, 
HE  =  0.699; AR  =  4.75), respectively. The protection 
of the area could be the major factor to explain high 
genetic diversity in Mo population. As there is a Marine 
national park in Moheli (Beudard 2003), species in the 
island benefit from its protection. Compared to the oth-
ers islands where there are not restricted of any specific 
protection, Moheli is genetically more diverse, which can 
play an important role for allele distribution in the oth-
ers islands. Therefore, Moheli Marine Park is most prob-
ably insufficient for the protection of T. maxima. While 
they have a larval dispersal time about 9 days, specimens 
of T. maxima are able to travel a distance about 500 km. 
Even though the populations between Gc and An showed 
low larval dispersal, it is possible to detect a connectivity 
for populations among the three islands from Comoros 
because of their small scale area. Therefore, further stud-
ies based on oceanographic barriers and ecological bar-
riers in addition to genetic data are more important to 
understand the marine organism movements and con-
nectivity between the islands. The genetic diversity and 
population differentiation of T. maxima can offer useful 
information to establish an effective plan for conserva-
tion management.
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