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Background
The two-parameter Weibull distribution is widely used in reliability engineering and life-
time data analysis because of its flexibility to properly model increasing and decreasing 
failure rates. It has gained the interest of researchers who have worked on its various 
aspects, such as inference, application and parameter estimation (see Nelson 1982; 
Cohen 1991; Johnson et al. 1994; Meeker and Escobar 1998). Traditional parameter esti-
mation methods call on probability plotting, least squares and maximum likelihood esti-
mation (Lawless 1982).

A probability plotting approach is straightforward and it is best used for small size data 
samples. However, this estimation method has not been sufficiently accurate as reported 
in Mao and Li (2007). The least squares (or rank regression) method is essentially a prob-
ability plotting method that applies least squares to determine lines through points. The 
main disadvantage of this method is that it assigns a large weight for extreme observa-
tions, producing a large variance (Genschel and Meeker 2010).

Maximum likelihood estimation (MLE) is considered one of the most robust param-
eter estimation techniques. It constructs a likelihood function for a set of statistical 
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data, which is optimized to find its extremum with respect to the distribution param-
eters. The MLE method can handle survival and interval data better than rank regres-
sion approaches, particularly when dealing with heavily censored data sets that contain 
few points of highly accurate observed data. Teimouri et al. (2013) compares the MLE 
method with other four methods [the Method of Logarithm Moment (MLM), the Per-
centile Method (PM), the L-Moments Method (LM), and the Method of Moments 
(MM)] to determine Weibull parameters. One of the main findings of this work is that 
estimation of parameters is better performed using MLE and LM estimators. However, 
MLE leads to likelihood equations that need to be solved numerically. Therefore, low 
convergence rates and efficient iterative methods must be properly addressed, which can 
be particularly difficult with censored data (Balakrishnan and Kateri 2008).

Recent research has been focused on obtaining new efficient numerical and statisti-
cal inference methods in order to deal with this problem. Joarder et al. (2011) consider 
statistical inferences of the unknown parameters of the Weibull distribution with right-
censored data samples, stating that the MLE cannot lead to explicit forms of the Weibull 
distribution. Therefore, they propose approximate maximum likelihood estimators 
(AMLE), which are obtained by expanding the MLE equations in Taylor series. Also, the 
authors propose a fixed-point algorithm to compute the maximum likelihood estimators.

Balakrishnan and Mitra (2012) use an expectation-maximization (EM) algorithm to 
estimate the model parameters of the Weibull distribution of left-truncation and right-
censored data. The algorithm consists of two steps: expectation step (E-step) and maxi-
mization step (M-step). The conditional expectation of the complete data likelihood is 
obtained with the E-step, using the incomplete observed data and current estimated 
value of the parameter. This expected likelihood is essentially a function of the involved 
parameter and its current value under which the expectation has been calculated. The 
expected likelihood is then maximized with respect to the parameter using the EM 
gradient algorithm. The E- and M-steps are then iterated until convergence. MLE and 
Bayes estimators are applied to calculate the survival function and the failure rate of the 
Weibull distribution for censored data in Guure and Ibrahim (2012). In order to esti-
mate the survival and the failure rate functions under the MLE, the authors applied the 
Newton–Raphson method. Bayes estimators are obtained using a linear exponential, 
general entropy and squared error loss functions while a prior noninformative Bayesian 
approach is employed to estimate the survival function and failure rate. However, the 
aposteriori distribution function cannot be reduced to a closed form because it involves 
a ratio of complicated integrals. More work concerning Weibull parameter estimation 
can be found in Jabeen et al. (2013), Yang and Scott (2013), Guure and Ibrahim (2014), 
Mohammed Ahmed (2014) and Wang and Ye (2015).

Most parameter estimation methods presented in the literature are useful tools for 
solving practical problems, showing that the Weibull parameter estimation problem 
continues to be important in the research field of data analysis. Hence, it is clear that the 
development of general and new methods for a wider range of applications is desirable.

In this paper, an approximate analytical method to estimate the β Weibull parameter 
for complete and right-censored data is proposed using perturbation theory. The method 
involves a systematic construction of an analytical solution to the likelihood equation for β, 
taking advantage of the presence of a small parameter. The solution is developed as a power 
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series with respect to this parameter. As a result, the likelihood equation for β is replaced by 
a set of simple solvable algebraic equations. These equations are explicitly solved one by one 
in order to obtain an increasingly accurate approximation to the true solution.

Problem statement
Let tk |k = 1,N , where 0 < t1 ≤ t2 ≤ · · · ≤ tN, be a set of lifetime data, collected from N 
products or components, consisting of n observed ages of failed components and N − n 
ages of surviving components, i.e., the so-called right-censored data. Let also δk = 1 if tk 
is the age of a failed component and δk = 0 if tk is the age of a surviving component, so 
the number of failed components is:

Let us assume that the lifetime data set follows the Weibull distribution W (α,β) with a 
probability density function

where α and β are the scale and shape parameters, respectively.
Therefore, the corresponding log-likelihood function can be recast as:

where

The MLE method states that the most probable values of α and β correspond to the 
extremum of (3), or equivalently to the existence and uniqueness of the solution (α∗,β∗) 
of the following system equations:

The system of Eq. (4) can be expressed as:
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β∗ is then estimated solving Eq. (6). Equation (5) is the closed-form expression for the 
MLE of α. Thus, α∗ can be calculated by substituting the estimated value of β∗ into 
Eq. (5). β is usually solved for employing numerical or graphical methods, which involve 
inaccuracies and numerical problems. So, the main aim of this research is to obtain an 
analytical solution to Eq. (6), allowing the shape parameter β to be explicitly found.

Existence and uniqueness of the likelihood estimate
The existence and uniqueness of the solution of the MLE equation have already been 
proved in Balakrishnan and Kateri (2008) and Farnum and Booth (1997) using Cauchy-
Schwarz inequality. A different proof is presented here, leading to our proposed analyti-
cal solution for the β parameter.

Let us denote:

where 0 < xk ≤ 1 and xN = 1. Hence, it can be seen that

after multiplying Eq. (6) by β1. Here,

In order to prove the existence and uniqueness of the solution of Eq.  (9), the global 
monotonicity of Z(ζ ) and its asymptotic behavior, in the limits ζ → 0+ and ζ → +∞, is 
developed. Let us consider that 0 < x1 ≤ x2 ≤ · · · ≤ xN = 1, where N ≥ 2, is a monoto-
nous nondecreasing data sequence. Also, let us suppose that there must be at least two 
different statistical data sets, i.e.,

It can be proved that r(ζ ) is continuous and monotonously increasing on ζ > 0, since the 
derivative of r(ζ ) is positive for all ζ > 0:

This implies that Z(ζ ) is also continuous and monotonously increasing on ζ > 0. On the 
other hand, r(ζ ) is bounded and its boundaries can be obtained from the asymptotic 
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behavior of r(ζ ) in the limits ζ → 0+ and ζ → +∞. In the limit ζ → 0+, the asymptotic 
series expansions of ζ is given by:

and

where O(ζ ) is the big Landau O notation.
Substitution of these results into (10) yields the following asymptotic equation for r(ζ ) 

in the limit ζ → 0+:

which states that r(ζ ) → 1
N

∑N
k=1 ln xk as ζ → 0+.

Now, it can be shown that r(ζ ) → 0 as ζ → +∞. Hence,

due to (11) and noticing that xk = xN = 1 for all m < k ≤ N  and 0 < xm < 1, xζm → 0 
as ζ → +∞. Therefore, Eq. (10) and this last result, along with the fact that ln xk = 0 for 
k > m, show that the asymptotic expansion for r(ζ ) in the limit ζ → +∞ is given by:

i.e., r(ζ ) → 0 as ζ → +∞.
It follows from the asymptotic equations (12) and (13) that Z(ζ ) is a continuous and 

monotonously increasing function for ζ > 0 with the following asymptotic behavior:
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since r(ζ ) is monotonously increasing. At the same time, ζ ∗−1 > 0. Therefore, 
ζ ∗−1 > max {1+ r(1), 0}, where

Summarizing, it can be concluded that

The asymptotical behavior of Z(ζ ) (in the limits ζ → 0+ and ζ → +∞) and ζ ∗ are illus-
trated in Fig. 1. However, the expression 1+ r(1) can be negative for some statistical data 
sets. In this case, the boundary estimation for ζ ∗ becomes:

It can be observed that this interval is too large. Then, a better estimation of the right 
boundary is required. For this, let us denote:

where z > 0 in virtue of (17). Then, Eq. (9) can be written as:

The solution β∗ is found from Eq.  (20), which can be substituted into 
β∗ = β1 ζ

∗ = β1(1+ z) according to Eqs. (8) and (19). This way, α∗ can be calculated by 
substituting the estimated β∗ value into Eq. (5).

A perturbative approach to estimate the shape parameter
Perturbation theory is employed in this section to solve Eq. (20). It allows the represen-
tation of ζ ∗ to be asymptotically expanded, which in turn can be conveniently truncated 
to obtain an analytical solution to Eq. (20).
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Fig. 1  Plot of the Z(ζ ) function
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After expanding each term of Eq. (20) in Taylor series and dividing the entire equation 
by the expression 

∑N
k=1 xk

[

(ln xk)
2 + ln xk + 1

]

, it can be written as:

where

The simplest analytical solution to Eq. (21) can be found by truncating the power series 
in (21) at m = 1. As a result, the following expression can be obtained:

The solution to this equation is given by:

and subsequently denote

where 0 < −σ0 < 1 (see “Appendix”). Therefore, the exact solution to Eq.  (21) can be 
expanded in a power series with respect to ε, so that a solution to z can be written as:
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Each coefficient of the power series in the left-hand-side of Eq. (26) is zero according to 
the perturbation theory. As a result, the following infinite system of algebraic equations 
can be obtained:

All coefficients of the asymptotic series (24) can be determined by iteratively solving the 
system of equations (27). Thus, the complete asymptotic series (24) is fully established. 
Generally, higher-order terms in the series (24) become successively smaller for ε small. 
Therefore a good approximation is obtained when the power series is truncated using a 
few terms. For example, if series (27) is truncated at term Q = 4, the system becomes:

A consistent solution to (28) can be obtained by successively solving each of its 
equations:

Hence, substitution of these coefficients into Eq. (24) yields the asymptotic solution to 
Eq. (26):
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Finally, it can be seen from (8) that β = β1 · ζ. The approximate analytical solution for β∗ 
is then obtained as:

In turn, the scale parameter α∗ can be determined by substituting the result of (32) into 
Eq. (5).

Cases of study
Three study cases are shown in this section to illustrate the application of our proposed 
analytical method for the estimation of the Weibull β parameter. The first study consid-
ers right-censored data set found in Balakrishnan and Kateri (2008), where a graphical 
solution for the determination of the MLE shape parameter is employed. In a second 
study, the proposed method is applied to right-censored data used in Balakrishnan and 
Mitra (2012). Finally, sets of lifetime data are randomly generated combining differ-
ent censoring rates and sample sizes, in order to cover a wider range of data sampling 
scenarios that might be encountered in practical applications. Corresponding Weibull 
parameters for each data set are accordingly estimated.

For the first two cases, the β parameter was also estimated using a Newton-Rapshon 
algorithm with the purpose of illustrating the advantage of our proposed analytical 
method, where β is obtained by a single equation.

Case 1

The censored data set provided by Dodson (2006) and analyzed by Balakrishnan and 
Kateri (2008) is shown in Table  1. It provides twenty identical grinders which were 
tested with a ending time t = 152.7. Twelve grinders failed in this period of time. Val-
ues of σm, m = 0, 4, are obtained from Eq. (22): σ0 = −0.2244, σ1 = 1.0, σ2 = −0.3397,  
σ3 = 0.3617 , σ4 = −0.3320. The Weibull β parameter is estimated from Eq.  (32) and 
these values of σm. The result is substituted into Eq. (5) to obtain α. Results are presented 
in Table 2 along with the parameters estimated by a graphical method in Balakrishnan 
and Kateri (2008).
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Table 1  Lifetime data for Case 1

k tk δk k tk δk k tk δk k tk δk

1 12.5 1 6 95.5 1 11 125.6 1 16 152.7 0

2 24.4 1 7 96.6 1 12 152.7 1 17 152.7 0

3 58.2 1 8 97.0 1 13 152.7 0 18 152.7 0

4 68.0 1 9 114.2 1 14 152.7 0 19 152.7 0

5 69.1 1 10 123.2 1 15 152.7 0 20 152.7 0
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The MLE was combined with the Newton–Raphson method using a convergence 
tolerance set to 0.001 and an initial guess β0 = 2, which corresponds to our β solution 
when it is rounded up to the next integer. This last criterion is adopted from the well-
known fact that an appropriate initial value (close to the desired solution) ensures the 
convergence of the NR method within few iterations.

It can be observed from Table  2 that the parameters obtained from our analytical 
method match closely the estimates of the NR method and graphical method proposed 
in Balakrishnan and Kateri (2008). Therefore, it can be stated that our proposed param-
eter estimation methodology not only works well for this case, but it also directly pro-
vides β from an explicit expression [Eq. (32)].

Case 2

In this case, the data set is provided by Balakrishnan and Mitra (2012) and reproduced 
in Table  3. It is used to assess again the efficacy of our proposed parameter estima-
tion method. This data set was numerically produced using the Weibull distribution 
with parameter values αtrue = 35 and βtrue = 3. It can be considered as lifetime data of 
power transformers in the electrical industry, with information of installation and failure 
dates. The data considers units that failed before year 2008, which was set as the year of 
censoring.

The parameter values obtained for this case are presented in Table 4. Similarly to Case 
1, selection for the initial value of the NR method is the round up integer of the β solu-
tion obtained using our analytical method, with a tolerance of 0.001.

It can be observed again that the parameters obtained with our analytical method 
match quite well the estimates of the NR program. This case is another example that 
shows the efficacy of our proposed analytical method for the determination of Weibull 
parameters.

Case 3

The simulation approach of Zhou et  al. (2013) was adopted to generate different sets 
of lifetime data at prespecified points of time. The generated data mimic a time-cen-
sored sampling scenario for a hypothetical number of transformer units, which operate 
at the same time. In addition, it is assumed that a population of units is homogenous 
with a fixed censoring time C, and each individual unit has a lifetime tk, k = 1,M, where 
M denotes the total number of units. Each tk is identically considered an independent 
random variable that follows a specific probability distribution. Finally, lifetime data is 
characterized by the censoring rate CR, defined as the proportion of censored data and 
calculated as the number of suspensions divided by the sample size.

The sample sizes employed in this study were 10, 20, 50, 100, 500 and 1000. Censor-
ing rates were fixed at 0, 20 and 80%. Each group of simulated lifetime data required M 

Table 2  Parameter estimates for Case 1

Parameters Approximate analytical 
method

Approach in Balakrishnan 
and Kateri (2008)

NR method β0 = 2

β 1.6466 1.647 1.6466 (6 iterations)

α 162.22306 162.223 162.2330



Page 11 of 16Coria et al. SpringerPlus  (2016) 5:1802 

Ta
bl

e 
3 

Si
m

ul
at

ed
 d

at
a 

se
t p

ro
vi

de
d 

by
 B

al
ak

ri
sh

na
n 

an
d 

M
it

ra
 (2

01
2)

Si
m

ul
at

ed
 d

at
a 

se
t p

ro
vi

de
d 

by
 B

al
-

ak
ri

sh
na

n 
an

d 
M

itr
a 

(2
01

2)
 N

o.
In

st
al

la
tio

n 
ye

ar
Fa

ilu
re

 
ye

ar
N

o.
In

st
al

la
tio

n 
ye

ar
Fa

ilu
re

 
ye

ar
N

o.
In

st
al

la
tio

n 
ye

ar
Fa

ilu
re

 
ye

ar
N

o.
In

st
al

la
tio

n 
ye

ar
Fa

ilu
re

 
ye

ar

1
19

84
–

26
19

86
–

51
19

82
–

76
19

74
20

06

2
19

90
20

01
27

19
87

–
52

19
81

–
77

19
78

19
95

3
19

83
20

02
28

19
90

19
97

53
19

86
–

78
19

62
19

93

4
19

81
20

00
29

19
80

19
96

54
19

80
19

90
79

19
63

–

5
19

85
–

30
19

80
–

55
19

80
19

94
80

19
60

19
98

6
19

91
–

31
19

81
–

56
19

82
–

81
19

62
20

07

7
19

82
–

32
19

83
19

97
57

19
90

20
08

82
19

60
19

90

8
19

90
–

33
19

80
–

58
19

85
–

83
19

62
19

80

9
19

83
19

99
34

19
84

–
59

19
83

–
84

19
61

19
81

10
19

92
–

35
19

82
–

60
19

82
–

85
19

64
19

89

11
19

83
–

36
19

80
–

61
19

63
19

96
86

19
64

19
87

12
19

89
–

37
19

85
20

07
62

19
63

20
01

87
19

60
20

06

13
19

85
–

38
19

93
–

63
19

61
19

98
88

19
61

19
92

14
19

82
–

39
19

83
–

64
19

61
19

92
89

19
64

–

15
19

83
–

40
19

80
–

65
19

60
19

84
90

19
63

19
91

16
19

81
–

41
19

81
20

01
66

19
64

20
04

91
19

73
–

17
19

85
–

42
19

89
–

67
19

61
19

94
92

19
64

–

18
19

81
–

43
19

93
–

68
19

77
19

98
93

19
72

19
84

19
19

88
20

02
44

19
83

–
69

19
63

19
87

94
19

62
20

07

20
19

83
–

45
19

93
–

70
19

60
19

91
95

19
63

19
97

21
19

84
–

46
19

87
–

71
19

61
19

83
96

19
64

19
87

22
19

89
–

47
19

94
–

72
19

64
19

95
97

19
64

20
02

23
19

88
–

48
19

85
20

07
73

19
63

19
98

98
19

71
–

24
19

82
–

49
19

81
–

74
19

61
20

01
99

19
65

19
90

25
19

81
–

50
19

83
20

04
75

19
60

19
88

10
0

19
62

19
94



Page 12 of 16Coria et al. SpringerPlus  (2016) 5:1802 

numbers of tk that were randomly generated from a two-parameter Weibull distribution 
with prespecified values of αtrue = 3.0 and βtrue = 1.5. Censoring times were chosen to 
have a common value, which is calculated as F−1

x (p;α,β), where p is the probability of a 
unit, starting at time 0, fails before reaching censoring time C. p was fixed for each CR at 
1.0, 0.8 and 0.2. Then, a lifetime data set is generated through the comparison of lifetime 
units and a selected censoring time: If tk is less than or equal to C, the unit is failed. Oth-
erwise, the unit is in suspension with lifetime data censored at time C.

This study was specially designed to bring about the effectiveness of our proposed ana-
lytical MLE method for Weibull parameters. Our proposed method was also compared 
in this work with the L-Moments estimation method presented in Teimouri et al. (2013), 
which is based on linear combination of order statistics and provides closed-form 
expressions for Weibull parameters.

Weibull parameters were obtained for each simulated data set using our analyti-
cal MLE method and the L-Moments method (see Table  5). It can be observed from 
these results that both methods provide a close match to αtrue and βtrue. Our analytical 
MLE method provides estimates that are closer to αtrue and βtrue for censored data sets. 
Therefore, we can state from these results that the L-Moments method is effective for 

Table 4  Parameter estimates for Case 2

Parameters Approximate analytical method NR method β0 = 4

β 3.205 3.2506 (8 iterations)

α 35.245 35.2084

Table 5  Case 3. Parameter estimates for different simulated data sets

CR (%) M L-Moments method Approximate analytical 
method

α β α β

0 10 3.0522 2.1521 3.0563 2.5286

20 3.4026 1.3887 3.4289 1.4851

50 2.7332 1.3915 2.7112 1.3497

100 2.9970 1.5129 2.9860 1.4877

500 3.1178 1.5677 3.0670 1.4772

1000 3.0152 1.5289 2.9624 1.4342

20 10 2.6830 1.9116 2.9353 1.7227

20 2.9035 1.8576 3.3553 1.4175

50 2.5856 1.8822 2.8145 1.5906

100 2.8119 2.1616 2.9557 1.9031

500 2.7591 1.8930 3.0847 1.4296

1000 2.7483 1.9360 3.0350 1.5349

80 10 1.0279 4.5619 1.4874 2.1709

20 1.0871 12.9564 2.4157 2.2982

50 1.0709 7.8137 3.0147 1.4884

100 1.0553 6.1198 3.4455 1.2138

500 1.0757 9.3024 2.8698 1.6711

1000 1.0709 8.2974 2.9130 1.5363
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complete data sets, whereas our analytical MLE method is effective for complete data 
sets as well as right-censored data sets.

An additional analysis was carried out to compare both methods in terms of the 
mean-squared error and bias. For this purpose, the bias and the mean-squared error 
were computed for data sets of size M = 10, 20, . . . , 1000, which were randomly 
generated from a two-parameter Weibull distribution with prespecified values of 
(αtrue,βtrue) = (0.5, 0.5), (1.0, 1.0), (3.0, 1.5), and the number of simulations for each data 
set was 100. The mean-squared error and bias are defined as follows (Teimouri et  al. 
2013):

and

where η is the number of simulations and α∗
i  and β∗

i  are estimators of α and β for the i-th 
simulation, respectively.

Figures 2, 3 and 4 illustrate the behavior of the mean-squared error and bias for α∗ and 
β∗. It can be concluded from these results that the L-Moments method has more bias in 
the estimates of β∗, whereas our analytical MLE method has more bias in the estimates 
of α∗. However, the bias and the mean-squared error in both methods tend to consist-
ently decrease with the increase of the size of the data sets. The difference between both 
methods, with respect to the mean-squared error criterion, is very small, mainly for 
large M where the difference is practically indistinguishable. In addition, the amount of 
bias and mean-squared error behaves in a consistent manner over different values of the 
parameters.

Conclusions
An analytical approach is developed in this work to estimate the Weibull parameter β 
for complete and right-censored data using perturbation theory. The idea behind this 
method is to formally expand the β solution to its likelihood equation around point 1.0 
as a power series in ε, which turns out to be a small parameter. In fact, if ε is zero, the 
equation is exactly solvable. Therefore, the problem is reduced to find the asymptotic 
behavior of the best approximation to the true solution within ε, ε2, . . . Thus, perturba-
tion theory leads to an expression for the desired solution in terms of a formal power 
series in a “small” parameter that quantifies the deviation from the exactly solvable prob-
lem. Hence, an approximate analytical solution for β parameter is obtained by truncating 
the series at a prespecified order.

Bias(α∗) =
1

η

η
∑

i=1

(α∗
i − αtrue),

Bias(β∗) =
1

η

η
∑

i=1

(β∗
i − βtrue),

MSE(α∗) =
1

η

η
∑

i=1

(α∗
i − αtrue)

2

MSE(β∗) =
1

η

η
∑

i=1

(β∗
i − βtrue)

2
,
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Our analytical method for estimation of the Weibull parameter was tested on sev-
eral lifetime data sets. This way, it was concluded that the performance of our proposed 
method was satisfactory for all lifetime data sets with different combinations of sample 
sizes with small and heavy censoring. These data sets cover a wide range of practical sce-
narios that our method can easily deal with.

The main conclusion that can be drawn from this work is that the use of the formu-
lations described in “Existence and uniqueness of the likelihood estimate” and “A per-
turbative approach to estimate the shape parameter” sections allows the analytical 
obtention of β. This method was not only numerically tested using common and prac-
tical data sets, but it was also theoretically and mathematically proved. Our approach 
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Fig. 2  Biases of α∗, β∗ and mean-squared errors of α∗, β∗ for αtrue = 0.5 and βtrue = 0.5
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efficiently estimates β employing a single equation, with no need of graphical or iterative 
procedures.

Finally, it is worth mentioning that although the estimation of Weibull parameters 
under right-censored scheme was considered, the proposed method can be extended to 
other censoring schemes such as left-truncation and hybrid. Additional work is required 
in this direction, which is currently considered by the authors.
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Appendix
Inequality −1 < σ0 < 0 is proved here. First see that Eq. (22) yields

Since 0 < xk < 1, ln xk < 0. As a result,

On the other hand, (ln xk)2 + ln xk + 1 > 0 ∀ xk, so

(33)σ0 =

∑N
k=1 xk(ln xk)

∑N
k=1 xk

[

(ln xk)2 + ln xk + 1
]
.

N
∑

k=1

xk(ln xk) < 0.

N
∑

k=1

xk

[

(ln xk)
2 + ln xk + 1

]

> 0.
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which shows that σ0 < 0. Therefore, we see that

Therefore −1 < σ0 < 0, Q.E.D.
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