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Background
The log-logistic (LL) distribution (branded as the Fisk distribution in economics) pos-
sesses a rather supple functional form. The LL distribution is among the class of survival 
time parametric models where the hazard rate initially increases and then decreases and 
at times can be hump-shaped. The LL distribution can be used as a suitable substitute 
for Weibull distribution. It is in fact a mixture of Gompertz distribution and Gamma 
distribution with the value of the mean and the variance coincide—equal to one. The LL 
distribution as a life testing model has its own standing; it is an increasing failure rate 
(IFR) model and also is viewed as a weighted exponential distribution.

Scrolling through the literature on the subject distribution we see that Bain (1974) 
modeled LL distribution by a transformation of a well-known logistic variate. The prop-
erties of LL distribution have been deliberated upon by Ragab and Green (1984) who 
also worked on the order statistics for the said distribution. Kantam et al. (2001) pro-
posed acceptance sampling plan using the LL distribution. Kantam et al. (2006) designed 
economic acceptance sampling plan using the LL distribution. Kantam and Rao (2002) 
derived the modified maximum likelihood estimation (MLE) of this distribution. 
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Rosaiah et  al. (2007) derived confidence intervals using the LL model-approximation 
to ML method. The properties, estimation and testing of linear failure rate using expo-
nential and half-logistic distribution has been discussed thoroughly by Rao et al. (2013). 
Rosaiah et al. (2014) studied the exponential-LL distribution additive failure rate.

The current research intends to use LL distribution for modeling the survival data 
and to obtain MLE utilizing associated probability intervals of the Bayes estimates. It 
has been noticed that the Bayesian estimates may not be computed plainly under the 
assumption of independent uniform priors for the parameters. The authors will work 
under the assumption that both parameters—shape and scale, of the LL model are 
unknown.

The authors will develop the algorithm to generate Markov Chain Monte Carlo 
(MCMC) samples based on the generated posterior samples from the posterior den-
sity function using Gibbs sampling technique by employing the OpenBUGS software. 
Bayesian estimates of parameters along with highest posterior density (HPD) credible 
intervals will be constructed. Moreover, estimation of the reliability function will also 
be looked into. Entire statistical computations and functions for LL will be done using R 
statistical software see Lyu (1996), Srivastava and Kumar (2011a, b, c) and Kumar et al. 
(2012, 2013). Real life data will be considered, in order to illustrate how the proposed 
technique can be effortlessly applied in an orderly manner in real life situations.

Remainder of the paper contains six sections: “Model analysis”, “Maximum likelihood 
estimation, (MLE) and information matrix”, “Model validation”, “Bayesian estimation 
using Markov Chain Monte Carlo (MCMC) method”; “Comparison of MLE estimates 
and Bayes estimates” and “Conclusion”.

Model analysis
Probability density function (pdf)

If a r.v X has a LL distribution having shape parameter α > 0 plus scale parameter � > 0, 
denoted by X ~ LL (α, �). The pdf of the LL distribution is of the form:

Cumulative density function (CDF)

The CDF of the LL model with two parameters takes the form;

The reliability function

The reliability (survival) function of LL model takes the form;

The Hazard function

The hazard rate function of LL model is

(1)f (x;α, �) = (α/�)(x/�)α−1

(

1+ (x/�)α
)2

, α > 0, � > 0, x ≥ 0.

(2)F(x;α, �) = 1/
(

1+ (x/�)−α
)

, α > 0, � > 0, x ≥ 0.

(3)R(x;α, �) = (x/�)−α/
(

1+ (x/�)−α
)

, α > 0, � > 0, x ≥ 0.

(4)h(x;α, �) = α

x
[

1+ (x/�)−α
] .
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The cumulative hazard function H(x)

H(x) of LL model takes the form;

The failure rate average (FRA) and conditional survival function (CSF)

Two additionally useful reliability functions are FRA and CSF (Rausand and Hoyland 
2004). The FRA of X is;

where, H(x) is the cumulative hazard function.
An analysis of FRA (x) on x enables us to find increasing failure rate average (IFRA) 

and decreasing failure rate average (DFRA).
The survival function (SF) and the conditional survival of X are defined respectively, 

by (Rausand and Hoyland 2004).

and

where F(x) is the CDF of x analogous to H(x) in FRA(x), the distribution of x belongs to 
the new better than used (NBU), exponential, or new worse than used (NWU) classes, 
when R(x|t) < R(x), R(x|t) = R(x), or R(x|t) > R(x), respectively, see Rausand and Hoyland 
(2004) and Lai and Xie (2006).

The quantile function

The quantile function of LL model is;

The random deviate generation functions

Let U be a random variable which follows uniform distribution (0,1) with CDF, F(·) for 
which inverse exists. Then any sample drawn from F−1(u) is considered to be drawn 
from F(·). So, the random deviate can be generated from LL (α, �) using

where; u follows U(0,1) distribution.

Maximum likelihood estimation (MLE) and information matrix
MLEs of the two-parameter LL model plus their large sample properties in order to find 
approximate confidence intervals based on MLEs are discussed in this section.

(5)H(x) = −logR(x) =
∫ x

0
h(t)dt.

(6)FRA(x) = H(x)

x
=

∫ x
0 h(x)dx

x
, x > 0,

R(x) = 1− F(x),

(7)P(X > x + t|X > t) =R(x|t) = R(x + t)

R(x)
, t > 0, x > 0, R(·) > 0,

(8)xq = �

(

q−1 − 1
)−1/α

, 0 < q < 1.

(9)x = �

(

u−1 − 1
)−1/α

, 0 < u < 1.
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Suppose x = (x1, x2, . . . , xn) be an observed sample of size n from LL model, in that 
case the log-likelihood function L (α, �, �) is given as (Singh and Guo 1995).

To obtain the MLEs of the two parameters α and λ, maximize (10) directly with respect 
to α and λ or, otherwise may be solved using Newton–Raphson method.

Information matrix and asymptotic confidence intervals

Let us denote, parameter vector by δ = (α, �) and the corresponding MLE of δ as 
δ̂ =

(

α̂, �̂
)

, then the asymptotic normality results can be written in the following form

where I(δ) is the Fisher’s information matrix (FIM) is obtained by

Since δ is unknown therefore it is useless to have an asymptotic variance (I(δ))−1 for 
the MLEs. So, the asymptotic variance can be approximated by “installing in” the esti-
mated values of the parameters, see Lawless (2003). Modus operandi under such a situ-
ation is to make use of the observed FIM O(δ̂) (as an estimate of I (δ)) and it is given by

where, H is known as Hessian matrix.
Here the Newton–Raphson algorithm comes handy which in fact maximizes the likeli-

hood, produces the observed information matrix and consequently the variance–covari-
ance matrix is given as;

By virtue of asymptotic normality of MLEs, approximate 100(1  − γ)% confidence 
intervals for α and � can be constructed as

(10)

ℓ = log L = n log α− n log � + (α− 1)

n
∑

i=1

log xi − n(α− 1)log �

− 2

n
∑

i=1

log
[

1+
(xi

�

)α]

.

(11)
∂ℓ

∂α
= n

α
+

n
∑

i=1

log xi − n log � − 2

n
∑

i=1

(

xi
�

)α
log

(

xi
�

)

1+
(

xi
�

)α = 0,

(12)
∂ℓ

∂�
= −n

�
− n(α − 1)

�
+ 2α

�

n
∑

i=1

(

xi
�

)α

1+
(

xi
�

)α = 0.

(13)(δ̂− δ) → N2

(

0, (I(δ))−1
)

,

(14)I(δ) = −





E
�

∂2ℓ

∂α2

�

E
�

∂2ℓ
∂α∂�

�

E
�

∂2ℓ
∂α∂�

�

E
�

∂2ℓ

∂�2

�



.

(15)O
(

δ̂

)

= −
[

∂2ℓ

∂α2
∂2ℓ
∂α∂�

∂2ℓ
∂α∂�

∂2ℓ

∂�2

]

∣

∣

∣

(

α̂,�̂
)

= −H(δ)∣
∣

∣δ̂
,

(16)
�

−H(δ)|δ̂

�−1
=





Var
�

α̂
�

Cov
�

α̂, �̂
�

Cov
�

α̂, �̂
�

Var
�

�̂

�



.
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where Zγ /2 is the upper percentile of standard normal variate.

Computation of maximum likelihood estimation

In order to have insight into the ML estimation a data has been adapted from Lee and 
Wang (2003). The sample data consists of 128 patients having bladder cancer and the 
values shown are the monthly remission times.

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 
0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 
14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 0.66, 
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 
17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 
21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

The values calculated for the mean, variance and the coefficient of skewness are 
9.36562, 110.425 and 3.32567, respectively. The measure of skewness indicates that data 
are positively skewed whereas the coefficient of skewness is the unbiased estimator for 
the population skewness obtained by =

√
n(n−1)
n−2 ·

1
n

∑n
i=1 (xi−x̄)3

(

1
n

∑n
i=1 (xi−x̄)2

)3/2 .

The data is fitted using the LLmodel. Optim () function in R with Newton–Raphson 
options was used as an iterative process for maximizing the log-likelihood function 
given in (10). The values of the estimates thus obtained are α̂ = 1.725158, �̂ =  6.089820 
and the related log-likelihood value = −411.4575 is obtained by using maxLik package 
available in R. An estimate of variance–covariance matrix, using (15) and (16), is given as

Equation (16) was used to construct the 95 % confidence intervals for the parameters of 
LL model using on MLE’s. Table 1 displays the MLE’s along with their standard errors 
and approximate 95 % confidence intervals for α and �.

Model validation
Srivastava and Kumar (2011c) suggest than in order to assess the goodness of fit of the 
proposed LL model, it is essential to work out the Kolmogorov–Smirnov (K–S) statistics 
between the empirical distribution function and the fitted LL model. The authors found 
the fit to be appropriate since the value of the K–S test i.e. D = 0.03207318 had the sig. 

α̂ ± Zγ /2

√

Var
(

α̂
)

and �̂± Zγ /2

√

Var
(

�̂

)

,





Var
�

α̂
�

Cov
�

α̂, �̂
�

Cov
�

α̂, �̂
�

Var
�

�̂

�



 =
�

61.127411 −0.331139
−0.331139 3.451350

�

.

Table 1  Maximum likelihood estimates, standard errors and 95 % confidence intervals

Parameter MLE SE 95 % confidence interval

Alpha 1.725158 0.1279366 (1.474407, 1.975909)

Lambda 6.089820 0.5384165 (5.034543, 7.145097)
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value of 0.998 which is far greater than the predetermined level of 0.05. Therefore, it can 
be confidently asserted that the proposed LL model is appropriate to analyze the data 
set.

To further supplement our claim of goodness of fit, both the empirical and fitted dis-
tribution functions are displayed in Fig. 1. It is quite evident that there is a reasonable 
coincided match between the two distributions. Keeping in view the foregoing results, 
we feel confident in expressing that the estimated LL model gives a good fit.

For model validation quantile- quantile (Q–Q) and probability–probability (P–P) plots 
are most commonly used graphical methods to assess whether the fitted model is in 
agreement with the given data.

Suppose F̂(x) be an estimate of F(x) based on x1, x2, . . . , xn. The scatter diagram of the 
points

The q–q plot shows the estimated versus the observed quantiles. If the model fits is 
good the of points on the q–q plot will roughly exhibit a 45° straight line. From Fig. 2 we 
see that approximately straight line pattern appears suggesting that the LL model offers 
a good fit.

Likewise the foregone claim is also supplemented by the p–p plot in Fig. 3. Suppose 
x1, x2, . . . , xn be a sample from a given population with estimated cdf F̂(x). The scatter 
diagram of F̂(x1:n) versus pi:n, i = 1, 2, …, n, is known as a p–p plot. If the LL model fits 
is good, the points will be close to the 45° diagonal line, Srivastava and Kumar (2011b). 
Here again it is witnessed that maximum points in the p–p plot lie within the required 
range.

Bayesian estimation using Markov Chain Monte Carlo (MCMC) method
Monte Carlo is repeated pseudo-random sampling generating technique. It makes use 
of algorithm to generate samples. Markov Chain on the other hand is a random process 
with a countable state-space with the Markov property. According to Chen et al. (2000) 

F̂
−1(

p1:n
)

versus xi:n, i = 1, 2, . . . , n, will be a q-q plot.

Fig. 1  The graph of empirical and fitted distribution function
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Fig. 2  Quantile–quantile (Q–Q) plot using MLEs as estimate

Fig. 3  p–p plot using MLEs
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that Markov property means that the future state is dependent only on the present state 
and not on the past states. The combination of Markov chains and Monte Carlo tech-
niques is commonly referred to as MCMC, see Robert and Casella (2004). Since the 
advent of the computed friendly software application of MCMC in Bayesian estimation 
has gained currency for the last one decade or so. Presently, for applied Bayesian infer-
ence, researchers usually work on OpenBUGS (Thomas 2010). It is a menu driven and, 
for existing probability models, contains a modular framework which is capable of being 
extended, if such a need arises, for constructing and evaluating Bayesian probability 
models (Lunn et al. 2000).

Since LL model is not a default probability model in OpenBUGS, therefore it warrants 
an integration of a module for parameter estimation of LL model. The Bayesian anal-
ysis of a probability model can be executed only for the default probability models in 
OpenBUGS. Of late, some probability models are integrated in OpenBUGS in order to 
ease the Bayesian analysis (Kumar et al. 2010). For more details about the OpenBUGS of 
some other models, the readers are referred to Kumar et al. (2012) and Srivastava and 
Kumar (2011a, b, c).

Bayesian analysis under uniform priors

The proposed module is designed with a view to work out the Bayesian estimates for the 
LL model through MCMC technique. The primary purpose of the module is to generate, 
MCMC samples from posterior distribution for non-informative uniform priors. The 
norm is, that one is in know of the likely values of θ that occur over a finite range [a, b]. 
There are many other informative prior distributions such as gamma distribution, beta 
distribution and normal distribution. We are using non-informative uniform priors as 
we have no knowledge of the behaviour of parametric θ. Because there is no idea about 
the value of parameter and we have only information about the lower and upper limits 
of θ. With this situation at hand, a uniform distribution with a definite interval may be a 
reasonable guess of the prior distribution, and its PDF may be taken as;

The authors initiated two parallel chains for sufficiently large number of iterations 
until the convergence is attained. For the current study the convergence was attained at 
40,000 with a burn-in of 5000. Finally posterior sample of size 7000 is used by selecting 
a thinning interval of five i.e. every fifth outcome is stored. Thus, we have the posterior 
sample {α1i, �1i }, i = 1 … 7000 drawn from chain 1 and { α2i, �2i }, i = 1 … 7000 from 
chain 2. Chain 1 is earmarked for testing convergence. Whereas, chain 2 is earmarked 
for displaying visual summary. Both Chain 1 and Chain 2 shall be utilized for looking 
into the numerical summary.

Convergence diagnostics

Simulation draws or chains were started at initial values for each parameter of priors. 
Due to dependency in successive draws, first draws were discarded as a burn-into obtain 
independent samples. Therefore, we need to be sure that the chains have converged in 

π(θ) =
{

1
b−a

, 0 < a ≤ θ ≤ b

0, otherwise.
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MCMC analysis in order to make inferences from the posterior distribution. This was 
checked by several diagnostic analyses as follows.

History (trace) plot

From the graphs in Fig. 4 we can safely conclude that the chains have converged as the 
plots exhibits no extended increasing or decreasing trends, rather it looks like a horizon-
tal band.

Autocorrelation plot

Autocorrelation plots clearly indicate that the chains are not at all autocorrelated. The 
later part is better since samples from the posterior distribution contained more infor-
mation about the parameters than the succeeding draws. Almost negligible correlation is 
witnessed from the graphs in Fig. 5. So the samples may be considered as independent 
samples from the target distribution, i.e. the posterior distribution.

Visual summary through Kernel density estimates

Samples drawn from chain 2 were earmarked for displaying visual summary for the LL 
model. Sufficient insight is provided by histograms regarding asymmetry, tail behaviour, 
multi-modal behaviour, and extreme values. Comparison of the histograms may also be 
carried out with other basic shapes related with standard diagnostic distributions. Histo-
gram and kernel density estimate of α and � based on Chain 2 iterations, are displayed in 
Fig. 6 with vertical dotted line and thick line representing MLEs and Bayesian estimates 
respectively.

Fig. 4  Sequential realization of the parameters α and λ
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Fig. 6  Histogram and kernel density estimate of α and λ

Fig. 5  The autocorrelation plots for α and λ
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Numerical summary

Chain 1 and chain 2 samples are used for looking into the numerical summary regard-
ing LL model. Table 2 displays numerical values of ten quantities of interest, based on 
MCMC samples from posterior characteristics of LL model, under uniform priors. The 
numerical summary shown below is obtained from 7000 samples based on final poste-
rior samples each for α and �.

and

Running mean (Ergodic mean) plot

Convergence pattern of MCMC chain is observed by calculating running mean which 
is the overall mean of all samples up to and including a particular iteration. Time series 
graph of each parameter is generated from the chain commonly known as Ergodic mean 
plots. Figure 7 displays the Ergodic mean plots for the two parameters. It is quite clear 
from the Ergodic mean plot of alpha that the chain converges after 2000 iterations to the 
value of 1.728 and the Ergodic mean plot for lambda converges after 4000 iterations to 
the value of 6.16.

Brooks–Gelman–Rubin plot

The evidence of convergence from BGR plots displayed in Fig.  8 comes from the fact 
that the black line for both alpha and lambda converge to 1 and from the red line being 
steady (horizontal) across the breadth of the plot.

{α1i, �1i}, i = 1, . . . , 7000 from chain 1,

{α2i, �2i}, i = 1, . . . , 7000 from chain 2.

Table 2  Numerical summaries based on  MCMC sample of  posterior characteristics for  LL 
model under uniform priors

Characteristics Chain 1 Chain 2

α λ α λ

Mean 1.728 6.160 1.728 6.159

SD 0.1271 0.5420 0.1275 0.5473

Naive SE 0.0006791 0.0028971 0.0006817 0.0029254

Time-series SE 0.000845 0.003621 0.0008483 0.0036895

Minimum 1.223 4.168 1.254 4.140

2.5th percentile (P2.5) 1.487 5.153 1.486 5.155

First quartile (Q1) 1.641 5.787 1.640 5.781

Median 1.725 6.142 1.725 6.136

Third quartile (Q3) 1.812 6.512 1.812 6.508

97.5th percentile (P97.5) 1.984 7.273 1.983 7.293

Maximum 2.278 9.171 2.284 8.826

95 % credible interval 1.487, 1.984 5.153, 7.273 1.486, 1.983 5.155, 7.293

95 % HPD credible interval 1.479, 1.796 5.093, 7.207 1.479, 1.976 5.142, 7.273
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Fig. 8  BGR plots for α and λ

Fig. 7  The Ergodic mean plots for α and λ
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Visual summary using box plots

The boxes in Fig. 9 symbolize inter-quartile ranges with the thick black line in the mid-
dle of the boxes represent means for alpha and lambda, the whiskers of each box depicts 
the middle 95 % of the distribution—the ends are in fact 2.5 percent and 97.5 percent 
quantiles.

Comparison of MLE estimates and BAYES estimates
Three graphs have been plotted Figs. 10, 11 and 12 for comparison of MLEs with Bayes-
ian Estimates. Figure 10 represents the density functions of LL model based on MLEs 
and Bayes estimates, from uniform priors through the use of samples obtained by 
MCMC technique. It is witnessed that both density functions coincide.

Quantile–quantile (Q–Q) plot of empirical versus theoretical quantiles computed 
using MLEs and Bayes estimates is displayed in Fig. 11. Here also it is witnessed that the 
green circles depicting MLEs coincide with the red circles depicting Bayes estimation.

Estimated reliability function is displayed in Fig.  12 using Bayesian estimates calcu-
lated from uniform priors along with empirical reliability function.

Keeping in view the foregoing visual representations from Figs. 10, 11 and 12 using 
MLEs and the Bayes estimates based on uniform priors to a great extent coincide and 
suggests a good fit for the proposed LL model.

Conclusion
Present research discussed the LL model with two parameters; MLEs and Bayesian 
estimates are obtained from a real life sample using the Markov Chain Monte Carlo 
(MCMC) technique using OpenBUGS software. Bayesian analysis under different set of 

Fig. 9  The boxplots for α and λ
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Fig. 11  Q–Q plot of the quantiles using MLEs and Bayesian estimates

Fig. 10  Density functions f(x,α̂, �̂)employing MLEs and Bayesian estimates
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priors has been carried out and convergence pattern was studied using different diagnos-
tics procedures. Numerical summary based on MCMC samples from posterior distribu-
tion of LL model has been worked out based on non-informative priors. Visual review 
for different set of priors including box plot, kernel density estimation in comparison 
with MLEs has been attempted. It is witnessed that the LL model whether used with 
MLEs or with Bayesian Estimates fits the data well. It has been found that the proposed 
methodology is suitable for empirical modeling under uniform sets of priors. Although 
the simulation study is not conducted in the present work. But, the consistency, basic 
study and comparisons of present estimation and improved parameters estimation by 
Reath (2016) will be conducted in future work.
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Fig. 12  The estimated survival function using Bayes estimate and the empirical reliability function
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