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Background

The present paper is devoted to the notion of infinite order decomposition (IOD) of a
C*-algebra with respect to an infinite orthogonal family of projections. Let A be a unital
C*-algebra, p be a projection in A4, i.e. p> = p, p* = p. Then 1 — p is also a projection
and the subsets pA ={pa:ac A}, Ap={ap:ac A}, 1—pA={1—pa:acA}
Al —p) ={a(l —p) : a € A} are vector subspaces of A. A coincides with its Peirce
decomposition on p, i.e.

A=pASAp® (1 —pASAQ1 —p).
These subspaces satisfy the following properties

PA - pA C pA,pA - Ap C pAp,

Ap - Ap C Ap,pA - (1 — p)A C pA,
1-pA-A-pACA-pAAQ1-pA-pAC (1 -p)4,
pA-A(l —p) €S pA(l —p), A1 —p) - pA = {0}

In the present paper an infinite analog of this decomposition, namely, IOD is investi-
gated. In Arzikulov (2008) the notion of IOD is defined as follows: let A be a C*-algebra
on an infinite dimensional Hilbert space H, {p¢} be an infinite orthogonal family of pro-
jections in A with the least upper bound (LUB) 1, calculated in B(H). Let
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52
ZpgAp,] = {{ag,;) 1 agy € psApy  forall &,n, and there exists such number

&

n
K € R that Z ai|| <K forall n e N and {ay)j;_; € {az,}),
k=1

and Z?n peApy is said to be an JIOD of A.
Under this definition the following theorem is valid.

Theorem (Arzikulov 2008) Let A be a C*-algebra on a Hilbert space H, {pe} be an infi-
nite orthogonal family of projections in A with the least upper bound 1 in B(H). Then

(1) if the order unit space 32 peAp, is monotone complete in B(H) (i.e. ultraweakl
D g0 Ps41Pn p Y
closed), then Z?n peApy is a C*-algebra,
(2) if A is monotone complete in B(H) (ie. a von Neumann algebra), then
p g
A= Zga,r] pEAprp
(3) if Zg?n peApy is a C*-algebra then this algebra is a von Neumann algebra.

In the present paper we give a complete proof of this theorem (see, respectively, item 2
of Theorem 3, Proposition 4, item 2 of Corollary 1).

Also it is proved that an infinite order decomposition (IOD) of a C*-algebra forms the
complexification of an order unit space, and, if the C*-algebra is monotone complete (not
necessarily weakly closed) then its IOD is also monotone complete ordered vector space.
Also it is established that an IOD of a C*-algebra is a C*-algebra if and only if this C*-algebra
is a von Neumann algebra. For this propose operations of multiplication and an involution in
an IOD are introduced. It turns out, the order and the norm defined in an IOD of a C*-alge-
bra on a Hilbert space H coincide with the usual order and norm in B(H). Also, it is proved
that, if a C*-algebra A with an infinite orthogonal family {p¢} of projections in A such that
supg p¢ = lis nota von Nemann algebra and projections in the set {p } are pairwise equiva-
lent then A # Z?’n peApy. Moreover if the Banach space Z?,’ PeApy is not weakly closed
then Z?’n peAp, is not a C*-algebra. As a result it is proved that an IOD of a C*-algebra
forms the complexification of an order unit space. In this sense, if a C*-algebra is monotone
complete (and not necessarily weakly closed) then its IOD is monotone complete and an
IOD of a C*-algebra is a C*-algebra if and only if this C*-algebra is a von Neumann algebra.

Infinite order decompositions

A relation of order <in the vector space Zgn peAp,we define as follows: for elements {ag, },
{ben} € Z?n peApy ifforalln € N, {pr}i_; C {pe}theinequality Y 7,  ay < > ¢, bu
is valid, then it will be written {as,} < {bg,}. Also, the map {ag,} — I{ae,}l
lagn} € 3.8, peApy where [[{ag,}|| = sup{ll 5=y aull - n € N {ap}f_; S fag,y}), is a
norm on the vector space Zga,n peApy

Example Throughout the paper let n be an arbitrary infinite cardinal number, E be a
set of indices of the cardinality 7. Let {e;;} be the family of matrix units such that e; is a
n x n-dimensional matrix, i.e. e;; = (aqg)apes, the (i, j)-th component of which is 1, i.e.
a;j = 1, and the rest components are zeros. Throughout the paper let
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M,(C) = {{ﬂjelj} : for all indices i,jxlij e C,

and there exists such number K € R, that for all n € N

51(},

where || || is the norm of a matrix. It is easy to see that M,(C) is a vector space. The set
M, (C), defined above, coincides with the set

n

Z )vkl €exl

ki=1

and {ex}y—; < {ej}

M, (C) = {{/lijeij} : for all indexesij A; € C,
and there exists such number K € R that for all

Z AijXi

icE

2

< K> lal® o,

iced

{xi} € [o(E) the next inequality isvalid Z

JjEE

where /5 (E) is the Hilbert space on C with elements {x;};,cz, where x; € C for alli € E.
In the vector space

M, (C) = {{iijely} . for all indices i, j )Y € C}

of all n x n-dimensional matrices (indexed sets) over C we can introduce an associative
multiplication as follows:

Xy = Z /lié Méjei,’

£eE

where x = {1¥ ejl y = {;Lije,j} are elements of M, (C). Then M, (C) becomes an asso-
ciative algebra with respect to this operation and M, (C) = B(/2(E)), where [(E) is a
Hilbert space over C with elements {x;};cz, x; € Cforalli € E, B(l3(E)) is the associative
algebra of all bounded linear operators on /5(E). Hence M, (C) is a von Neumann alge-
bra of infinite # x n-dimensional matrices over C.

Similarly, if B(H) is the algebra of all bounded linear operators on a Hilbert space
H and {g;} is a maximal orthogonal family of minimal projections in B(H), then
B(H) = ;‘]? q:B(H)gj (Arzikulov 2008).

Let A be a C*-algebra on a Hilbert space H, {p;} be an infinite orthogonal family of
projections with the LUB 1 in B(H) and A = {{p;ap;} : a € A}. Then A = A (Arzikulov
2012).

Lemma 1 Let A be a C*-algebra on a Hilbert space H, {p:s} be an infinite orthogonal
family of projections in A with the LUB 1 in B(H). Then Z?n peApy is a vector space with
the following componentwise algebraic operations

A- {ag,,} = {/'Lagn}, LeC
®

{agn} + {ben} = {agy + ben},  agn, ben € ZPSAPIJ
&m
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and A is a vector subspace of Z?n peApy

Lemma 2 Let A be a C*-algebra on a Hilbert space H, {ps} be an infinite orthogo-
nal family of projections in A with the LUB 1 in B(H). Then the map {ag,} — |{ag,,}
lagn} € S8, peApy where |{ag o} = sup{ll X —; aull : n € N, {an}y_, S lae}) is a
norm and Zgn peApy is a Banach space with this norm.

Proof 1t is clear, that for every element {ag,} € Zg?n peApy if |{ag,}Il =0, then
ag, = Ofor all&, n, i.e. {ag y} is the zero element. The other conditions in the definition of
the norm can be also easily checked.

Let (a,) be a Cauchy sequence in Zgn peApy, i.e. for each positive number & > 0 there
exists n € N such, that ||a,, — au,|| < ¢ for all n1 > n, ny > n. Then the set {|la,ll} is
bounded by some number K € R and for every finite set {pi};_, C {p;} the sequence
(panp) is a Cauchy sequence, where p = > ¢ _; pr. Then, lim, .o pa,p € A since A is a
Banach space.

Let ag, = limy,_,o0 pranpy for all £ and n. Then || Y },_; axll < K for all n € N and
{an)y_; S {agy). Hence {ag ;) € ZgnpgAp,,. O

The definition of the order in Zgn peApy is equivalent to the following condition:
for the elements {ag,}, {bg,} € ZgnpgAp,,, if {“kl}ZJ:l < {bkl},f’l:1 for all # € N and
{PrYi_y S {pi} in A, then {ag,} < by} Let {ag,)* = {aj;} for every {ag,} € 38, peAp,
and (38, peApy)sa = Hagn} < {aey} € 35, peApn, lagy}* = {agy)).

Proposition 1 Let A be a C*-algebra on a Hilbert space H, {p¢ } be an infinite orthogonal
family of projections in A with the LUB 1 inB(H). Then the relation<, introduced above,
is arelation of partial order, and (Z?ﬁ PeApy)sa is an order unit space with this order. In
this case Asq = {{peapy} : a € Ay} is an order unit subspace of(zg?n PeADPy)sa

Proof LetM = (Zgn PeApPn)sa. Misapartially ordered vector space,ie. M N M_ = {0},
where M4 = {{ag,} € M : {ag,} = 0, M_ = {{ag,} € M : {ag,} <0}

By the definition of the order M is Archimedean. Let {as;} € M. Since
—{asn}llp < placylp < Hagy}llp  for every finite set {pi}y_; C {pe}, where
P = k_1Pk we have —|{ag,}I1 < {ag,} < |[{az,}|I1 by the definition of the order,
and the unit of A is an order unit of the partially ordered vector space M. Thus M is an
order unit space.

By Lemma 1 A4 is an order unit subspace of the order unit space M. O
Proposition 2 Let A be a C*algebra on a Hilbert space H,{p;}be an infinite orthogonal

Samily of projections in A with the LUB 1 in B(H). Then A = {{pzap,} : a € Alis a C*-alge-
bra, where the operation of multiplication ofAis defined as follows

- {pgapy), \psbpn)) — (psabpy), (psapy}, pebpy} € A.
Proof By Lemma 4 in Arzikulov (2012) the map

T:a€A— {psap,} € A
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is a one-to-one map. In this case
Z(a)Z(b) = I(ab)

by the definition of the operation of multiplication in Proposition 2, and Z(a) = {psap;},
Z(b) = {pebpy), L(ab) = {psabp,}. Hence, the operation, introduced in Proposition 2 is
associative multiplication and the map 7 is an isomorphism of the algebras A and A.

By Proposition 1 the isomorphism Z is isometrical. Therefore A is a C*-algebra with
this operation. O

Example 1 Let H be a Hilbert space, {g;} be a maximal orthogonal family of minimal
projections in B(H). Then sup; ¢; = 1 and by Lemma 4 in Arzikulov (2012) and Proposi-
tion 2 the algebra B(H) = {{giagj} : a € B(H)} can be identified with B(H) as a C*-alge-
bra in the sense of the map

7 :aec B(H) — {qiaqj} € B(H).
In this case associative multiplication in B(H) is defined as follows
- ({qiaq;}, {qibgj}) — {qiabg;}, {qiaq;}, {qibg;} € B(H).

Let a, b € B(H), giaq; = Zijqij» 4ibqj = 1ijqij where Ayj, wij € C, qi = qiq;, 4j = q4;:ij»
for all indices i and j. Then this operation of multiplication coincides with the following
bilinear operation

-t ((qiagih qibgiy) — D dieeiay oo (qiagy), (qibgy) € BH).
3

Remark 1 Let A be a C*-algebra on a Hilbert space H, {p;} be an infinite orthog-
onal family of projections in A with the LUB 1 in B(H). Then by Proposition 2
A = {{psapy} : a € A} is a C*-algebra. In this case the operation of involution on the
algebra A coincides with the map

{peapy}* = {pea’py}, ac€A.

Indeed, the identification A = A gives a = {pzap,} and a* = {psa*p,} for all a € A.
Then {pgap,}* = a* = {pea*p,} for each a € A. Let Ay, = {{peap,} : a € Ag). Then
A = Ag + iAsq Indeed, {peap,}* = a* = a = {pzap,} for each a € Ay,

Let N ={{pzap,}:ae€B(H)}. By Lemma 4 in Arzikulov (2012) and by
Proposition 2 N = B(H). Therefore it will be assumed that N = B(H). Let
Nsa = {{peap,} : a € B(H), {pzapy}* = {pzap,}). Then N = Ny + iN;,. Note that
{peapy}* = {peap,} if and only if (psap,)* = pyape for all &, 1.

Lemma 3 Let H be a Hilbert space, {ps} be an infinite orthogonal family of projections
in B(H) with the LUB 1. Then associative multiplication of the algebra N (hence of the
algebra B(H)) coincides with the operation

{peapy} * {pebpy} = {Zpgﬂpipibpn}, {peapn}, psbpy} e N

12
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where the sum 'y, in the right part of the equality is an ultraweak limit of the net of finite
sums of elements in the set {psap;p;bpy} e

Proof Let {pi}}_, be a finite subset of the set {p:}. Note that sup, p; = 1, i.e. the net
of all finite sums ) }_, px of orthogonal projections in {p;} ultraweakly converges to
the identity operator in B(H). By the ultraweakly continuity of the operator of mul-
tiplication 7'(b) = ab, b € B(H), where a € B(H), the net of finite sums of elements in
{peapipibp, e, ultraweakly converges and >, peapipibp, = peabp, for all &, n. Hence the
operation of multiplication x of the algebra A/ coincides with the operation, introduced
in Proposition 2. And the operation of associative multiplication, introduced in Proposi-
tion 2 coincides with multiplication in B(H) in the sense A" = B(H). O

Proposition 3 Let A be a C*-algebra on a Hilbert space H, {pg} be an infinite orthogo-
nal family of projections in A with the LUB 1 in B(H). Then the operation of associative
multiplication of A coincides with the operation of associative multiplication of Non A,
defined in Lemma 3.

Proof Let {pzapy,)}, {psbpy} be elements of Ay, and {pi}}_; be a finite subset of the set
{pe} and p = > }_; pr. The net of all finite sums > _y_; pi of orthogonal projections in
{pe} ultraweakly converges to the identity operator in B(H). Therefore for all &, 1 the
element {pgabp,} is an ultraweak limit in B(H) of the net {3, peap;pibp,} of all finite
sums () ), peapipibpy} for all finite subsets {py};_, C {pe}, and the element {pzabp,}
belongs to .A. Hence the assertion of Proposition 3 is valid. O

Remark 2 Let A be a C*-algebra on a Hilbert space H, {p;} be an infinite orthogonal
family of projections in A with the LUB 1 in B(H). Then by Lemmata 3, 4 in Arzikulov
(2012) the order and the norm in the vector space Zf’? piApj can be introduced as fol-
lows: {a;;} > 0 denotes that this element is zero or positive element in B(H) in the sense
B(H) = Zgn qeB(H)q,, where {g¢} is an arbitrary maximal orthogonal family of mini-
mal projections in B(H); ||{a;}] is equal to the norm in B(H) of this element in the sense
of the equality B(H) = ZS‘?’] qsB(H)q, (Example 1). By Lemmata 3 and 4 in Arzikulov
(2012) they coincide with the order and the norm defined in Lemma 2 and Proposition

1, respectively. If a is a bounded linear operator on H then
o
a=) qcaqy,
&n

where Z?n gesaq, is the ultraweak limit of the net of finite sums. By Lemma 2, if
A = B(H), then

llall = sup {

If H = [,(E), where [(E) is the Hilbert space on C with elements {x;};cz, x; € C for all
i € E, then B(H) = B(l2(E)), where B(/2(E)) is the associative algebra of all bounded
linear operators on the Hilbert space /3(E), which is an associative algebra of infinite

n

:neN, {qkﬂqz} C {gzaqn}}.
ki=1

n
> araq

ki=1
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dimensional matrices. In this case ||| is a supremum of norms of all finite-dimensional

main diagonal submatrices of a. Hence the following theorem is valid.

Theorem 1 The norm of an infinite dimensional matrix is equal to the supremum of
norms of all finite dimensional main diagonal submatrices of this matrix.

By Lemma 3 in Arzikulov (2012) the following theorem is also valid.

Theorem 2 An infinite dimensional matrix is positive if and only if all finite dimen-
sional main diagonal submatrices of this matrix are positive.

It should be noted that Theorem 1 of § 50 in Berberian (1972) follows from Theorem 2.

Remark 3 Suppose that all conditions of Remark 3 are valid. Let B(H) = Zgn qeB(H)q,,.
Then B(H) = B(H), where B(H) = {{gzaqy} : a € B(H)}. Also, Z?I?piApj is a Banach
space and an order unit space (Lemma 2, Proposition 1). Suppose that {g¢} is a maximal
orthogonal family of minimal projections in B(H) such that p; = sup, g, for some subset
{qy} C {gg} for all i. Note that B(H) = {{piap;} : a € B(H)} = ?]?piB(H)pj. By Propo-
sitions 2 and 3 the order unit space A = {{p;ap;} : a € A} is closed with respect to the
associative multiplication of Eg?piB(H)pj (ie. N = {{piap;} : a € B(H)}).

At the same time, the order unit space Zlef piApj is the order unit subspace of
> piB(H)p;.

Since B(H) = g?piB(H)pj we have Zf}B piB(H)p; is a von Neumann algebra, and,
without loss of generality, this algebra can be considered as B(H).

Note that if Zj‘f piAp;j is closed with respect to the associative multiplication of
Zj‘; piB(H)pj, then fo piApjis a C*-algebra. Also, if A is the C*-algebra with the condi-
tions, which are listed above, then the vector space Z? piApj is an order unit subspace
of 239 piB(H)pj. Then

D D
ACY pidp €Y piB(H)p.

g J

Thus, further the statement that Z?}a piApj is a C*-algebra denotes fo piApj is closed
with respect to the associative multiplication of fo piB(H)p;.

The involution in Z? piB(H)pj in the sense of the identification Z;B piB(H)p; = B(H)
coincides with the map

®
{aj}* = {a;‘i}, {aij} € ZpiB(H)Pj-
ij

Indeed, there exists an elementa € B(H)such thata = {a;;} = {p;ap;}. Thena* = {p;a*p;}
inthe sense of B(H) = N and a;; = pap;, a;; = pja*p;foralli,j. Therefore {p;a*p;} = {a;.ki}.
Hence a* = {a}). Let (37 piB(H)p))sa = lay) : {ay) € SF piB(H)pj, lag}* = laz}).
Then
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52 52} @
> piBHPp = | > _piBH)p | +i| D piBH)p;

Y Y sa Y sa

Lemma 4 Let A be a C*-algebra on a Hilbert space H, {p;} be an infinite orthog-
onal family of projections in A with LUB 1 in B(H) and (Z?,?PiApj)sa = {{ay}:
{aij} € Z?,‘BpiAPj: {ai}* = {ay}}. Then

@ 57 5]
> pidpi= Y _pidpi| +i| > piAp| - (1)
ij ij ij

sa sa

In this case{a;}* = {a;} if and only if aj; = aji for all i, j.

Proof Let {a;} € Zg?piApj. Since a;; + a;; € A, we have a;; + aj; = a1 + ias, where ay,
ay € (Zg?piAp,-)m, for all i and j. Then a;; + a;; = piaip; + pjarp; + i(piap; + pjasp;),
ay = pia1pj + pja1pi, ax = piazp; + pjasp; for all i and j. Let zzilj = piarpj + pjaipis
ﬂizj = piasxp; + pjaop; for all i and j. Then {a}j}, {aizj} € Zg?piApj by the definition of
Zj‘]?piApj. In this case {ag.}* = {ag.}, k =1,2. Since {a;} € Zg?piApj was chosen arbi-
trarily, we have the equality (1).

The rest part of Lemma 4 is valid by the definition of the self-adjoint elements {afj},

k=12 (]

Lemma 5 Let H be a Hilbert space, {ps} be an infinite orthogonal family of projections
in B(H) with the LUB 1. Then the operation of associative multiplication of the algebra
Z?n peB(H)py (i.e. of the algebra B(H)) coincides with the binary operation

53}
’1({ﬂs,n};{bs,n})—>{Zﬂgibin},{ﬂsn},{bén}e > peB(H)py |. )
i &

Proof Let {agy}, {bey) € (X8, peB(H)py). By

53}
B(H)=N =Y p:B(H)p,.
&n

it can be admitted that B(H) =N = Z?n peB(H)p,. There exists elements a, b
in B(H) such that pgap, = ag,, pebp, = bey for all & n. Therefore {ag,} = {psap,},
{bey} = {pebp,}. Then by Lemma 3 the associative multiplication of Zgn peB(H)py, (ie.
of B(H)) coincides with binary operation (2). O

Proposition 4 (Arzikulov 2008) Let A be a von Neumann algebra on a Hilbert space H,
{pi} be an infinite orthogonal family of projections in A with LUB 1. Then A = Z?,n PeApy

Proof Let a be an element of Z?ﬂ peAp, and a = {ag,}, where agz = peape,
agn = peapy for all&, 1. Thena € B(H) = Z?n peB(H)pyand O f_ pi)a(d i i1 px) € A
for every {pr};_; C {pe}. Let
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n n n
by = piap] = (Zﬁ) a (Z pZ‘)
kl=1 kl=1 kl=1
for all natural numbers # and finite subsets {p}}}_, C {p;}. Then by the proof of Lemma
3 in Arzikulov (2012) the net (5, ) ultraweakly converges to 4 in B(H). At the same time A
is ultraweakly closed in B(H). Therefore a € A and Zg.a,n peAp, C A g

Lemma 6 Let A be a C*-algebra on a Hilbert space H, {p:s} be an infinite orthogonal
Sfamily of projections in A with the LUB 1 in B(H). Then, if projections in {p¢ } are pairwise
equivalent and peApe is a von Neumann algebra for every index &, then Z?’n PeApy is
closed with respect to the multiplication of the algebra Z?n peB(H)py and Z?n PeApy is
a C*-algebra.

Proof First, note that (ps + p,)A(ps + py) is a von Neumann algebra. Indeed, for each
net (ao) in pgAp,, weakly converging in B(H) the net (aaxg‘n) belongs to p:Ape, where
Xgp is an isometry in A such that xg,,x;n =ps x;"nxgn = py- Then, since the net (aaxgn)
weakly converges in B(H), we have the weak limit b in B(H) of the net (aax’gn) belongs to
peApe. Hence bxg, € p:Ap,,. It is easy to see that bxg, is a weak limit in B(H) of the net
(a). Hence pgAp, is weakly closed in B(H).

Let {agy), (bey) € (OZF, peApy). By

3} 53}
> peApy S peB(H)p, = B(H)
&n &n

there exist elements a, b in Z?H peB(H)p, (ie. in B(H)) such that pgap, = agy,
pebpy = beyfor all § 1. Therefore {ag,} = {peapy}, {bey} = {pebpy}. Hence

Z agibiy = psabpy,

L

calculated in Z?n peB(H)p,, belongs to pgAp;. Since the indices &, n were chosen arbi-
trarily and the product {pgap, }{ps bp,} = ab belongs to ZSPU peB(H)p,, we have the prod-
uct of the elements a and b belongs to Z?’n peApy. Therefore Zg] PpeApy is closed with
respect to the associative multiplication of Z?n peB(H)py. At the same time, Z?n PeApyis
a norm closed subspace of Z?H peB(H)p, = B(H). Hence Zg}n peApy is a C*-algebra and
the operation of multiplication in Z?H peAp; can be defined as in Lemma 5. O

Theorem 3 Let A be a C*algebra on a Hilbert spaceH, {ps}be an infinite orthogo-
nal family of projections in A with the LUB 1 inB(H). Then the following statements are
valid:
(1) Suppose that projections in{pg Yare pairwise equivalent and for eachépg Apeis a von
Nemann algebra. Thenzg?n PeApyis a von Neumann algebra,
(2) ifzgn peApnis monotone complete in B(H) thenzg?n peApyis a C*-algebra.
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Proof (1) Let {x¢y} be a set of isometries in A such that ps = xg,,xg‘,’, Py = x’s"nxgn for all
& 1. Let &, n be arbitrary indices. We prove that ps Ap, is weakly closed. Let (4, ) be a net in
peApy, weakly converging to an element a in B(H). Then the exists a net (b, ) in pg Ap, such
that ay = x¢,baxey for all o. By separately weakly continuity of the multiplication the net
(aax},) weakly converges to axg, in B(H). Since (aax¢n*) C pgApg and pgApg is weakly
closed in B(H) we have axg‘n € peApe. Hence there exists an element b € A such that
axt, = xenbxgyxf,. Then axf, xen = xgybxgnxf, xey = Xenbxenpn = xgybxey € prApy. At
the same time ayp, = a, for all . Hence, ap,) = a. Sincea = ‘”‘;nxén = Xenbxg, € peApy
we have a € psAp,. Also, since the net (a,) is chosen arbitrarily we obtain the compo-
nent pgAp, is weakly closed in B(H). Let (a,) be a net in Zg?n peAp,, weakly converging
to an element a in B(H). Then for all £ and 7 the net (psaqp,) weakly converges to pzap,
in B(H). In this case, by the previous part of the proof pzap, € p:Ap, for all £ 1. Note
that a € Z?,’ peB(H)p),. Hence a € Z?n peApy,. Since the net (a,) is chosen arbitrarily
we have Z?,’ peApy is weakly closed in Zgn peB(H)p, = B(H). Therefore by Lemma 6
Z?n peApyis a von Neumann algebra.

Item (2) follows from (1). O

Proposition 5 Let A be a monotone complete C*-algebra on a Hilbert space H,{p¢ }be an
infinite orthogonal family of projections in A with the LUB 1 in B(H). Then the order unit
spacezgn PpeApyis monotone complete.

Proof 1tis clear that the C*-subalgebra ps Apt is also monotone complete for each &. Let
{p}}_, be a finite subset of {pz} and p =} }_; pr. Then the C*-subalgebra pAp is also
monotone complete.

Let (aq) be a bounded monotone increasing net in Z?n peApy. Since for every
{Pr)i—; € {pe) the subalgebra (37 _; p)A(D__, pk) is monotone complete we have

(S e (55 < (S 50

Hence, {ag,} = {sup, peaqps} U {ps (supy, (pe + py)aa(pe + py))Pyle2n is an element of
the order unit space Z?’n peApy. It can be checked straightforwardly using the definition
of the order in Zgn PpeApy that the element {a¢, } is the LUB of the net (a,). Since the net
(aq) was chosen arbitrarily we obtain the order unit space Zg?n peAp, is monotone com-
pete. O

Theorem 4 Let A be a monotone complete C*-algebra on a Hilbert space H,{pg}
be an infinite orthogonal family of projections in A with the LUB 1 in B(H). Suppose
that projections in{pelare pairwise equivalent and A is not a von Neumann algebra.

ThenA # Z?ﬂ peApy (e A= {{pgap,} 1a € A} # Z?n DPeApn).

Proof By the condition there exists a bounded monotone increasing net (a,) of ele-
ments in A, the LUB sup4 a4 in A and the LUB SUPS® . B(H)p, o in Z?n peB(H)py of
which are distinct. Otherwise A is a von Neumann algebra.
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By the definition of the order in ZEB,] peB(H)p, there exists a projection p € {p¢} such
that the LUB sup,, 4, paqp in pAp and the LUB sup 4, pPaap in pB(H)p of the bounded
monotone increasing net (pa, p) of elements in pAp are different. Indeed, let a = sup,4 aq,
b= sungan peB(H)p, %o Since A C Z?n peB(H)p,, we have b < g and 0 < a — b. Hence,
if pe(a — b)pe = 0 for all &, then pg(a — b) = (a — b)pe = 0. Therefore by Lemma 2 in
Arzikulov (2012) a — b = 0, i.e. a = b. Hence pAp is not a von Neumann algebra.

There exists an infinite orthogonal family {e;} of projections in pAp, the LUB SUPp4p €i
in pAp and the LUB sup ), €; in pB(H)p of which are different. Otherwise pAp is a von
Neumann algebra.

Indeed, every maximal commutative subalgebra A, of pAp is monotone complete. For
each normal positive linear functional p € B(H) and for each infinite orthogonal fam-
ily {g:} of projections in Ayp(sup; q;) = Y _; p(gi), where sup; g; is the LUB of the set {g;}
in A,. Hence by the theorem on extension of a o-additive measure to a normal linear
functional p|4, is a normal functional on A,. Hence A, is a commutative von Neumann
algebra. At the same time the maximal commutative subalgebra A, of the algebra pAp is
chosen arbitrarily. Therefore by Pedersen (1968) pAp is a von Neumann algebra. What is
impossible.

Let {x¢,} be a set of isometries in A such that ps = xg,,x;"n, Py = xg‘nxg,] for all &, n and
p1 = p. Let {x1¢} be the subset of the set {x¢,} such that p; = xlgxi‘é, ps = xi‘éxlg for all
& Without loss of generality we assume the set of indices i for {e;} is a subset of the set
of indices & for {pg}. Let {e;x1;} be the infinite dimensional matrix such that the compo-
nents, which are not presented, are zeros and {x};e}'} be a similar matrix. Then {x};e]} is
the conjugation of {x];e’} and >, exyxj,ef =D ;epref =D eef =5 ;e < SUP4, €i-
Therefore {ag,} € Zg] peApy Then {af,} € Z?n peApy. Therefore, if {az;} € A (ie.
in A:={{pzap,}:a € A)), then the product {as,}- {aé‘n} in Z?piB(H)pj belongs
to Zgn peApy. In this case the infinite dimensional matrix {ag,} - {a’gn} contains the
component . exy; - x};ef such that ), ex1;-x5ef = p1(Q; eix; - x§,6))p1. Hence
pilagn} -{af, D1 = >, eix1i - x7;ef and 37 ex; - xjsef € 171(227 psApy)p1 = p14p1.
Since ) ;eixy;-xjef =) epref =) el =) ;e we obtain ) e € piAp;, ie.
SUpP,p()p € € P1Ap1. The last statement is a contradiction. Therefore {ag,} ¢ A. Hence
A # Z?,n peApp ie. A= {{peap,} 1 a € A} # Zgn PeApn,. O

The following corollary follows from Theorem 4 and it’s proof.

Corollary 1 Let A be a C*-algebra on a Hilbert space H,{pg}be an infinite orthogonal
family of projections in A with the LUB 1 in B(H). Then the following statements are valid:

(1) suppose that the order unit spacezgn peApyis monotone complete and there
exists a bounded wmonotone increasing ne(aq)of elements inzgan peApy, the
LL[BsupZea pedp, aamzs y PeApnand the LL[BsupZ@ peB(H)p, aamzénp;:B(H)p,,of
which are dzstmct Then the vector spacezs . pgAp,,LS not closed with respect to the
multiplication ofzs,npr(H)p,,,

2) ifzgn PeApyis a C*-algebra then this algebra is a von Neumann algebra.
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Application

Let # be an infinite cardinal number, E be a set of indices of cardinality #. Let {e;;} be the
set of matrix units such that e; is a 7 x #-dimensional matrix, i.e. e = (@up)apiz (@ j)-
th component of which is 1, i.e. a;; = 1, and the other components are zeros. Let X be a
hyperstonean compact, C(X) be the commutative algebra of all complex-valued continu-
ous functions on the compact X and

M= {w’f ®)eglijez 1 (Vij A (x) € C(X))

(3K € R)(Ym € N)(Veuly—1 < {es})

> M@ey

51(},

kl=1...m
where| > 1 M (x)ex || < K means (Vx, € X)|| > kel m M (x,)ex |l < K. The set M
is a vector space with point-wise algebraic operations. The map || || : M — Ry defined
as
n
lall = sup M @ex|,
{expi—1 Sleg) || k=1

is a norm on the vector space M, wherea € M and a = {},ii(x)eij}.

In M we introduce an associative multiplication as follows: if x = {7 (x)ej},
y = {,tL‘7(x)e,'j} are elements of V then xy = {ZE )i (x),usj(x)ei}'}. With respect to this
multiplication M becomes an associative algebra.

Theorem 5 M is a von Neumann algebra of type Land M = C(X) ® M, (C).

Proof It is known that the vector space C(X, M, (C)) of continuous matrix-valued maps
on the compact X is a C*-algebra. Let A = C(X, M, (C)) and e; be a e;;-valued constant
map on X, i.e. e; is a projection in A. A C*-algebra A is embedded in B(H) for some Hil-
bert space H such that {e;} is an orthogonal family of projections with sup; ¢; = 1in B(H).
Then fo eiAej = M and Zf? eiAe;j is embedded in B(H). We have e;Ae; = C(X)e; for
each i, i.e. e;Ae; is weakly closed in B(H) for each i. Hence by Theorem 3 the image of M
in B(H) is a von Neumann algebra. Hence M is a von Neumann algebra. Note that {e;} is
a maximal orthogonal family of abelian projections with the central support 1. Hence M
is a von Neumann algebra of type I, Moreover the center Z(M) of M is isomorphic to
C(X) and M = C(X) ® M,,(C). The proof is complete. O

Conclusions

We conclude that a C*-algebra coincides with its IOD if and only if this C*-algebra is
weakly closed. If an IOD of a C*-algebra is weakly closed, then this IOD is a von Neu-
mann algebra. The construction of IOD is useful in investigating of operators and C*-
algebras. The norm of an infinite dimensional matrix is equal to the supremum of norms
of all finite dimensional main diagonal submatrices of this matrix and an infinite dimen-
sional matrix is positive if and only if all finite dimensional main diagonal submatrices of

this matrix are positive. Also we conclude that our ideas explained in the present paper
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may be applied to linear operators, matrices and algebraic structures as Jordan algebras
and Lie algebras.

Abbreviations
LUB: least upper bound; I0D: infinite order decomposition.
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