
Interval‑valued fuzzy φ‑tolerance 
competition graphs
Tarasankar Pramanik1†, Sovan Samanta2†, Madhumangal Pal3, Sukumar Mondal4 and Biswajit Sarkar2*

Background
Graphs can be considered as the bonding of objects. To emphasis on a real problem, 
those objects are being bonded by some relations such as, friendship is the bonding of 
pupil. If the vagueness in bonding arises, then the corresponding graph can be modelled 
as fuzzy graph model. There are many research available in literature like Bhutani and 
Battou (2003) and Bhutani and Rosenfeld (2003).

Competition graph was defined in Cohen (1968). In ecology, there is a problem of food 
web which is modelled by a digraph 

−→
D = (V ,

−→
E ). In food web there is a competition 

between species (members of food web). A vertex x ∈ V (
−→
D ) represents a species in the 

food web and arc 
−−→
(x, s) ∈

−→
E (

−→
D ) means that x kills the species s. If two species x and 

y have common prey s, they will compete for s. Based on this analogy, Cohen (1968) 
defined a graph model (competition graph of a digraph), which represents the relation-
ship of competition through the species in the food web. The corresponding undirected 
graph G = (V ,E) of a certain digraph 

−→
D = (V ,

−→
E ) is said to be a competition graph 

C(
−→
D ) with the vertex set V and the edge set E, where (x, y) ∈ E if and only if there exists 

a vertex s ∈ V  such that 
−−→
(x, s),

−−→
(y, s) ∈

−−−→
E(
−→
D ) for any x, y ∈ V , (x �= y).

There are several variations of competition graphs in Cohen’s contribution (Cohen 
1968). After Cohen, some derivations of competition graphs have been found in Cho 
et  al. (2000). In that paper, m-step competition graph of a digraph was defined. The 
p-competition graph of a digraph is defined in Kim et  al. (1995). The p-competition 
means if two species have at least p-common preys, then they compete to each other.

Abstract 

This paper develops an interval-valued fuzzy φ-tolerance competition graphs which is 
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fuzzy φ-tolerance competition graph as interval-valued fuzzy sets. Product of two 
IVFPTCGs and relations between them are defined. Here, some hereditary properties 
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In graph theory, an intersection graph is a graph which represents the intersection of 
sets. An interval graph is the intersection of multiset of intervals on real line. Interval 
graphs are useful in resource allocation problem in operations research. Besides, interval 
graphs are used extensively in mathematical modeling, archaeology, developmental psy-
chology, ecological modeling, mathematical sociology and organization theory.

Tolerance graphs were originated in Golumbic and Monma (1982) to extend some 
of the applications associated with interval graphs. Their original purpose was to solve 
scheduling problems for arrangements of rooms, vehicles, etc. Tolerance graphs are gen-
eralization of interval graphs in which each vertex can be represented by an interval and 
a tolerance such that an edge occurs if and only if the overlap of corresponding intervals 
is at least as large as the tolerance associated with one of the vertices. Hence a graph 
G = (V ,E) is a tolerance graph if there is a set I = {Iv: v ∈ V } of closed real intervals and 
a set {Tv: v ∈ V } of positive real numbers such that (x, y) ∈ E if |Ix ∩ Iy| ≥ min{Tx,Ty}. 
The collection <I ,T> of intervals and tolerances is called tolerance representation of the 
graph G.

Tolerance graphs were used in order to generalize some well known applications of 
interval graphs. In Brigham et al. (1995), tolerance competition graphs was introduced. 
Some uncertainty is included in that paper by assuming tolerances of competitions. A 
recent work on fuzzy k-competition graphs is available in Samanta and Pal (2013). In 
the paper, fuzziness is applied in the representation of competitions. Recently Pramanik 
et al. defined and studied fuzzy φ-tolerance competition graph in Pramanik et al. (2016). 
But, fuzzy phi-tolerance targets only numbers between 0 and 1, but interval-valued 
numbers are more appropriate for uncertainty. Other many related works are found in 
Pramanik et al. (2014) and Samanta and Pal (2015).

After (Rosenfeld 1975), the fuzzy graph theory increases with its various types of 
branches. Using these concept of fuzzy graphs, Koczy (1992) discussed fuzzy graphs 
to evaluate and to optimize any networks. Samanta and Pal (2013) showed that fuzzy 
graphs can be used in competition in ecosystems. After that, they introduced some dif-
ferent types of fuzzy graphs (Samanta and Pal 2015; Samanta et al. 2014). Bhutani and 
Battou (2003) and Bhutani and Rosenfeld (2003) discussed different arcs in fuzzy graphs. 
For further details of fuzzy graphs, readers may look in Mathew (2009), Mordeson and 
Nair (2000) and Pramanik et al. (2014). Applications of fuzzy graph include data mining, 
image segmentation, clustering, image capturing, networking, communication, plan-
ning, scheduling, etc. In this paper, interval valued fuzzy φ-tolerance competition graph 
is introduced. Some relations on product of interval valued φ-tolerance competition 
graphs are established. The authors’ contributions to develop competition graphs and 
tolerance graphs are listed in the Table 1. Also, the flow chart of the research contribu-
tion towards this research is given in Fig. 1.

Preliminaries
A function α:X → [0, 1], called the membership function defined on the crisp set X is 
said to be a fuzzy set α on X. The support of α is supp(α) = {x ∈ X |α(x) �= 0} and the core 
of α is core(α) = {x ∈ X |α(x) = 1}. The support length is s(α) = |supp(α)| and the core 
length is c(α) = |core(α)|. The height of α is h(α) = max{α(x)|x ∈ X}. The fuzzy set α is 
said to be normal if h(α) = 1.
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A fuzzy graph with a non-void finite set V is a pair G = (V , σ ,µ), where σ :V → [0, 1] 
is a fuzzy subset of V and µ:V × V → [0, 1] is a fuzzy relation (symmetric) on the fuzzy 
subset σ, such that µ(x, y) ≤ σ(x) ∧ σ(y), for all x, y ∈ V , where ∧ stands for minimum. 
The degree of a vertex v of a fuzzy graph G = (V , σ ,µ) is d(v) =

∑

u∈V−{v}
µ(v,u) . 

The order of a fuzzy graph G is O(G) =
∑

u∈V
σ(u). The size of a fuzzy graph G is 

S(G) =
∑

µ(u, v).
Let F = {α1,α2, . . . ,αn} be a finite family of fuzzy subsets on a set X. The 

fuzzy intersection of two fuzzy subsets α1 and α2 is a fuzzy set and defined by 
α1 ∧ α2 = {min{α1(x),α2(x)}|x ∈ X}. The union of two fuzzy subsets α1 and α2 is a fuzzy 

Table 1  Contributions of  the authors towards  interval valued φ-tolerance competition 
graphs

Authors Year Contributions

Cohen (1968) 1968 Introduced competition graphs

Kauffman (1973) 1973 Defined fuzzy graphs

Rosenfeld (1975) 1975 Modified the concept of fuzzy graphs given by Kauffman (1973)

Golumbic and Monma (1982) 1982 Established the concept of tolerance graphs

Cho et al. (2000) 2000 Defined m-step competition graphs

Samanta and Pal (2011) 2011 Introduced fuzzy tolerance graphs

Samanta and Pal (2013) 2013 Proposed the concept of fuzzy competition graphs

Pramanik et al. (2016) 2016 Advanced the idea of fuzzy φ-tolerance competition graphs and defined 
φ-tolerance competition graphs

This paper – Introduction of interval valued fuzzy φ-tolerance competition graphs

Fig. 1  Flow-chart of the research
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set and is defined by α1 ∨ α2 = {max{α1(x),α2(x)}|x ∈ X}. α1 ≤ α2 for two fuzzy subsets 
α1 and α2, if α1(x) ≤ α2(x) for each x ∈ X.

The fuzzy intersection graph of F  is the fuzzy graph Int(F) = (V , σ ,µ), where 
σ :F → [0, 1] is defined by σ(αi) = h(αi) and µ:F × F → [0, 1] is defined by

Here, µ(αi,αi) = 0 for all αi implies that the said fuzzy graph is a loop less fuzzy inter-
section graph and the fuzzy graph has no parallel edges as µ is uniquely defined.

Let us consider a family of fuzzy intervals FI = {I1, I2, . . . , In} on X. Then the fuzzy 
interval graph is the fuzzy intersection graph of these fuzzy intervals I1, I2, . . . , In.

Fuzzy tolerance of a fuzzy interval is denoted by T  and is defined by an arbitrary fuzzy 
interval, whose core length is a positive real number. If the real number is taken as L and 
|ik − ik−1| = L, where ik , ik−1 ∈ R, a set of real numbers, then the fuzzy tolerance is a 
fuzzy set of the interval [ik−1, ik ].

The fuzzy tolerance graph G = (V , σ ,µ) as the fuzzy intersection graph of finite 
family of fuzzy intervals I = {I1, I2, . . . , In} on the real line along with tolerances 
T = {T1, T2, . . . , Tn} associated to each vertex of vi ∈ V , where, σ :V → [0, 1] is defined 
by σ(vi) = h(Ii) = 1 for all vi ∈ V  and µ:V × V → [0, 1] is defined by

Fuzzy interval digraph is a directed fuzzy interval graph, whose edge membership 
function need not to be symmetric.

An interval number (Akram and Dudek 2011) D is an interval [a−, a+] with 
0 ≤ a− ≤ a+ ≤ 1. For two interval numbers D1 = [a−1 , a

+
1 ] and D2 = [a−2 , a

+
2 ], the fol-

lowing properties are defined:

(1)		 D1 + D2 = [a−1 , a
+
1 ] + [a−2 , a

+
2 ] = [a−1 + a−2 − a−1 · a−2 , a

+
1 + a+2 − a+1 · a+2 ],

(2)		 min{D1,D2} = [min{a−1 , a
−
2 }, min{a+1 , a

+
2 }],

(3)		 max{D1,D2} = [max{a−1 , a
−
2 }, max{a+1 , a

+
2 }],

(4)		 D1 ≤ D2 ⇔ a−1 ≤ a−2  and a+1 ≤ a+2 ,
(5)		 D1 = D2 ⇔ a−1 = a−2  and a+1 = a+2 ,
(6)		 D1 < D2 ⇔ D1 ≤ D2 and D1 �= D2,
(7)		 kD1 = [ka−1 , ka

+
2 ], where 0 ≤ k ≤ 1.

An interval-valued fuzzy set A on a set X is a function µA:X → [0, 1] × [0, 1] , 
called the membership function, i.e. µA(x) = [µ−

A (x),µ
+
A (x)]. The support of A is 

supp(A) = {x ∈ X |µ−
A (x) �= 0} and the core of A is core(A) = {x ∈ X |µ−

A (x) = 1} . 
The support length is s(A) = |supp(A)| and the core length is c(A) = |core(A)|. The 
height of A is h(A) = max{µA(x)|x ∈ X} = [max{µ−

A (x)}, max{µ+
A (x)}],∀x ∈ X. Let 

F = {A1,A2, . . . ,An} be a finite family of interval-valued fuzzy subsets on a set X. The 

µ(αi,αj) =

{

h(αi ∧ αj), if i �= j
0, if i = j.

µ(vi, vj) =















1, if c(Ii ∩ Ij) ≥ min{c(Ti), c(Tj)}
s(Ii∩Ij)−min{s(Ti),s(Tj)}

s(Ii∩Ij)
h(Ii ∩ Ij), else if s(Ii ∩ Ij) ≥

min{s(Ti), s(Tj)}
0, otherwise.
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fuzzy intersection of two interval-valued fuzzy sets (IVFSs) A1 and A2 is an interval-
valued fuzzy set defined by

The fuzzy union of two IVFSs A1 and A2 is a IVFS defined by

Fuzzy out-neighbourhood of a vertex v ∈ V  of an interval-valued fuzzy directed graph 
(IVFDG) 

−→
D = (V ,A,

−→
B ) is the IVFS N+(v) = (X+

v ,m+
v ), where X+

v = {u:µB(
−→
v,u) > 0} 

and m+
v :X

+
v → [0, 1] × [0, 1] defined by m+

v = µB(
−→
v,u) = [µ−

B (
−→
v,u),µ+

B (
−→
v,u)]

Here, B is an interval-valued fuzzy relation on a set X, is denoted by 
µB:X × X → [0, 1] × [0, 1] such that

An interval-valued fuzzy graph of a graph G∗ = (V ,E) is a fuzzy graph G = (V ,A,B), 
where A = [µ−

A ,µ
+
A ] is an interval-valued fuzzy set on V and B = [µ−

B ,µ
+
B ] is a symmet-

ric interval-valued fuzzy relation on E. An interval-valued fuzzy digraph 
−→
G = (V ,A,

−→
B ) 

is an interval-valued fuzzy graph, where the fuzzy relation −→B  is antisymmetric.
An interval-valued fuzzy graph ξ = (A,B) is said to be complete interval-valued fuzzy 

graph if µ−(x, y) = min{σ−(x), σ−(y)} and µ+(x, y) = min {σ+(x), σ+(y)}, ∀x, y ∈ V . 
An interval-valued fuzzy graph is defined to be bipartite, if there exists two sets V1 and 
V2 such that the sets V1 and V2 are partitions of the vertex set V, where µ+(u, v) = 0 if 
u, v ∈ V1 or u, v ∈ V2 and µ+(v1, v2) > 0 if v1 ∈ V1 (or V2) and v2 ∈ V2 (or V1).

The Cartesian product (Akram and Dudek 2011) G1 × G2 of two interval-
valued fuzzy graphs G1 = (V1,A1,B1) and G2 = (V2,A2,B2) is defined as a 
pair (V1 × V2,A1 × A2,B1 × B2) such that

(1)	

{

µ
−
A1×A2

(x1, x2) = min{µ−
A1
(x1),µ

−
A2
(x2)}

µ
+
A1×A2

(x1, x2) = min{µ+
A1
(x1),µ

+
A2
(x2)}

}

 for all x1 ∈ V1, x2 ∈ V2,

(2)	

{

µ
−
B1×B2

((x, x2), (x, y2)) = min{µ−
A1
(x),µ

−
B2
(x2, y2)}

µ
+
B1×B2

((x, x2), (x, y2)) = min{µ+
A1
(x),µ

+
B2
(x2, y2)}

}

 for all x ∈ V1 and 

(x2, y2) ∈ E2 ,

(3)	

{

µ
−
B1×B2

((x1, y), (y1, y)) = min{µ−
B1
(x1, y1),µ

−
A2
(y)}

µ
+
B1×B2

((x1, y), (y1, y)) = min{µ+
B1
(x1, y1),µ

+
A2
(y)}

}

 for all (x1, y1) ∈ E1 and 

y ∈ V2.

The composition G1[G2] = (V1 ◦ V2,A1 ◦ A2,B1 ◦ B2) of two interval-valued fuzzy 
graphs G1 and G2 of the graphs G∗

1 and G∗
2 is defined as follows:

(1)	

{

µ
−
A1◦A2

(x1, x2) = min{µ−
A1
(x1),µ

−
A2
(x2)}

µ
+
A1◦A2

(x1, x2) = min{µ+
A1
(x1),µ

+
A2
(x2)}

}

 for all x1 ∈ V1, x2 ∈ V2,

A1 ∩ A2 =

{(

x,
[

min{µ−
A1
(x),µ−

A2
(x)}, min{µ+

A1
(x),µ+

A2
(x)}

])

: x ∈ X
}

.

A1 ∪ A2 =

{(

x,
[

max{µ−
A1
(x),µ−

A2
(x)}, max{µ+

A1
(x),µ+

A2
(x)}

])

: x ∈ X
}

µ
−
B (x, y) ≤ min

{

µ
−
A (x),µ

−
A (y)

}

µ
+
B (x, y) ≤ min

{

µ
+
A (x),µ

+
A (y)

}
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(2)	

{

µ
−
B1◦B2

((x, x2), (x, y2)) = min{µ−
A1
(x),µ

−
B2
(x2, y2)}

µ
+
B1◦B2

((x, x2), (x, y2)) = min{µ+
A1
(x),µ

+
B2
(x2, y2)}

}

 for all x ∈ V1 and 

(x2, y2) ∈ E2 ,

(3)	

{

µ
−
B1◦B2

((x1, y), (y1, y)) = min{µ−
B1
(x1, y1),µ

−
A2
(y)}

µ
+
B1◦B2

((x1, y), (y1, y)) = min{µ+
B1
(x1, y1),µ

+
A2
(y)}

}

 for all (x1, y1) ∈ E1 and 

y ∈ V2,

(4)	

{

µ
−
B1◦B2

((x1, x2), (y1, y2)) = min{µ−
A2
(x2),µ

−
A2
(y2),µ

−
B1
(x1, y1)}

µ
+
B1◦B2

((x1, x2), (y1, y2)) = min{µ+
A2
(x2),µ

+
A2
(y2),µB1

(x1, y1)}

}

 otherwise.

The union G1 ∪ G2 = (V1 ∪ V2,A1 ∪ A2,B1 ∪ B2) of two interval-valued fuzzy graphs 
G1 and G2 of the graphs G∗

1 and G∗
2 is defined as follows:

(1)	















µ
−
A1∪A2

(x) = µ
−
A1
(x) if x ∈ V1 and x /∈ V2

µ
−
A1∪A2

(x) = µ
−
A2
(x) if x ∈ V2 and x /∈ V1

µ
−
A1∪A2

(x) = max{µ−
A1
(x),µ

−
A2
(x)} if x ∈ V1 ∩ V2.

(2)	















µ
+
A1∪A2

(x) = µ
+
A1
(x) if x ∈ V1 and x /∈ V2

µ
+
A1∪A2

(x) = µ
+
A2
(x) if x ∈ V2 and x /∈ V1

µ
+
A1∪A2

(x) = max{µ+
A1
(x),µ

+
A2
(x)} if x ∈ V1 ∩ V2.

(3)	















µ
−
B1×B2

(x, y) = µ
−
B1
(x, y) if (x, y) ∈ E1and (x, y) /∈ E2

µ
−
B1×B2

(x, y) = µ
−
B2
(x, y)if (x, y) ∈ E2and (x, y) /∈ E1

µ
−
B1×B2

(x, y) = max{µ−
B1
(x, y),µ

−
B2
(x, y)}if (x, y) ∈ E1 ∩ E2.

(4)	















µ
+
B1×B2

(x, y) = µ
+
B1
(x, y)if (x, y) ∈ E1and (x, y) /∈ E2

µ
+
B1×B2

(x, y) = µ
+
B2
(x, y)if (x, y) ∈ E2and (x, y) /∈ E1

µ
+
B1×B2

(x, y) = max{µ+
B1
(x, y),µ

+
B2
(x, y)}if (x, y) ∈ E1 ∩ E2.

The join G1 + G2 = (V1 + V2,A1 + A2,B1 + B2) of two interval-valued fuzzy graphs 

G1 and G2 of the graphs G∗
1 and G∗

2 is defined as follows:

(1)	

{

µ
−
A1+A2

(x) = (µ
−
A1

∪ µ
−
A2
)(x)

µ
+
A1+A2

(x) = (µ
+
A1

∪ µ
+
A2
)(x)

}

 if x ∈ V1 ∪ V2,

(2)	

{

µ
−
B1+B2

(x, y) = (µ
−
B1

∪ µ
−
B2
)(x, y)

µ
+
B1+B2

(x, y) = (µ
+
B1

∪ µ
+
B2
)(x, y)

}

 if (x, y) ∈ E1 ∩ E2,

(3)	

{

µ
−
B1+B2

(x, y) = min{µ−
A1
(x),µ

−
A2
(y)}

µ
+
B1+B2

(x, y) = min{µ+
A1
(x),µ

+
A2
(y)}

}

 for all (x, y) ∈ E′, where E′ is the set of 

edges connecting the vertices of V1 and V2.

Interval‑valued fuzzy φ‑tolerance competition graph
In this section, the definition of interval-valued fuzzy φ-tolerance competition graph is 
given and studied several properties.

Definition 1  (Interval-valued fuzzy φ-tolerance competition graph (IVFPTCG)) Let 
φ:N × N → N  be a mapping, where N is a set of natural numbers. Interval-valued fuzzy 
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φ-tolerance competition graph of an interval-valued fuzzy directed graph (IVFDG) 
−→
D = (V ,A,

−→
B ) is an undirected graph ITCφ(

−→
D ) = (V ,A,B′) such that

where, Tu, Tv are the fuzzy tolerances corresponding to u and v, respectively.
Taking φ as min. An example of this graph is given below.

Example 1  Consider an interval-valued fuzzy digraph 
−→
G = (V ,A,

−→
B ) shown in Fig. 2 

with each vertex have membership values [1, 1]. The edge membership values are taken as

Let core and support lengths of fuzzy tolerances T1, T2, T3, T4, T5 corresponding to the 
vertices v1, v2, v3, v4, v5 be 1, 1, 3, 2, 0 and 1, 2, 4, 3, 1, respectively. Here, it is true that 
φ{c(Tu), c(Tv)} = min{c(Tu), c(Tv)}.

Based on this consideration, the following computations have been made.

µB′(u, v) = [µ−
B′
(u, v),µ

+
B′
(u, v)]

=



































h(N+(u) ∩N+(v)),

if c(N+(u) ∩N+(v)) ≥ φ{c(Tu), c(Tv)}

s(N+(u)∩N+(v))−φ{s(Tu),s(Tv))}+1

s(N+(u)∩N+(v))
· h(N+(u) ∩N+(v)),

if s(N+(u) ∩N+(v)) ≥ φ{s(Tu), s(Tv)}

0, otherwise.

µB(
−−→
v1, v2) = [0.8, 0.9], µB(

−−→
v1, v5) = [0.7, 0.8],

µB(
−−→
v2, v5) = [0.6, 0.8], µB(

−−→
v3, v2) = [0.5, 0.7],

µB(
−−→
v3, v4) = [0.3, 0.5], µB(

−−→
v4, v1) = [0.7, 0.9],

µB(
−−→
v5, v3) = [0.6, 0.8], µB(

−−→
v5, v4) = [0.5, 0.6].

N+(v1) = {(v2, [0.8, 0.9]), (v5, [0.7, 0.8])}

N+(v2) = {(v5, [0.6, 0.8])}

N+(v3) = {(v2, [0.5, 0.7]), (v4, [0.3, 0.5])}

N+(v4) = {(v1, [0.7, 0.9])}

N+(v5) = {(v3, [0.6, 0.8]), (v4, [0.5, 0.6])}

Fig. 2  An interval-valued fuzzy digraph and its corresponding interval-valued fuzzy φ-tolerance competition 
graph. a An interval-valued fuzzy digraph, b interval-valued fuzzy ф-tolerance competition graph
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Therefore,

Then

Now,

Then by the definition of interval-valued fuzzy φ-tolerance competition graph, the ver-
tex membership function of the interval-valued fuzzy min-tolerance competition graph 
is that of interval-valued fuzzy digraph shown in Fig. 2 and the edge membership values 
are as follows:

A φ-T-edge clique cover (φ-T-ECC) of an interval-valued fuzzy graph G = (V ,A,B) 
with vertices v1, v2, . . . , vn is a collection S1, S2, . . . , Sk of subsets of V such that 
µ
−
B (vr , vs) > 0 if and only if at least φ(c(Tr), c(Ts)) of the sets Si, contain both vr and vs . 

The size k of a smallest φ-T-ECC of G taken over all tolerances T is the φ-T-edge clique 
cover number and is denoted by θφ(G).

Theorem 1  Let φ:N × N → N  be a mapping. If θφ(G) ≤ |V |, then there exists an inter-
val-valued fuzzy φ-tolerance competition graph.

Proof  Let us assume that θφ(G) ≤ |V | and S1, S2, . . . , Sk(k ≤ n) be a φ-T-ECC of an 
interval-valued fuzzy graph G. Each Si is defined by Si = {vj:µ

−
B (vi, vj) > 0}. Each 

Si is chosen in such a way that in the interval-valued fuzzy digraph 
−→
G = (V ,A,

−→
B ), 

µ
−
B (

−−→
vi, vj) = µ

−
B′(vi, vj) and µ+

B (
−−→
vi, vj) = µ

+
B′(vi, vj), if vj ∈ Si.

Now, in IVFG G, either c(N+(vi) ∩N+(vj)) ≥ φ{c(Tvi), c(Tvj )} or, s(N+(vi) ∩N+(vj)) ≥ 
φ{s(Tvi), s(Tvj )} must satisfy.

Hence, G is an interval-valued fuzzy φ-tolerance competition graph.�  �

Theorem 2  For an interval-valued fuzzy digraph G = (V ,A,
−→
B ), if there exists an inter-

val-valued fuzzy φ-tolerance competition graph, then θφ(
−→
G ) ≤ |V | = n.

N+(v1) ∩N+(v2) = {(v5, [0.6, 0.8])}

N+(v1) ∩N+(v3) = {(v2, [0.5, 0.7])}

N+(v3) ∩N+(v5) = {(v4, [0.3, 0.5])}

h(N+(v1) ∩N+(v2)) = [0.6, 0.8]

h(N+(v1) ∩N+(v3)) = [0.5, 0.7]

h(N+(v3) ∩N+(v5)) = [0.3, 0.5]

c(N+(v1) ∩N+(v2)) = 0; s(N+(v1) ∩N+(v2)) = 1

c(N+(v1) ∩N+(v3)) = 0; s(N+(v1) ∩N+(v3)) = 1

c(N+(v3) ∩N+(v5)) = 0; s(N+(v3) ∩N+(v5)) = 1.

µB(v1, v3) = [0.5, 0.7], µB(v1, v2) = [0.6, 0.8],
µB(v3, v5) = [0.3, 0.5].
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Proof  Let G = (V ,A,B′) be an interval-valued fuzzy φ-tolerance competition graph of 
−→
G  and V = {v1, v2, . . . , vn} and Si = {vj:µ

−
B′(vi, vj) > 0}. It is clear that there can be at 

most n numbers of Si’s.
Let T1, T2, . . . , Tn be the fuzzy tolerances associated to each vertex of V.
Now, µ(vr , vs) > 0 if and only if either c(N+(vr) ∩N+(vs)) ≥ φ{c(Tr), c(Ts)} or, 

s(N+(vr) ∩N+(vs)) ≥ φ{s(Tr), s(Ts)}.
Thus, at most n sets S1, S2, . . . , Sn make a family of φ-T-ECC of size at most n = |V |, i.e. 

θφ(
−→
G ) ≤ |V | = n.�  �

Theorem 3  Interval-valued fuzzy φ-tolerance competition graph G = (V ,A,B) cannot 
be complete.

Proof  Suppose, G be an interval-valued fuzzy φ-tolerance competition graph with 2 
vertices, x and y (say). For this graph there is no interval digraph with 2 vertices with 
some common preys. Hence, it cannot be complete.

If possible let, an IVFPTCG with 3 vertices be complete. Without any loss of gen-
erality, consider the graph of Fig.  3. This graph is nothing but a clique of order 3. As 
µB(x, y) �= [0, 0], x,  y has a common prey and it must be z. Thus, x, y is directed to z. 
Again µB(y, z) �= [0, 0] implies that, y, z is directed to x. But in IVFDG, it is not possible 
to have two directed edges (x, z) and (z, x) simultaneously. This concludes that there is 
no valid IVFDG for this IVFPTCG.

As, every complete IVFPTCG contains a clique of order 3, there does not exist 
any valid IVFDG. Hence, any interval-valued fuzzy φ-tolerance competition graph 
G = (V ,A,B) cannot be complete.�  �

Remark 1  The interval-valued fuzzy min-tolerance competition graph of an irregular 
interval-valued fuzzy digraph need not be irregular.

This can be shown by giving a counter-example. Suppose an interval-valued fuzzy 
digraph with 3 vertices shown in Fig. 4.

Fig. 3  A complete IVFPTCG
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Consider the core and support lengths of fuzzy tolerances associated to each of the 
vertices of the irregular interval-valued fuzzy digraph shown in Fig.  4 are 1,  1,  1 and 
1, 1, 1 respectively.

Remark 2  The interval-valued fuzzy min-tolerance competition graph of a regular 
interval-valued fuzzy digraph need not be regular.

To prove this, a counter-example is given in the Fig. 5.
In Fig.  5, the regular interval-valued fuzzy digraph has the degrees 

deg(v1) = deg(v2) = · · · = deg(v5) = [0.7, 0.9], but the degree of the vertices of inter-
val-valued fuzzy min-tolerance competition graph of the digraph shown in Fig.  5 are 
deg(v1) = [0.4, 0.5], deg(v2) = [0.6, 0.8], deg(v3) = [0.2, 0.3]. Hence, it is not regular.

Definition 2  The size of an interval-valued fuzzy graph G = (V ,A,B) is denoted by 
S(G) and is defined by

Theorem 4  Let 
−→
G  be an interval-valued fuzzy digraph and ITCφ(

−→
G ) be its interval-

valued fuzzy φ-tolerance competition graph. Then

S(G) =
∑

µB(u, v) =
[

∑

µ
−
B (u, v),

∑

µ
+
B (u, v)

]

.

S(ITCφ(
−→
G )) ≤ S(

−→
G ).

Fig. 5  A regular interval-valued fuzzy digraph and its corresponding interval-valued fuzzy min-tolerance 
competition graph

Fig. 4  Irregular interval-valued fuzzy digraph and its corresponding interval-valued fuzzy min-tolerance 
competition graph
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Proof  Let ITCφ(
−→
G ) = (V ,A,B′) be the interval-valued fuzzy φ-tolerance competi-

tion graph of an interval-valued fuzzy digraph 
−→
G = (V ,A,

−→
B ). As for every triangu-

lar orientation of three vertices in 
−→
G , as shown in Fig.  4, there is atmost one edge in 

ITCφ(
−→
G ), it is obvious that, an interval-valued fuzzy φ-tolerance competition graph 

has less number of edges than that of the interval-valued fuzzy digraph. Now, consider 
µB′(v1, v2) > 0 in ITCφ(

−→
G ) and N+(v1) and N+(v2) has at least one vertex in common 

and also h(N+(v1) ∩N+(v2)) = [1, 1] (as much as possible). Then there exist at least 
one vertex, say vi so that the edge membership value between v1, vi or v2, vi is [1, 1]. Then 
S(
−→
G ) > [1, 1] whereas, S(ITCφ(

−→
G )) ≤ [1, 1]. Hence, S(ITCφ(

−→
G )) ≤ S(

−→
G ). � �

Theorem  5  If C1,C2, . . . ,Cp be the cliques of order 3 of underlying undirected crisp 
graph of a IVFDG 

−→
G = (V ,A,

−→
B ) such that C1 ∪ C2 ∪ . . .Cp = V  and |Ci ∩ Cj| ≤ 1 

∀i, j = 1, 2, . . . , p. Then the corresponding IVFPTCG of 
−→
G  cannot have cliques of order 3 

or more.

Proof  From the given conditions of clique sets, i.e. C1 ∪ C2 ∪ . . .Cp = V  and 
|Ci ∩ Cj| ≤ 1∀i, j = 1, 2, . . . , p, it is clear that the interval-valued fuzzy digraph has only 
triangular orientation and no two triangular orientation has a common edge. That is, the 
IVFDG has no orientation shown in Fig. 6b. The IVFDG only have the orientations of 
type shown in Fig. 6a.

As for every triangular orientation, there have only one edge in interval-valued fuzzy φ
-tolerance competition graph, the said graph does not have a clique of order 3 or more.

Hence, interval-valued fuzzy φ-tolerance competition graph cannot have cliques of 
order 3 or more. � �

Theorem 6  If the clique number of an underlying undirected crisp graph of an interval-
valued fuzzy digraph 

−→
G = (V ,A,

−→
B ) is p, then the underlying crisp graph of the interval-

valued fuzzy φ-tolerance competition graph has the clique number less than or equal to p.

Fig. 6  Types of triangular orientation. a Two triangular orientation has a common edge, b two triangular 
orientation has no common edge
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Proof  Let us assume that the maximum clique of 
−→
G = (V ,A,

−→
B ) induces a subgraph 

−→
G′ which is also an interval-valued fuzzy directed graph. From Theorem 4, the size of 
interval-valued fuzzy φ-tolerance competition graph is always less than or equal to the 
size of interval-valued fuzzy directed graph, then the clique number of the interval-val-
ued fuzzy φ-tolerance competition graph cannot be greater than p. Hence the theorem 
follows.

Theorem 7  Interval-valued fuzzy φ-tolerance competition graph of a complete interval-
valued fuzzy digraph has maximum nC3 number of fuzzy edges.

Proof  It is obvious that every triangular orientation there exists an edge in IVFPTCG. 
Now, in a complete interval-valued fuzzy digraph µ−

B (x, y) = min{µ−
A (x), µ

−
A (y)}, and 

µ
+
B (x, y) = min{µ+

A (x),µ
+
A (y)}, ∀x, y ∈ V . Hence, every vertex is assigned to some vertex 

in V. Therefore, there are maximum nC3 number of orientations. Therefore, there exists 
maximum nC3 number of fuzzy edges in IVFPTCG.�  �

Application of interval‑valued fuzzy max‑tolerance competition graph 
in image matching
Computer world advances rapidly in this modern age. Yet, it is till now a dull thing to 
us. The major difference for image matching by human and computer is that computer 
could not match two or more images by saying that they are likely same, but human 
can. Here, we present an arbitrary example by considering that the images are distorted 
by some way and they have some distortion values like an image of an object without 
20% distorted (here, it is taken as arbitrary, it can be calculated by some pixel matching 
algorithm, which should be developed). For convenience, let us consider five types of 
different fonts A1,A2,A3,A4,A5 of the alphabet A as shown in Fig. 7. Taking each fonts 
A1,A2,A3,A4,A5 as vertices v1, v2, v3, v4, v5 respectively and there exists an edge between 
the vertices if two fonts have two different distortion values (d.v.). The corresponding 
graph model is shown in Fig. 8. Let the distortion values of fonts A1,A2,A3,A4,A5 be 70, 
20, 50, 80, 0% respectively. This can be modeled as the interval-valued fuzzy digraph (see 
Fig. 8) with a direction to the vertex, which has the minimum distortion value. The edge 
membership value of an edge between two vertices v1, v2 of this graph is calculated as 
µB(v1, v2) = [min{d.v. of v1100 , d.v. of v2100 }, max{d.v. of v1100 , d.v. of v2

100 }]. Each fonts have some tol-
erances i. e., the fonts can be distorted to a certain percentage. Arbitrarily, let us con-
sider the tolerance core and tolerance support lengths of the vertices v1, v2, v3, v4, v5 are 

Fig. 7  Different fonts of A and their distortion values
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0, 1, 0, 1, 2 and 1, 1, 1, 2, 3, respectively. Natural computations can be made and the max-
tolerance competition graph is obtained as shown in Fig. 9, which shows that the fonts 
A1,A4 are closely related and the closeness is approximately (0.35− 0.25) · 100% = 10%.

Product of two IVFPTCGs and relations between them
Throughout this paper, θ is taken as the null set in crisp sense and 

−→
G∗
1, 
−→
G∗
2 are the crisp 

digraphs.

Definition 3  The Cartesian product G1 × G2 of two interval-valued fuzzy digraphs 
−→
G1 = (A1,

−→
B1) and 

−→
G2 = (A2,

−→
B2) of the graphs 

−→
G∗
1 = (V1,

−→
E1) and 

−→
G∗
2 = (V2,

−→
E2) is 

defined as a pair (A1 × A2,
−−−−→
B1 × B2) such that

(1)	

{

µ
−
A1×A2

(x1, x2) = min{µ−
A1
(x1),µ

−
A2
(x2)}

µ
+
A1×A2

(x1, x2) = min{µ+
A1
(x1),µ

+
A2
(x2)}

}

 for all x1 ∈ V1, x2 ∈ V2,

Fig. 8  Interval-valued fuzzy digraph model of image matching

Fig. 9  Interval-valued fuzzy max-tolerance competition graph of Fig. 8
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(2)	







µ
−
B1×B2

(
−−−−−−−−→
(x, x2), (x, y2)) = min{µ−

A1
(x),µ

−
B2
(
−−→
x2, y2)}

µ
+
B1×B2

(
−−−−−−−−→
(x, x2), (x, y2)) = min{µ+

A1
(x),µ

+
B2
(
−−→
x2, y2)}







 for all x ∈ V1 and 

(
−−→
x2, y2) ∈ E2,

(3)	







µ
−
B1×B2

(
−−−−−−−−→
(x1, y), (y1, y)) = min{µ−

B1
(
−−→
x1, y1),µ

−
A2
(y)}

µ
+
B1×B2

(
−−−−−−−−→
(x1, y), (y1, y)) = min{µ+

B1
(
−−→
x1, y1),µ

+
A2
(y)}







 for all (
−−→
x1, y1) ∈ E1 and 

y ∈ V2 .

Theorem 8  For any two interval-valued fuzzy directed graphs 
−→
G1 and 

−→
G2,

considering tolerances T(x,y) corresponding to each vertex (x,  y) of 
−→
G1 ×

−→
G2 as 

c(T(x,y)) = min{c(Tx), c(Ty)} and s(T(x,y)) = min{s(Tx), s(Ty)}.

Proof  It is easy to understand from the definition of IVFPTCG that all vertices and 
their membership values remain unchanged, but fuzzy edges and their membership val-
ues have been changed. Thus, there is no need to clarify about vertices.

Now, according to the definition of Cartesian product of two interval-valued fuzzy 
directed graphs 

−→
G1 and 

−→
G2, there are two types of edges in 

−→
G1 ×

−→
G2. The two cases are as 

follows.
Suppose, all edges are of type ((x, x2), (x, y2)), ∀x ∈ V1 and (x2, y2) ∈ E2.
Obviously, from the definition of the Cartesian products of two directed graphs 

that, if x2, y2 have a common prey z2 in 
−→
G2, then (x, x2), (x, y2) have a common prey 

(x, z2) in 
−→
G1 ×

−→
G2, ∀x ∈ V1. Now, it has to show if µ−

B2
(x2, y2) > 0 in ITCφ(

−→
G2), then 

µ
−
B1×B2

((x, x2), (x, y2)) > 0 in ITCφ(
−→
G1 ×

−→
G2) is true. If µ−

B2
(x2, y2) > 0, then either 

c(N+(x2)∩ N+(y2)) ≥ φ{c(Tx2), c(Ty2)} or s(N+(x2)∩ N+(y2)) ≥ φ{s(Tx2), s(Ty2)} is 

true. From the previous claim, if z2 is the common prey of x2, y2 in 
−→
G2, (x, z2) is also a 

common prey of (x, x2) and (x, y2) in 
−→
G1 ×

−→
G2. Thus,

As, the either case is satisfied, therefore µ−
B1×B2

((x, x2), (x, y2)) > 0.
If all edges of type ((x1, y), (y1, y)), ∀y ∈ V2 and (x1, y1) ∈ E1, then the proof is similar to 

above case.
Hence, ITCφ(

−→
G1 ×

−→
G2) = ITCφ(

−→
G1)× ITCφ(

−→
G2) is proved. � �

Definition 4  The composition 
−→
G1[

−→
G2] = (A1 ◦ A2,

−−−−→
B1 ◦ B2) of two interval-valued 

fuzzy digraphs 
−→
G1 and 

−→
G2 of the graphs 

−→
G∗
1 and 

−→
G∗
2 is given as follows:

ITCφ(
−→
G1 ×

−→
G2) = ITCφ(

−→
G1)× ITCφ(

−→
G2),

s(N+(x, x2) ∩N+(x, y2)) = s
(

N+(x2) ∩N+(y2)
)

≥ φ
(

s(Tx2), s(Ty2)
)

≥ φ
(

min
{

s(Tx), s(Tx2)
}

, min
{

s(Tx), s(Ty2)
})

= φ
(

s(T(x,x2)), s(T(x,y2))
)

.
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(1)	

{

µ
−
A1◦A2

(x1, x2) = min{µ−
A1
(x1),µ

−
A2
(x2)}

µ
+
A1◦A2

(x1, x2) = min{µ+
A1
(x1),µ

+
A2
(x2)}

}

 for all x1 ∈ V1, x2 ∈ V2,

(2)	







µ
−
B1◦B2

(
−−−−−−−−→
(x, x2), (x, y2)) = min{µ−

A1
(x),µ

−
B2
(
−−→
x2, y2)}

µ
+
B1◦B2

(
−−−−−−−−→
(x, x2), (x, y2)) = min{µ+

A1
(x),µ

+
B2
(
−−→
x2, y2)}







 for all x ∈ V1 and 

(
−−→
x2, y2) ∈ E2 ,

(3)	







µ
−
B1◦B2

(
−−−−−−−−→
(x1, y), (y1, y)) = min{µ−

B1
(
−−→
x1, y1),µ

−
A2
(y)}

µ
+
B1◦B2

(
−−−−−−−−→
(x1, y), (y1, y)) = min{µ+

B1
(
−−→
x1, y1),µ

+
A2
(y)}







 for all (
−−→
x1, y1) ∈ E1 and 

y ∈ V2

(4)	







µ
−
B1◦B2

(
−−−−−−−−−−→
(x1, x2), (y1, y2)) = min{µ−

A2
(x2),µ

−
A2
(y2),µ

−
B1
(
−−→
x1, y1)}

µ
+
B1◦B2

(
−−−−−−−−−−→
(x1, x2), (y1, y2)) = min{µ+

A2
(x2),µ

+
A2
(y2),µB1

(
−−→
x1, y1)}







 otherwise.

Theorem 9  For any two interval-valued fuzzy directed graphs 
−→
G1 and 

−→
G2,

considering tolerances T(x,y) corresponding to each vertices (x,  y) of 
−→
G1 ◦

−→
G2 as 

c(T(x,y)) = min{c(Tx), c(Ty)} and s(T(x,y)) = min{s(Tx), s(Ty)}.

Proof  According to the same interpretation drawn in Theorem 8, the membership val-
ues of the vertices of 

−→
G1[

−→
G2] remains unchanged under the composition ◦.

Now, according to the definition of composition 
−→
G1[

−→
G2] = (A1 ◦ A2,B1 ◦ B2) of 

two interval-valued fuzzy directed graphs 
−→
G1 and 

−→
G2, there are three types of edges in 

−→
G1 ◦

−→
G2 . The three cases are as follows:

Case I	� For all edges of type ((x, x2), (x, y2)), ∀x ∈ V1 and (x2, y2) ∈ E2.

	� Obviously, from the definition of the Cartesian products of two directed 
graphs that, if x2, y2 have a common prey z2 in 

−→
G2 then, (x, x2), (x, y2) have 

also a common prey (x, z2) in 
−→
G1 ◦

−→
G2, ∀x ∈ V1. Now, if µ−

B2
(x2, y2) > 0 

in ITCφ(
−→
G2), then µ

−
B1◦B2

((x, x2), (x, y2)) > 0 in ITCφ(
−→
G1 ◦

−→
G2). If 

µ
−
B2
(x2, y2) > 0, then either c(N+(x2) ∩N+(y2)) ≥ φ{c(Tx2), c(Ty2)} or 

s(N+(x2) ∩N+(y2)) ≥ φ{s(Tx2), s(Ty2)} is true. From the previous claim that 

if z2 is the common prey of x2, y2 in 
−→
G2, (x, z2) is also a common prey of (x, x2) 

and (x, y2) in 
−→
G1 ◦

−→
G2, then 

ITCφ(
−→
G1 ◦

−→
G2) = ITCφ(

−→
G1) ◦ ITCφ(

−→
G2),

s(N+(x, x2) ∩N+(x, y2)) = s(N+(x2) ∩N+(y2))

≥ φ(s(Tx2), s(Ty2))

≥ φ(min{s(Tx), s(Tx2)}, min{s(Tx), s(Ty2)})

= φ(s(T(x,x2)), s(T(x,y2))).
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	� As, the either case is satisfied, µB1◦B2((x, x2), (x, y2)) > 0 is true.
Case II	� For all edges of type ((x1, y), (y1, y)), ∀y ∈ V2 and (x1, y1) ∈ E1.
	� This is similar as the Case I.
Case III	� For all edges of type ((x1, x2), (y1, y2)), where x1 �= y1 and x2 �= y2.

	� In this case, (x1, x2) and (y1, y2) have a common prey (z1, z2) in 
−→
G1 ◦

−→
G2 if x1, y1 

has a common prey z1 in 
−→
G1. In the similar way as in Case I, we can obtain 

	� If, either case is satisfied, then µ−
B1◦B2

((x1, x2), (y1, y2)) > 0 is valid.

Hence, ITCφ(
−→
G1 ◦

−→
G2) = ITCφ(

−→
G1) ◦ ITCφ(

−→
G2) is proved. � �

Definition 5  The union 
−→
G1 ∪

−→
G2 = (A1 ∪ A2,

−−−−→
B1 ∪ B2) of two interval-valued fuzzy 

digraphs 
−→
G1 and 

−→
G2 of the graphs 

−→
G∗
1 and 

−→
G∗
2 is defined as follows:

(1)	















µ
−
A1∪A2

(x) = µ
−
A1
(x)if x ∈ V1andx /∈ V2

µ
−
A1∪A2

(x) = µ
−
A2
(x)if x ∈ V2andx /∈ V1

µ
−
A1∪A2

(x) = max{µ−
A1
(x),µ

−
A2
(x)}if x ∈ V1 ∩ V2.

(2)	















µ
+
A1∪A2

(x) = µ
+
A1
(x)if x ∈ V1andx /∈ V2

µ
+
A1∪A2

(x) = µ
+
A2
(x)if x ∈ V2andx /∈ V1

µ
+
A1∪A2

(x) = max{µ+
A1
(x),µ

+
A2
(x)}if x ∈ V1 ∩ V2.

(3)	















µ
−
B1×B2

(
−→
x, y) = µ

−
B1
(
−→
x, y)if (

−→
x, y) ∈ E1and (

−→
x, y) /∈ E2

µ
−
B1×B2

(
−→
x, y) = µ

−
B2
(
−→
x, y)if (

−→
x, y) ∈ E2and (

−→
x, y) /∈ E1

µ
−
B1×B2

(
−→
x, y) = max{µ−

B1
(
−→
x, y),µ

−
B2
(
−→
x, y)}if (

−→
x, y) ∈ E1 ∩ E2.

(4)	















µ
+
B1×B2

(
−→
x, y) = µ

+
B1
(
−→
x, y)if (

−→
x, y) ∈ E1and (

−→
x, y) /∈ E2

µ
+
B1×B2

(
−→
x, y) = µ

+
B2
(
−→
x, y)if (

−→
x, y) ∈ E2and (

−→
x, y) /∈ E1

µ
+
B1×B2

(
−→
x, y) = max{µ+

B1
(
−→
x, y),µ

+
B2
(
−→
x, y)}if (

−→
x, y) ∈ E1 ∩ E2.

Theorem 10  For any two interval-valued fuzzy directed graphs 
−→
G1 and 

−→
G2,

Proof  There are four cases as follows:

Case I	� V1 ∩ V2 = θ

	� In this case, 
−→
G1 ∪

−→
G2 is a disconnected interval-valued fuzzy directed 

graphs with two components 
−→
G1 and 

−→
G2. Thus, there is nothing to prove that 

ITCφ(
−→
G1 ∪

−→
G2) = ITCφ(

−→
G1) ∪ ITCφ(

−→
G2).

s
(

N+(x1, x2) ∩N+(y1, y2)
)

= s
(

N+(x1) ∩N+(y1)
)

≥ φ
(

s(Tx1), s(Ty1)
)

≥ φ
(

min{s(Tx1), s(Tx2)}, min
{

s(Ty1), s(Ty2)
})

= φ
(

s(T(x1,x2)), s(T(y1,y2))
)

.

ITCφ(
−→
G1 ∪

−→
G2) = ITCφ(

−→
G1) ∪ ITCφ(

−→
G2).
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Case II	� V1 ∩ V2 = θ, (x1, x2) ∈ E1 and (x1, x2) /∈ E2

	� µ−
B1∪B2

(x1, x2) = µ
−
B1
(x1, x2) and it is obvious that if µ−

B1
(x1, x2) > 0 in 

ITCφ(
−→
G1), then µ−

B1∪B2
(x1, x2) > 0 in ITCφ(

−→
G1 ∪

−→
G2).

Case III	� V1 ∩ V2 = θ, (x1, x2) /∈ E1 and (x1, x2) ∈ E2
	� This is similar as in Case II.
Case IV	� V1 ∩ V2 = θ, (x1, x2) ∈ E1 ∩ E2

	� In this case, consider x1 and x2 have a common prey y1 in 
−→
G1 and y2 in 

−→
G2. 

This shows that s(N+(x1) ∩N+(x2)) in 
−→
G1 ∪

−→
G2 is greater than or equal to 

s(N+(x1) ∩N+(x2)) in 
−→
G1 or 

−→
G2. Hence, it can be found that if µ−

B1
(x1, x2) > 0 

in ITCφ(
−→
G1) and µ−

B2
(x1, x2) > 0 in ITCφ(

−→
G2), then µ−

B1∪B2
(x1, x2) > 0 in 

ITCφ(
−→
G1 ∪

−→
G2).

Hence, ITCφ(
−→
G1 ∪

−→
G2) = ITCφ(

−→
G1) ∪ ITCφ(

−→
G2) is proved. �

Definition 6  The join 
−→
G1 +

−→
G2 = (A1 + A2,

−−−−→
B1 + B2) of two interval-valued fuzzy 

digraphs 
−→
G1 and 

−→
G2 of the graphs 

−→
G∗
1 and 

−→
G∗
2 is defined as follows:

(1)	

{

µ
−
A1+A2

(x) = (µ
−
A1

∪ µ
−
A2
)(x)

µ
+
A1+A2

(x) = (µ
+
A1

∪ µ
+
A2
)(x)

}

 if x ∈ V1 ∪ V2,

(2)	

{

µ
−
B1+B2

(
−→
x, y) = (µ

−
B1

∪ µ
−
B2
)(
−→
x, y)

µ
+
B1+B2

(
−→
x, y) = (µ

+
B1

∪ µ
+
B2
)(
−→
x, y)

}

 if (−→x, y) ∈ E1 ∩ E2,

(3)	

{

µ
−
B1+B2

(
−→
x, y) = min{µ−

A1
(x),µ

−
A2
(y)}

µ
+
B1+B2

(
−→
x, y) = min{µ+

A1
(x),µ

+
A2
(y)}

}

 for all (−→x, y) ∈ E′, where E′ is the set of 

edges connecting the vertices (nodes) of V1 and V2.

Theorem  11  For any two interval-valued fuzzy directed graphs 
−→
G1 and 

−→
G2, 

ITCφ(
−→
G1 +

−→
G2) has less number of edges than that in ITCφ(

−→
G1)+ ITCφ(

−→
G2).

Proof  In ITCφ(
−→
G1)+ ITCφ(

−→
G2), (µ

−
B1

+ µ
−
B2
)(x1, x2) > 0 is true for all 

x1 ∈ V1 and x2 ∈ V2. But, in 
−→
G1 +

−→
G2, x1 and x2 have no common prey, then 

µ
−
B1+B2

(x1, x2) = 0 is valid for all x1 ∈ V1 and x2 ∈ V2. Thus, for all x1, x2 ∈ V1 ∪ V2, 
µ
−
B1+B2

(x1, x2) = 0 < (µ
−
B1

+ µ
−
B2
)(x1, x2) is true always. Hence, the result follows. � �

Insights of this study
• • Interval-valued fuzzy φ-tolerance competition graphs are introduced. The real life 

competitions in food web are perfectly represented by interval-valued fuzzy φ-toler-
ance competition graphs.

• • An application of fuzzy φ-tolerance competition graph on image matching is pro-
vided. Particularly, interval-valued fuzzy max-tolerance competition graph is used 
for this. Here, distorted images are matched for computer usages.
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• • Product of two IVFPTCGs and relations between them are defined. These results will 
develop the theory of interval-valued fuzzy graph literature. Some important results 
(Theorem 2, 3, 5, 9, 10) are proved.

Conclusions
Adding more uncertainty to fuzzy φ-tolerance competition graph, the interval-valued 
fuzzy φ-tolerance competition graph was introduced here. Some interesting proper-
ties was investigated. Interesting properties of the IVFPTCG were proved such that the 
IVFPTCG of a IVFDG behaved like a homomorphic function under some operations. 
Generally, competition graphs represent some competitions in food webs. But, it can be 
also used in every competitive systems. These competitive systems can be represented 
by bipolar fuzzy graphs, intuitionistic fuzzy graphs, etc. But, interval valued fuzzy sets 
are perfect to represent uncertainties. An application of IVFPTCG in image matching 
was illustrated. Also, it can be applied in various types of fields such as database manage-
ment system, network designing, neural network, image searching in computer applica-
tion, etc.
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