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Background
Various computing techniques inspired from nature has been extensively used in solv-
ing problems spanning from optimization, pattern recognition, machine learning, image 
detection to computer vision. There is hardly any field that is left uninfluenced by the 
nature-based computing techniques. Image Processing is one such field where recently 
biomimicry methods are being used invariably. One such application of nature-inspired 
computation is in the field of medical image processing, especially focused on object 
localization. In this paper, the problem of object localization in medical images has been 
solved with the application of the highly efficient plant growth simulation algorithm 
(PGSA) (Li and Wang 2008) applied to the analysis of white blood cell (WBC) images. 
WBCs, also known as leukocytes, play a very important role in the diagnosis of a myriad 
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of diseases. In most haematology labs, such cell differential analyses are performed 
using manual microscopy but this traditional process is not without its limitations. Such 
analysis require the availability of highly experienced personnel. Due to the substantial 
possibility of an inter and intra-observer variability in these manual examinations and 
due to the highly labour intensive routine procedures, new methods for cell analysis are 
being developed using digital image processing techniques to form better and reliable 
systems for disease diagnosis. However, high variability of cell shape, edge, localized 
features, the contrast between cell boundaries and background, cell size and positions 
have posed as challenges for the efficient object localization during the analysis of such 
smear images. In this paper, the process of detecting the white blood cells have been 
undertaken because as per haematology, the WBC tests are tougher and analysing them 
manually are more difficult as compared to red blood cells. The WBC detection prob-
lem has been solved in this article by viewing it as a circle detection problem because 
WBCs can be approximated as circular in shape. In medical imaging, detecting circular 
features holds huge significance (Karkavitsas and Rangoussi 2007). As per the existing 
conventional method of Hough Transform for circle detection in digital images (Muam-
mar and Nixon 1989), an edge detector is used to first find the two necessary and suffi-
cient parameters for circles i.e. the coordinates and the radius of the circle. Upon finding 
these, the image is averaged over its pixels, followed by filtration for detecting the image 
peaks. Finally, the image is transformed using a histogram. However, in order to cover 
all parameters (x, y, r), a lot of memory is required by this method. It also implies a high 
computational time complexity decreasing its processing speed. Also, the method is 
not resistant to noise thereby resulting in even lower accuracy (Atherton and Kerbyson 
1993). To overcome such a problem, some other approaches based on the Hough trans-
form, for instance the probabilistic Hough transform (Fischler and Bolles 1981; Shaked 
et al. 1996), the randomized Hough transform (RHT) (Xu et al. 1990), the fuzzy Hough 
transform, Circular Hough transform with local maximization (Yadav et al. 2014), one-
dimensional Hough Transform (Zhou et al. 2014), Hough Transform of curves (Campi 
et al. 2013) and recently scanline-based hybrid Hough Transform (Seo and Kim 2015) 
have been proposed with better time complexities but having average memory usage 
and no noise resistance. In order to overcome the drawbacks of the Hough Transforms, 
many optimization techniques have been applied to the circle detection problem. These 
methods have produced much higher accuracy, stability, computational speed and 
robustness as compared to the discussed Hough Transform as well as other methods like 
Otsu method based on circular histogram (Wu et al. 2006), WBC identification based on 
support vector machines (Wang and Chu 2009), and modified transformation methods 
as proposed in the scientific literatures (Becker et  al. 2002; George et  al. 2014). These 
optimization techniques are nature-inspired methods including genetic algorithms (GA) 
(Ayala-Ramirez et  al. 2006), simulated annealing with differential evolution (DE) (Das 
et  al. 2008), harmony search algorithm (Pan et  al. 2010, 2011; Cuevas et  al. 2012a, b, 
c), swarm intelligence methods like ant colony optimization based on ant regeneration 
and recombination to solve the circle detection problem (Chattopadhyay et  al. 2008), 
adaptive bacterial foraging algorithm with adaptive chemotactic step size to facilitate 
faster convergence (Dasgupta et al. 2008), artificial bee colony algorithm for circle detec-
tion (Cuevas et al. 2012a, b, c), clonal selection algorithm for circle detection based on 
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artificial immune system (Isa et al. 2010) and fuzzy cellular neural network (Tong et al. 
2005; Wang and Cheng 2007a, b), all of which has been discussed in context of solving 
the circle detection problem.

Hereunder each optimization method will be discussed one by one and their possi-
ble problems that were unaddressed in the cited literature before introducing our pro-
posed scheme. In summary, the genetic algorithm is the most favored computational 
intelligence model for multi-circle detection so far and has been proven to be more suit-
able for multi-circle detection problem among other computational intelligence based 
methods. However, due to the nature of global optimization of genetic algorithm, multi-
circle detection requires additional processing. The ideal case would be an algorithm 
with an inbuilt computational intelligence with a niche adaptability and robustness that 
only needs to run once like regular deterministic approaches. In Das et al. (2008), simu-
lated annealing and differential evolution has been combined to perform circle detec-
tion. Although the method here is robust to noise, it fails to detect circle locations with 
considerable precision, under both clear and noisy conditions seen from their result 
samples. In ant colony algorithm (Chattopadhyay et al. 2008), the final circle detection 
criterion is to threshold the deviation error derived from the detected radius which is 
the distance between corresponding edge pixels and circle center. This method is essen-
tially a closed loop tracking method, and its performance is questionable when circu-
lar shape edges are not enclosed (Chattopadhyay et  al. 2008). In Cuevas et  al. (2012a, 
b, c), where the artificial bee colony algorithm has been used, the potential problem is 
that a lot of memory space would be used if the iteration is set to a large number, but 
it saves rerun computations. For the fuzzy cellular neural network (Wang and Cheng 
2007a, b), the basic limitation is that it takes single inputs where only one WBC is ana-
lysed. Moreover, with an exponential increase in the number of iterations the detected 
circle gets distorted covering the surrounding area, thereby giving more false positives 
and losing out on the true positives. Also for the adaptive bacterial foraging algorithm in 
Dasgupta et al. (2008), the method is not inherently capable of detecting multiple circles. 
In the clonal selection algorithm for circle detection (Isa et al. 2010), both the antigens 
and antibodies are designed as 10-by-10 images and representations are a binary string 
which makes it not very practical to process normal resolution images.

In this paper, the detection of WBC has been done by the PGSA. The PGSA is a sto-
chastic evolutionary computation technique based on the natural growth process of a 
plant towards the global optimal solution—sunlight. Based on plant phototropism, the 
PGSA regards the feasible region of Integer programming as plant growth environ-
ment and evaluates the probability on different growth points according to the changes 
in the object function. It then grows towards the global optimal solution—light source. 
The plant grows a trunk from its roots; some branches will grow from the nodes on the 
branches. This repeats until a plant is formed. The plant branches out through a number 
of iterations (which can be considered as generations) towards the globally optimal solu-
tion, thereby forming an optimal configuration structure that can help it to absorb maxi-
mum sunlight for photosynthesis. In the literature (Wang and Cheng 2007a, b), PGSA 
is compared with other optimization algorithms where the results have shown that the 
optimal network given by PGSA is the best option as compared to the existing optimi-
zation techniques namely genetic algorithms, particle swarm optimization, gradient 
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descent and Tabu search, with a higher rate of accuracy and faster global optimization. 
As per the analyses, PGSA has the following advantages: (1) the objective function and 
constraint satisfaction are dealt separately, (2) it does not require any predefined error 
coefficient, rates of cross-over and mutation therefore resulting in stable solutions, (3) it 
has a search mechanism with ideal direction and randomness balancing property which 
is determined by the plant growth hormone (morphactin) concentration and thus finds 
the global optimal solution quickly. In literatures Luo and Yu (2008), Xu et al. (2012), Lu 
and Yu (2013), Kumar and Thanushkodi (2013), certain improvements have been car-
ried out on PGSA by studying growth characteristics of plants. The algorithm uses the 
variable growth rate of the plant vertex to reduce the search time and uses the vertical 
growth characteristics of the early growth to reduce search space; hence, it is possible 
to obtain a more optimal solution in less time. Thus, PGSA gives minimum loss while 
showing greater convergence stability.

The PGSA based circle detector uses three edge points on the image which are ran-
domly selected that represent candidate circles in the edge map of the blood sample 
image. First, a validation is done to check if these candidates are really present in the 
image edge map which is generated in the pre-processing stage that will be discussed 
later in the paper. This is done by calculating the fitness value of such candidates. The 
better a candidate circle approximates the actual edge circle, the better will be the fitness 
function value. Hence, the edge map should be accurate and precise enough. Further, the 
segmentation of the image, which will be mentioned in the pre-processing stage later 
in the paper, plays an important role to accurately measure the similarity of a candidate 
circle with an actual WBC. Guided by the values of the new objective function, the set 
of encoded candidate circles are evolved using the PGSA algorithm so that they can fit 
into the actual WBC on the image. The approach generates a subpixel detector which 
can effectively identify leukocytes in real images. PGSA is relatively new, having been 
introduced in the year 2005 and has never been applied to image processing techniques. 
This paper aims to apply this highly efficient evolutionary technique towards medical 
image processing, by proposing a new WBC detector algorithm that efficiently recog-
nizes WBC under different complex conditions while considering the whole process as a 
circle detection problem.

Circle detection using PGSA
Plant growth simulation algorithm (PGSA)

The PGSA is a bionic random algorithm guided by plant phototropism (the ability of a 
plant to bend towards the light source). The light source is the global optimal solution 
and the PGSA simulates the mechanism of plant phototropism by assessing the mor-
phactin concentration on the growth points of the plant. This morphactin concentration 
decides the growth of branches and leaves and is dependent on the intensity of light. 
PGSA regards the feasible region of Integer programming as plant growth environment 
and evaluates the probability on different growth points according to the changes in the 
light intensities taken as the corresponding objective function (Li and Wang 2008; Bhat-
tacharjee and Paul 2016). The algorithm emphasises on a plant system’s method of mak-
ing decisions which are based on plant’s growth rules and probability models. Biological 
experiments state the following plant growth laws: First, the node on the plant with a 
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higher morphactin concentration has a greater probability to grow into a branch. Sec-
ond, the morphactin concentrations on these nodes vary according to the environmen-
tal information and the relative positions of these nodes on the plant. If a node has the 
highest morphactin concentration and hence, if it grows into a branch, the morphactin 
concentrations of all the remaining plant nodes will be freshly allotted as per the new 
environment and the just branched node will have a concentration equal to zero.

Mathematical model for plant growth

According to the probability model of PGSA, f(i) is the fitness function for the node i on 
the plant to grow in the given environment. The biological laws of plant growth speci-
fies that if the value of f(i) is smaller, then node i has a better environment for grow-
ing into a new branch. The mathematical model of PGSA is as follows. Given a root R0,  
a trunk T grows from the root. Assuming that there are n nodes on the trunk T that 
might provide a more thriving growth environment than the root, i.e. the fitness func-
tion f (RTi ) <  f (R0) (i = 1, 2, . . . , n), the morphactin concentrations CTi of these nodes 
are shown in Eq. (1).

The above equation shows that the morphactin concentration of a node in a plant is 
dependent on the growth environment of all the nodes on the plant. A change in the 
concentration of one node, therefore effects the rest. These concentrations can be imag-
ined as a state space of the interval [0,1] because the 

∑

CTi = 1. The state space can be 
shown as in Fig. 1.

Now, from the state space of concentrations a random number is obtained which 
returns a random concentration CTM. The corresponding preferential node RTM takes 
the priority in the next iteration to branch out. However, the node RTM will grow into a 
branch only if the random number β satisfies the following two Eqs. (2) and (3).

(1)CTi =
f (R0)− f (RTi)

∑n
i=1

(

f (R0)− f (RTi)
) (i = 1, 2, . . . , n)

(2)0 ≤ β ≤

M
∑

i=1

CTi (M = 1)

(3)
M−1
∑

i=1

CTi < β ≤

M
∑

i=1

CTi (M = 2, 3, . . . , n)

Fig. 1  Morphactin concentration space
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After the branch sprouts out, the morphactin concentration of the current node, RTM , 
is set to zero and the morphactin concentration of the remaining nodes is reallocated as 
follows:

After the reallocation of the concentrations to all the nodes on the plant except RTM , 
the state space of concentrations is again formed with the same interval [0, 1]. Assum-
ing, the newly grown branch b has p nodes, such that f (Rbi) <  f (R0) (i = 1, 2, . . . , p), 
again a random number β is thrown in the state space and a new node branches out in 
the next iteration. The new state space has greater number of nodes now, i.e. the nodes 
previously present (n nodes) and the nodes on the new branch b (p nodes). This growth 
process stops in the bionic world when the plant has reached its maturity and cannot 
further branch out.

The PGSA has huge potential to be used in optimization problems. Here, the control 
parameters are the fitness function [f(i)], the initial solution (root), search domain of 
candidate solutions (length of the trunk and branches) and candidate solutions (plant 
nodes). Further, it has a well-balanced exploration to exploitation ratio (Crepinsek et al. 
2013). This method keeps exploring the entire search space with random node selection 
in the search interval [0, 1]. Although, candidate solutions (nodes) grow in each iteration 
the search space still remains in the interval [0, 1]. After the exploration, upon the selec-
tion of the best candidate solution (preferential node), the morphactin concentrations 
are reassigned by a neighbourhood like search that assesses the nodes in the vicinity of 
the just grown branch. The morphactin is not only assigned to the nodes on the new 
branch by exploitation but also to the previous nodes on the trunk by exploration in a 
given iteration. This is mainly because the objective function (growth environment) is 
dependent on the concentration of all the nodes on the plant. Thus PGSA has a well-
balanced exploration to exploitation ratio which is necessary for any search optimization 
algorithm.

There have been many algorithms, both traditional and evolutionary, that have been 
used for circle detection. As has been stated in the background study, all these meth-
ods had some disadvantages. PGSA, being inspired from plant phototropism has many 
advantages that can be used to solve the circle detection problem. The steps of the algo-
rithm has been outlined in Fig. 2.

Our approach is to use the above efficient naturally occurring technique to solve the 
leukocyte detection problem the overview of which is presented hereunder (Figs. 3, 4). 

Data pre‑processing

To employ the proposed scheme with respect to leukocyte detection, the smear images 
are pre-processed to obtain two new images. (1) The segmented image and (2) The edge 

(4)CTi =
f (R0)− f (RTi)

∑n
i=1,i �=M

(

f (R0)− f (RTi)
)

+
∑p

j=1

(

f (R0)− f
(

Rbj

))

(5)CTi =
f (R0)− f

(

Rbj

)

∑n
i=1,i �=M

(

f (R0)− f (RTi)
)

+
∑p

j=1

(

f (R0)− f
(

Rbj

))
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pixel map of the segmented image. For the segmentation pre-processing part, the WBCs 
are isolated from other structures including red blood cells and the background pixels. 
Information of colour, brightness, and gradients are used with a corresponding thresh-
old to generate classes to classify each pixel. A histogram thresholding has been incor-
porated to segment the WBCs.

Now that the segmentation is done, the corresponding edge map is produced. The 
edge map maintains the total object structure while being just a simple representation of 
the original image. There many different methods to detect the edges, but for our work 
the morphological edge detection procedure has been used (Fu and Han 2012; Chandra-
siri and Samarasinghe 2014) where erosion followed by inversion of the original image is 
carried out to ultimately compare it pixel-by-pixel with the original image. This results 
in the detection of pixels which are present in both the images. This gives the calculated 
edge map.

Fig. 2  Flowchart of the plant growth simulation algorithm

Fig. 3  Overview of the process for WBC detection from smear images
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Thereafter, the (xi, yi) coordinates for every pixel pi defining the image edge is stored 
in the image edge pixel vector P = {p1,p2, . . . , pNp}, with Np being the total number of 
pixels defining the edge of the analysed image.

Particle representation for candidate solutions

For the implementation of the algorithm the set of candidate solutions needs to be ini-
tialized. For this purpose, the circle candidates need to be constructed using the three 
non-collinear points on the edge of the circle, previously stored in the vector P. The indi-
ces which represent three edge pixel points are grouped assuming that the circle’s con-
tour map connects them together. Let the indices be ei, i = {1, 2, 3}, then the circle C 
passing through these points can be the potential candidate solution for the circle detec-
tion problem. C =  {pe1 , pe2 , pe3}. The centre and radius of the circle C are given by the 
well-known second degree equation as seen in Eq. (6).

Here x0 and y0 are computed using

where, 

and

(6)(x − x0)
2 +

(

y− y0
)2

= r2

(7)

x0 =
det (A)

4
((

xj−xi
)(

yk − yi
)

−
(

xk−xi
)(

yj − yi
)) ,

y0 =
det (B)

4
((

xj−xi
)(

yk − yi
)

−
(

xk−xi
)(

yj − yi
))

A =

[

x2j + y2j −
(

x2j + y2j

)

2
(

yj − yi
)

x2k + y2k −
(

x2i + y2i
)

2
(

yk − yi
)

]

Fig. 4  Detailed process for WBC detection from smear images
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and 

Here det(.) stands for the determinant and b ∈ {e1, e2, e3}. Therefore, a set of parameters 
is represented for each circle [x0, y0, r] as a transformation T for all edge vector indices 
e1, e2, e3 which yields:

By considering each index as a particle in the search space, the continuous search 
space is explored by using PGSA for a lookup of circle parameters [x0, y0, r].

Fitness function for the circle detection problem

Before defining the fitness function of the proposed scheme in context of the problem at 
hand, it is necessary to validate whether the circumference coordinates of the candidate 
circle C exists in the edge image. Upon this validation, the fitness function can be calcu-
lated. The coordinates spanning the circle circumference are J = {j1, j2, . . . , jN }, where N  
is the total number of pixel points used for validating the circle coordinates i.e. whether 
the candidate circle is in the edge map of the image. Thereafter, the fitness function f(C) 
is defined as the pixel by pixel similarity error between the above set of pixels J of the cir-
cle candidate C (particle) and the pixels of the edge map, giving a greater fitness value for 
a higher resemblance. This function is given as follows,

where, E(ji) is the expectation function of the presence of the candidate circle pixel at 
ji . Thus, E(ji) has maximum value of 1 if the pixel ji is an edge pixel point. For all other 
pixel points, the expectation function has a zero value. Also, Wp is the amount of white 
pixel falling inside the candidate circle represented by C and Bp is the amount of black 
pixels falling inside C (Cuevas et al. 2012a, b, c). These two parameters have been taken 
into the calculation of the objective function as analysis of smear images cannot be done 
by directly applying the PGSA algorithm to such images. Smear images present different 
imaging conditions and staining intensities, which result in noisy edge maps. Thus, in 
order to use PGSA based circle detector within the context of WBC detection, the fit-
ness function requires these parameters.

PGSA implementation

The PGSA has the following steps.

Step 1 The Canny filter finds and stores the edges in the vector P as discussed in the pre-
processing step, where P contains the set of all edge pixels of the image. The iteration 
index is set to 1.

B =

[

2
(

xj − xi
)

x2j + y2j −
(

x2i + y2i
)

2(xk − xi) x2k + y2k −
(

x2i + y2i
)

]

r =

√

(x − xb)
2 +

(

y− yb
)2

(8)[x0, y0, r] = T (e1, e2, e3)

(9)f (C) = 1−

∑N
i=1 E(ji)

N
−

Wp

Bp
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Step 2 k initial particles are generated (Ca,iteration=1, a ∈ [1.k]) in the plant growth envi-
ronment state space.

Step 3 The fitness function f
(

Ca,iteration=i

)

 is evaluated to find the best candidate solu-
tion like BM2 as mentioned in the PGSA discussion in the previous section. This best 
candidate solution is named as Cbest ← arg min{f (Ca,iteration=i)}.

Step 4 As per the PGSA discussed in the previous section, the constraint satisfaction 
at each of these particles (nodes) is checked, that is their morphactin concentration is 
calculated as per the Eq. (1). The particle with the higher morphactin concentration has 
a higher probability to branch out or move to the next iteration as an evolved candidate 
solution.

Step 5 The new branch position, which is the new particle’s position is stored and the 
morphactin concentrations of all the particles are calculated again according Eq. (4) and 
Eq. (5) except for Cbest as it has already produced a branch i.e. it is the best solution and 
hence is the current local optimum solution.

Step 6 For every new particle, a maximum number of q particles are generated as per 
j = 1, 2,…,q discussed previously and based on the newly calculated morphactin concen-
tration in Step 5, the new best candidate is found on the current generated branch in the 
previous step. This accounts for a neighbourhood like search for optimal candidate solu-
tions. This process of generating new candidate solutions continues till a better mini-
mized objective function is achieved and stops till there is no improvement in the fitness 
value of the generated candidate solutions.

Step 7 The set of all nodes that have branched out are the possible candidate solution 
with the final node Cbest being the global best solution and others the local optimal 
solutions.

Step 8 From the original edge map, the algorithm marks the points corresponding to 
Cbest. In case of multi-circle detection it jumps to Step 2.

Step 9 Finally, the best particle Cbest
Nc

 from each circle is used to draw (over the original 
image) the detected circles, where Nc is the number of circles detected.

Experimental results
In order to validate the proposed scheme, experimental tests were carried out and 
thereafter the algorithm performance was evaluated. The proposed method for the 
detection of WBC was tested over 80 microscopic images of blood smear with a resolu-
tion of 360 × 363 pixels. The precision and sensitivity of the algorithm has been tested 
under such challenging conditions. The images that were used for the experiments had 
several deformities, occlusions and overlaps with other images that pose a significant 
challenge for the circle detection. Figure 5a shows an input blood smear image sample 
tested with the proposed method for circle detection. Figure 5b shows the segmented 
WBCs obtained by histogram transforming. Figure 5c is the edge map of the segmented 
image and Fig. 5d is the heat map of the processed image followed by the heat map of the 
detected leukocytes as seen in Fig. 5e and finally Fig. 5f gives the detected WBCs.
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The proposed algorithm is tested on further complicated smear images having highly 
complex features due to an almost deformed cell. The result is presented in Fig.  6. It 
represents an example with an image of deformed cells. Clearly, detecting true circles 
in such complex images becomes tougher. Despite such imperfections, the proposed 
approach can effectively detect the cells as it is shown in Fig. 6f.

Further, the proposed scheme was tested for detecting partial or hidden leukocytes 
in blood smear images. Detecting partial and hidden leukocytes are utmost challenging 
for any detection method and thus, experiments were carried out to check if such leu-
kocytes can be correctly detected by the proposed scheme. The result is shown in Fig. 7. 
Although, the problem is quite complex in nature, PGSA is seen to be quite successful 
in detecting such leukocytes. However, the leukocytes that were detected were partially 
still visible with 68  % hidden surface and not for completely hidden leukocytes. Such 
detections will be part of the future scope of this paper.

Fig. 5  Resultant images of the first test on the application of the WBC detector. a Original image, b image 
segmented by histogram transformation, c image edge map, d heat map of the processed image, e the heat 
map of the detected circles on the leukocytes, and f the final result with the detected leukocyte solved in 
context of the circle detection problem
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Thus, the proposed method can successfully detect damaged, complex and partially 
hidden leukocytes correctly.

The dataset of smear-blood test images for evaluating the proposed scheme is down-
loaded from the website Cellavision.com. The dataset includes 80 images from the Cella-
vision public dataset which were in JPG format of size 360 × 363 pixels, with a resolution 
of 10 pixels per 1 μm. These images were medically graded and had 463 white blood cells 
(256 bright leukocytes and 207 dark leukocytes as per the blood smear conditions), all 
detected by a haematologist—a human medical expert. These numbers were taken as 
graded standards for all experimentations. For testing the proposed scheme over these 
images, the true positive rate (known as the number of correctly detected leukocytes 
over the number of leukocytes detected by the expert) and the false positive rate (known 
as the number of non-leukocytes that have been wrongly identified as leukocytes over 
the number of leukocytes which have been actually detected by the medical expert) have 
been evaluated. The results of the experiments show that the proposed method, achieves 
98.28 % leukocyte True Positive Rate with 1.72 % False Positive Rate, and is therefore, 

Fig. 6  Resultant images of the second test on the application of the WBC detector for a complex and 
deformed image. a Original image, b image segmented by histogram transformation, c edge map, d heat 
map of the processed image, e the heat map of the detected circles on the leukocytes, and f the final result 
with the detected leukocyte solved in context of the circle detection problem
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arguably better than the other existing methods. To establish this statement, the pro-
posed scheme has been further discussed and compared with other existing methods in 
context of the leukocyte detection problem as a circle detection problem hereunder.

Discussion
As this circle detection problem can be considered as a binary classification problem, 
where the detections can be classified as either positive or negative, the classification can 
be represented as a confusion matrix which has the following four classes. (1) True Posi-
tives for circles correctly detected as positives; (2) False Positives are wrongly detected 
circles as positives; (3) True Negatives are non-circles correctly detected as such; (4) 
False Negatives are positive circles incorrectly labelled as non-circles (Parikh et al. 2008, 
Davis and Goadrich 2006). According to the problem of circle detection, the circle can be 
either correctly detected (true positive), wrongly detected (false positive) or not detected 
at all (false negative). Thus there is no true negative in a circle detection task. A true 
negative condition would have arisen if there isn’t a circle in the image and the algorithm 
also hasn’t detected it. As it is a detection problem, non-detections of non-circles are not 
taken into consideration. Further, based on the confusion matrix, the parameters of true 
positive, false positive and false negative have been taken to evaluate the performance 
indices like true positive rate, false positive rate, false discovery rate and positive pre-
dictive value for further analysis of the proposed scheme. However, other performance 
indices like specificity and negative predictive value have not been used as they require 
true negatives by definition for the calculations (Parikh et al. 2008). As mentioned above, 
the dataset of 80 images from Cellavision Reference Library was used to identify both 
bright and dark leukocytes using our proposed scheme. The total number of detected 
leukocytes, wrongly detected leukocytes and undetected leukocytes have been shown 
in the Table 1 below. The detection rate and other performance indices in the confusion 
matrix have been compared among four algorithms. The images from the Cellavision 
dataset are processed by hough transform (traditional method), modified genetic algo-
rithm with ant colony optimization (both GA and swarm intelligence method are ana-
lysed here), fuzzy cellular neural network (which is a member of neural networks) and 
the proposed method of PGSA; as discussed previously in the background section. All 
the four algorithms are applied by maintaining their own settings. Thus the images were 
processed by making no further adjustments to the existing methods, thereby facilitating 

Fig. 7  Resultant images of the third test on the application of the WBC detector for a complex image with 
partially hidden and deformed cells. a Original image, b result image
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the performance comparison of all the methods over different blood smear images 
with varying background and target object conditions. These resultant images are then 
checked with medically graded standards by a medical expert.

It has been already seen that as far as the detection comparison is concerned the PGSA 
technique fairs extremely well with a detection rate of 98.28 % and is better when com-
pared to other leukocyte detection algorithms. The detection rate is depicted from the 
ROC curve of the True Positive Rate or the Detection Rate versus the False Positive Rate 
as shown in Fig. 8.

Thereafter all the results are analysed with the help of statistically calculated preci-
sion and sensitivity graphs as shown in Figs. 9 and 10. The algorithm is tested out and 

Table 1  Comparative performance of  HT, FCCN, GA+ACO and  PGSA for  leukocyte detec-
tion with respect to true positive rate, false positive rate, false discovery rate and positive 
predictive value

Italic values signifies the % of true and false positive

Leuko-
cyte type

Method Leuko-
cytes 
detected 
(true 
positives)

Missing 
leuko-
cytes 
(false 
nega-
tives)

Missing 
leuko-
cytes 
(false 
nega-
tives)

True 
positive 
rate (%)

False 
positive 
rate (%)

False 
discovery 
rate (%)

Positive 
predictive 
value (%)

Bright leu-
kocyte 
(256)

HT 135 121 67 46.85 30.18 59.90 66.83

FCCN 206 50 55 78.83 24.77 19.16 78.93

GA + ACO 217 39 42 83.78 18.92 15.06 83.78

PGSA 242 14 10 98.01 1.99 5.56 96.03

Dark leu-
kocyte 
(207)

HT 100 107 54 48.04 26.47 69.48 64.94

FCCN 168 39 49 81.37 24.02 17.97 77.42

GA + ACO 183 24 38 88.72 18.63 10.86 82.81

PGSA 202 5 6 98.55 1.45 2.40 97.12

Overall 
(463)

HT 235 228 121 47.42 28.40 64.04 66.01

FCCN 374 89 104 80.05 24.41 18.62 78.24

GA + ACO 400 63 80 86.15 18.78 13.13 83.33

PGSA 444 19 16 98.28 1.72 4.13 96.52

Fig. 8  ROC curve of the true positive rate versus the false positive rate in the proposed method
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evaluated for its efficiency based on two parameters named as precision and sensitivity 
as defined below.

Under ideal conditions, the precision and sensitivity both are 100  %, thus the cir-
cle detection technique under such scenario would be able to find all the circles in the 
image without any false positives or un-detected circles. But under normal conditions 

(10)Precision =
correctly detected circles

correctly detected circles+ wrongly detected circles

(11)Sensitivity =
correctly detected circles

correctly detected circles+ undetected circles
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Fig. 9  The precision measure for the detection of true positives by all the four algorithms
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Fig. 10  The sensitivity graph for the four algorithms
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precision and sensitivity is seen to decrease because when detecting such circles from 
the images the circle detection method has to find both the centre of the circle as well as 
the radius of the circle.

Precision is a measurement of the rate of correct detection over all detected circles. A 
perfect situation arrives when there is a straight line all along 100 % of y-axis in Fig. 6 for 
all the images. It is apparent that Hough Transform based method has the worst results, 
which is not beyond expectation. A completely extreme case is a 0 % precision, imply-
ing no detection at all. Regular Hough Transform suffers a number of false detections 
with many images. The Modified Genetic Algorithm with Ant Colony Optimization and 
PGSA are seen to achieve correct detection above 90 % with small standard deviation, 
which are superior to the Fuzzy Cellular Neural Network (FCCN) and evidently the con-
ventional Hough Transform. The possible problem with the FCCN is that it requires a 
lot of computational time and memory to train its network and the detection is achieved 
over a large number of generations. Also, as shown in Cuevas et al. (2012a, b, c), when 
the number of iterations increases, the possibility to cover other structures increases 
too. Thus, if the image has a complex background like in smear images, the method gets 
confused because of which finding the correct contour configuration from the gradient 
magnitude becomes highly difficult.

Sensitivity evaluates the detection rate over all existing circular shapes. On one hand, 
a low sensitive setting would result in good precision numbers because detected circles 
must be true and distinctive, while sensitivity rate would be low because non-perfect 
shapes are missing. On the other hand, high sensitivity means reducing missing inci-
dence but increasing the false detection rate at the same time. The PGSA model initial-
izes nodes on all edge segments, which gives an almost perfect 100 % overall sensitivity, 
due to every edge segment being checked for constraint satisfaction during each itera-
tion as seen in Fig. 10. Additionally, with the inherent randomness and ideal load bal-
ancing capabilities to give optimal configurations, this stochastic method converges very 
fast as well (Table 2).

In Fig. 11, the results of both the precision and sensitivity have been combined at the 
same time from the previous two figures. Under the ideal situation, the result would be 
that all the values would have been centred at the top right corner giving 100 % detection 
rate. In Fig. 11, the line of y = x indicates an equal probability detection rate based on hit 
and trial where the probability of such detections become 0.5 or 50 %. Thus, after both 
precision and sensitivity were combined, the data samples were seen to be scattered for 
the algorithm with the least satisfactory performance while the data points were seen 
to incline towards the upper right corner or 100  % detection rate with an improved 

Table 2  Statistics of sensitivity for the four analysed algorithms

Approach Maximum Minimum Mean SD

Hough transform 1 0 0.87 0.198

FCCN 1 0.56 0.93 0.104

GA + ACO 1 0.5 0.97 0.075

PGSA 1 0.73 0.98 0.049
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algorithm like FCCN, Genetic Algorithm with Ant Colony Optimization and PGSA, in 
that order. This shows the advantage of PGSA model over the other methods.

In addition to the above performance measures, the proposed algorithm was also 
tested for its resistance towards noise. Most of the blood smear images are noisy because 
of defects or noise in the system that acquires such images, the haematology equipment 
or other factors. Thus, the circle detection task also depends on how noise-resistant the 
applied algorithm is. In order to test this performance characteristic of the proposed 
algorithm the images from the used dataset were corrupted using the (1) Gaussian noise, 
(2) Salt and pepper noise, which are the most pedestrian noise found in smear images of 
blood samples. All the 80 images containing 463 leukocytes (both bright and dark) were 
corrupted with these two noise types in varying levels and were analysed by applying the 
four algorithms. The Gaussian noise level was used at σ = 10 and σ = 15 and the salt and 
pepper noise level was used at 10 and 15 %. Examples of such corrupted images used for 
the noise-resistance experiment are shown in Fig.  12. The performance of these algo-
rithms are shown in Tables 3 and 4 respectively.

Fig. 11  The precision and sensitivity graph of the four algorithms

Fig. 12  Examples of noisy image contaminated with a Gaussian noise at σ = 15 and b salt and pepper noise 
at 15 %, used in the experiment to measure the noise-resistance of the various methods
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Thus, even under noisy conditions the PGSA is the most robust method to detect the 
leukocytes with the best detection rate, best positive predictive value, least false positive 
rate and the least false discovery rate.

Conclusion
In this paper, a new bionic random search algorithm has been proposed that makes 
use of the objective function’s value as an input to the learning model while simulat-
ing a plant’s phototropism for the automatic detection of WBCs that are embedded 
into complicated, obscure and cluttered smear images by considering the WBC detec-
tion problem as a circle detection problem. The PGSA has been applied to solve this 
circle detection problem which gives the location of the WBCs in the images using three 
non-collinear edge points on the segmented edge map of the image as candidate circles. 
The resemblance of the encoded candidate circles to the actual WBC is evaluated by the 
objective function which uses the edge map and segmentation results for calculating the 

Table 3  Comparative performance of  leukocyte detection over  80 images contaminated 
by various levels of gaussian noise

Noise 
level

Method Leu-
kocyte 
detected 
(true 
positives)

Missing 
Leu-
kocyte 
(false 
nega-
tives]

Wrongly 
detected 
leukocyte 
(false 
positives)

True 
positive 
rate (%)

False 
positive 
rate (%)

False 
discovery 
rate (%)

Positive 
predictive 
value (%)

Gaussian 
noise

463 leuko-
cytes

σ = 10

HT 206 257 77 40.37 18.07 90.81 72.79

FCCN 343 120 71 72.53 16.67 28.99 82.85

GA + ACO 335 128 65 70.66 15.26 32.00 83.75

PGSA 431 32 21 93.19 4.93 7.08 95.35

Gaussian 
noise

463 leuko-
cytes

σ = 15

HT 177 285 106 33.57 24.88 98.77 62.54

FCCN 315 148 89 65.96 20.89 36.63 77.97

GA + ACO 298 165 102 61.97 23.94 41.25 74.50

PGSA 414 49 32 89.20 7.51 10.99 92.83

Table 4  Comparative performance of  leukocyte detection over  80 images contaminated 
by various levels of salt and pepper noise

Noise 
level

Method Leu-
kocyte 
detected 
(true 
positives)

Missing 
leukocyte 
(false 
nega-
tives)

Wrongly 
detected 
leukocyte 
(false 
positives)

True posi-
tive rate 
(%)

False 
positive 
rate (%)

False 
discovery 
rate (%)

Positive 
predictive 
value (%)

Salt and 
pepper

Noise level 
10 %

463 leuko-
cytes

HT 182 281 114 34.74 26.76 94.93 61.49

FCCN 304 159 106 63.38 24.88 38.78 74.15

GA + ACO 284 179 118 58.68 27.70 44.53 70.65

PGSA 424 39 30 91.55 7.04 8.59 93.39

Salt and 
pepper

Noise level 
15 %

463 leuko-
cytes

HT 135 328 120 23.71 28.17 128.63 52.94

FCCN 274 189 78 56.34 18.31 53.69 77.84

GA + ACO 218 245 123 43.19 28.87 71.85 63.93

PGSA 408 55 35 87.79 8.21 12.42 92.10
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resemblances. Based on the calculated value of the objective function, the set of encoded 
candidate circles (branch nodes) are evolved by using the PGSA so that they can fit 
into the actual blood cells that are contained in the edge map. The experimental results 
and the performance of the PGSA has been compared with other existing WBC detec-
tion algorithms which demonstrate the high performance of the proposed method in 
terms of detection accuracy, precision, and sensitivity and also under noisy conditions. 
Although, there has been quite some research done to solve the circle detection prob-
lem when processing images, it has not been applied in the context of medical image 
processing. Moreover, PGSA has never been applied to solve such a problem. This evo-
lutionary algorithm is highly efficient and is new to the field of computing intelligence. 
Thus, it offers a lot of scope for applications, implementations and further extension of 
this algorithm.
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