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Background
Differential equations are relevant tools to model a wide variety of physical phenomena 
across all areas of applied sciences and engineering. Analytical techniques are applied to 
find the exact solutions of some cases of differential equations; nevertheless, when the 
differential equations are nonlinear there are no general techniques of solutions. There-
fore, numerical methods are important tools to study and understand the quantitative 
behavior of the nonlinear differential equations with unknown exact solutions. How-
ever, such methods can exhibit numerical instabilities, oscillations or false equilibrium 
states, among others (Gumel 2002, 2003; de Markus and Mickens 1999). This means that 
the numerical solution may not correspond to the real solution of the original problem. 
This situation is further aggravated for some types of differential equations like differ-
ential-algebraic equations, fractional differential equations and time delay differential 
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equations (DDEs), among others (Ford and Wulf 2000; Engelborghs et al. 2000; Ascher 
and Petzold 1998; Campbell et al. 2008; Wanner and Hairer 1998).

Time DDEs appear in propagation and transport phenomena, population dynamics, 
bioscience problems, neural network model, control problems, electrical networks con-
taining lossless transmission lines and economical systems where decisions and effect 
are separated by some time intervals, among many other applications (Martín and 
García 2002a, b; Aiello and Freedman 1990; Gourley and Kuang 2004a, b; Kuang 1993; Li 
et al. 2006; Li and Jiang 2013; Zhang and Zhang 2013). Given the importance of this kind 
of equations, some numerical methods have been developed to solve them; among them 
one can mention: variable multi-step methods (Martín and García 2002a, b), Chebyshev 
polynomials for pantograph differential equation (Sedaghat et al. 2012), a spectral Galer-
kin method for nonlinear delay convection-diffusion reaction equations (Liu and Zhang 
2015), power series method (Benhammouda et al. 2014a) and the differential transform 
method (DTM) (Karako and Bereketoglu 2009).

In this work, we propose some case studies of nonlinear DDEs with variable time 
delays. For such case studies, there are no known numerical methods available. There-
fore, we propose a multi-step method with a modified version of the DTM (Zhou 1986; 
Keskin et al. 2007; Benhammouda et al. 2014b; Benhammouda and Vazquez-Leal 2015; 
Biazar and Eslami 2010; Chen and Liu 1998; Ayaz 2004; Kangalgil and Ayaz 2009; Kanth 
and Aruna 2009; Arikoglu and Ozkol 2007; Chang and Chang 2008; Kanth and Aruna 
2008; Lal and Ahlawat 2015; Odibat et al. 2010; El-Zahar 2013; Gökdoğan et al. 2012) in 
order to find the solutions of variable time DDEs.

In the literature, there are some works reporting variable time delays. For instance, 
Taylor series method is applied to solve time-dependent stochastic DDEs (Milošević 
and Jovanović 2011). In addition, a study of asymptotic neutral type differential equa-
tions with variable time delay is given in Skvortsova (2015). Besides, a study of asymp-
totic behavior of first order differential equations with variable delay is presented in 
Dix (2005). In Ding et  al. (2010), some new conditions for the boundness and stabil-
ity by means of the contraction mapping principle are given for nonlinear scalar DDEs 
with variable delays. The issue of uniqueness of variable DDEs is investigated in Win-
ston (1970), Eloe et al. (2005), Liu and Clements (2002) and Luo et al. (2013). Finally, a 
research for the existence of attractors for differential equations with a variable delay is 
presented in Graef and Qian (2000) and Caraballo et al. (2001).

Nonetheless, in the present study, we propose different types of variable delays in 
terms of algebraic expressions of the time. What is more, given that the approximate 
solutions of the DTM are power series solutions, we propose to extend the domain of 
convergence by using a combined scheme of a multi-step technique and the Laplace–
Padé resummation method (Vazquez-Leal and Guerrero 2014; Filobello-Nino et  al. 
2013; Jiao et al. 2002; Sweilam and Khader 2009; Momani et al. 2009; Khan and Faraz 
2011; Momani and Ertürk 2008; Tsai and Chen 2010; Ebaid 2011).

This paper is organized as follows: in “Differential transform method” section, we 
introduce the basic concept of the DTM. Then, in “Multi-step technique and DTM for 
nonlinear variable DDEs” section, the proposed multi-step technique with the use of the 
DTM to deal with variable time DDEs is presented. “Padé approximant” and “Laplace–
Padé resummation method” sections are devoted to present the basic concepts of Padé 
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and Laplace–Padé resummation methods. In “Case studies” section, the type of delay 
differential equations with variable delays under study is presented and solved using the 
proposed technique. Finally, discussion and conclusions are given in “Discussion” and 
“Conclusions” sections, respectively.

Differential transform method
For convenience of the reader, we will give a review of the differential transform method 
(DTM) (Zhou 1986; Keskin et al. 2007; Benhammouda et al. 2014b; Benhammouda and 
Vazquez-Leal 2015; Biazar and Eslami 2010; Chen and Liu 1998; Ayaz 2004; Kangalgil 
and Ayaz 2009; Kanth and Aruna 2009; Arikoglu and Ozkol 2007; Chang and Chang 
2008; Kanth and Aruna 2008; Lal and Ahlawat 2015; Odibat et al. 2010; El-Zahar 2013; 
Gökdoğan et al. 2012). We will also describe the DTM to solve systems of ordinary dif-
ferential equations.

Definition 1  (Zhou 1986; Keskin et al. 2007) If a function u(t) is analytical with respect 
to t in the domain of interest, then

is the transformed function of u(t).

Definition 2  (Zhou 1986; Keskin et al. 2007) The differential inverse transforms of the 
set 

{

U(k)
}n

k=0
 is defined by

Substituting (1) into (2), we deduce that

From the above definitions, it is easy to see that the concept of the DTM is obtained 
from the power series expansion. To illustrate the application of the proposed DTM to 
solve systems of ordinary differential equations, we consider the nonlinear system

where f (u(t), t) is a nonlinear smooth function.
System (4) is supplied with some initial conditions

(1)U(k) =
1

k!

[

dku(t)

dtk

]

t=t0

,

(2)u(t) =
∞
∑

k=0

U(k)(t − t0)
k .

(3)u(t) =
∞
∑

k=0

1

k!

[

dku(t)

dtk

]

t=t0

(t − t0)
k .

(4)
du(t)

dt
= f (u(t), t), t ≥ t0,

(5)u(t0) = u0.
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The DTM establishes that the solution of (4) can be written as

where U(0),U(1),U(2), . . . are unknowns to be determined by the DTM.
Applying the DTM to the initial conditions (5) and system (4) respectively, we obtain 

the transformed initial conditions

and the recursion system

where F(U(0), . . . ,U(k), k) is the differential transforms of f (u(t), t).
Using (7) and (8), the unknowns U(k), k = 0, 1, 2, . . . can be determined. Then, the dif-

ferential inverse transformation of the set of values 
{

U(k)
}m

k=0
 gives the approximate 

solution

where m is the approximation order of the solution. The exact solution of problem (4)–
(5) is then given by (6).

If U(k) and V(k) are the differential transforms of u(t) and v(t) respectively, then the 
main operations of the DTM are shown in Table 1.

The process of the DTM can be described as:

1.	 Apply the differential transform to the initial conditions (5).
2.	 Apply the differential transform to the differential system (4) to obtain a recursion 

system for the unknowns U(0),U(1),U(2) . . .

(6)u(t) =
∞
∑

k=0

U(k)(t − t0)
k ,

(7)U(0) = u0,

(8)(1+ k)U(k + 1) = F(U(0), . . . ,U(k), k), k = 0, 1, 2, . . .

(9)u(t) =
m
∑

k=0

U(k)(t − t0)
k ,

Table 1  Main operations of the DTM

Function Differential transform

αu(t)± βv(t) αU(k)± βV(k)

u(t)v(t) ∑

k

r=0
U(r)V(k − r)

u(t)v(t) w(t) ∑

k

r=0

∑

r

l=0
U(l)V(r − l)W(k − r)

d
n

dtn
[u(t)]

(k + 1) . . . (k + n)U(k + n)

e
�t

�
k
e
�t0

k!
sin (ωt) ωk

k!
sin

(

ωt0 +
πk

2

)

cos (ωt) ωk

k!
cos

(

ωt0 +
πk

2

)
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3.	 Use the transformed initial conditions (7) and the recursion system (8) to determine 
the unknowns U(0),U(1),U(2), . . .

4.	 Use the differential inverse transform formula (9) to obtain an approximate solution 
for initial-value problem (4)–(5).

The solutions series obtained from the DTM may have limited regions of convergence. 
Therefore, we propose to apply the Laplace–Padé resummation method (Vazquez-Leal 
and Guerrero 2014; Filobello-Nino et al. 2013; Jiao et al. 2002; Sweilam and Khader 2009; 
Momani et  al. 2009; Khan and Faraz 2011; Momani and Ertürk 2008; Tsai and Chen 
2010; Ebaid 2011) to the DTM truncated series to enlarge the convergence region as 
depicted in “Padé approximant” and “Laplace–Padé resummation method” sections.

Multi‑step technique and DTM for nonlinear variable DDEs
The type of nonlinear variable delay differential equations (DDEs) which are considered 
here are given by

where the initial condition φ(t) is given and α = mint0≤t≤T (�t
n) = �tn0 , � > 0 and n is a 

positive integer.
For the nonlinear lag function θ(t) = �tn, the delay function is τ (t) = t − �tn and 

is such that 0 ≤ τ (t) ≤ t. The solution of (10)–(11) is assumed to exist, unique and 
analytical.

To solve (10)–(11), we start by finding the first interval of approximation. This is 
achieved by solving the inequalities τ (t) ≥ t − t0 and t ≥ t0 which lead to the interval 
t0 ≤ t ≤ t1, where t1 = (t0/�)

1/n. Therefore, the first sub-problem to solve is given by

Since �tn ∈ J0 for t ∈ I0, then substituting (13) into (12) reduces problem (12)–(13) to the 
following initial-value problem

where (15) is obtained from (11).
To solve (14)–(15), the differential transform is applied to it to get the recursion

where F(U0(0), . . . ,U0(k), k) is the differential transform of f (u0(t),φ(�tn), t).

(10)u′(t) = f
(

u(t),u
(

�tn
)

, t
)

, t0 ≤ t ≤ T ,

(11)u(t) = φ(t), α ≤ t ≤ t0,

(12)u′(t) = f
(

u(t),u
(

�tn
)

, t
)

, t ∈ I0 := [t0, t1],

(13)u(t) = φ(t), t ∈ J0 := [α, t0].

(14)u′0(t) = f
(

u0(t),φ(�t
n), t

)

, t ∈ I0,

(15)u0(t0) = φ(t0),

(16)(k + 1)U0(k + 1) = F(U0(0), . . . ,U0(k), k), k = 0, 1, 2, . . .

(17)U0(0) = φ(t0),
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Using (16)–(17), the unknowns U0(k), for k = 0, 1, 2, . . . can be determined. Then, the 
differential inverse transformation of the set of values 

{

U0(k)
}m

k=0
 gives the approximate 

solution

Now if t1 ≥ T , then the above process is terminated and u0(t) is the approximate solu-
tion. Otherwise, if t1 < T , then the inequalities τ (t) ≥ t − t1 and t ≥ t1 are solved to get 
t2 = (t1/�)

1/n. Then, the solution is extended by solving the following sub-problem

Since �tn ∈ J1 for t ∈ I1, then substituting (20) into (19) reduces problem (19)–(20) to the 
following initial-value problem

where (22) is obtained from (20).
To solve (21)–(22), the differential transform is applied to it to get the recursion

where F(U1(0), . . . ,U1(k), k) is the differential transforms of f (u1(t),φ(�tn), t).
Using (23)–(24), the unknowns U1(k), k = 0, 1, 2, . . . can be determined. Then, the dif-

ferential inverse transformation of the set of values 
{

U1(k)
}m

k=0
 gives the approximate 

solution

Finally, continuing this process, one can extend the domain of the solution to the desired 
interval.

Padé approximant
Given an analytical function u(t) with Maclaurin’s expansion

The Padé approximant to u(t) of order [L, M] which we denote by [L/M]u(t) is defined by 
(Baker and Graves-Morris 1996)

(18)u0(t) =
m
∑

k=0

U0(k)(t − t0)
k , t ∈ I0.

(19)u′(t) = f
(

u(t),u
(

�tn
)

, t
)

, t ∈ I1 := [t1, t2],

(20)u(t) = φ(t), t ∈ J1 := [t0, t1].

(21)u′1(t) = f
(

u1(t),φ(�t
n), t

)

, t ∈ I1,

(22)u1(t1) = φ(t1),

(23)(k + 1)U1(k + 1) = F(U1(0), . . . ,U1(k), k), k = 0, 1, 2, . . .

(24)U1(0) = φ(t1),

(25)u1(t) =
m
∑

k=0

U1(k)(t − t1)
k , t ∈ I1.

(26)u(t) =
∞
∑

n=0

unt
n, 0 ≤ t ≤ T .
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where we considered q0 = 1, and the numerator and denominator have no common 
factors.

The numerator and the denominator in (27) are constructed so that u(t) and [L/M]u(t) 
and their derivatives agree at t = 0 up to L+M. That is

From (28), we have

From (29), we get the following algebraic linear systems

and

From (30), we calculate first all the coefficients qn, 1 ≤ n ≤ M. Then, the coefficients 
pn, 0 ≤ n ≤ L are determined from (31).

Note that for a fixed value of L+M + 1, the error (28) is smallest when the numerator 
and denominator of (27) have the same degree or when the numerator has degree one 
higher than the denominator.

Laplace–Padé resummation method
Several approximate methods provide power series solutions (polynomial). Neverthe-
less, sometimes, this type of solutions lack large domains of convergence. Therefore, 
Laplace–Padé resummation method (Vazquez-Leal and Guerrero 2014; Filobello-Nino 
et al. 2013; Jiao et al. 2002; Sweilam and Khader 2009; Momani et  al. 2009; Khan and 
Faraz 2011; Momani and Ertürk 2008; Tsai and Chen 2010; Ebaid 2011) is used in lit-
erature to enlarge the domain of convergence of solutions or inclusive to find the exact 
solutions.

The Laplace–Padé method can be summarized as follows:

1.	 First, Laplace transformation is applied to power series (9).
2.	 Next, s is substituted by 1/t in the resulting equation.

(27)[L/M]u(t) =
p0 + p1t + · · · + pLt

L

1+ q1t + · · · + qMtM
,

(28)u(t)− [L/M]u(t) = O
(

tL+M+1
)

.

(29)u(t)

M
∑

n=0

qnt
n −

L
∑

n=0

pnt
n = O

(

tL+M+1
)

.

(30)















uLq1 + · · · + uL−M+1qM = −uL+1

uL+1q1 + · · · + uL−M+2qM = −uL+2

...

uL+M−1q1 + · · · + uLqM = −uL+M ,

(31)















p0 = u0
p1 = u1 + u0q1
...

pL = uL + uL−1q1 + · · · + u0qL.
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3.	 After that, the transformed series is convert into a meromorphic function by form-
ing its Padé approximant of order [N/M]. N and M are arbitrarily chosen, but they 
should be smaller than the order of the power series. In this step, the Padé approxim-
ant extends the domain of the truncated series solution to obtain better accuracy and 
convergence.

4.	 Then, t is substituted by 1/s.
5.	 Finally, by using the inverse Laplace s transformation, the exact or an approximate 

solution is obtained.

Case studies
In this section, we will demonstrate the effectiveness and accuracy of the multi-step 
technique proposed in “Multi-step technique and DTM for nonlinear variable DDEs” 
section with the differential transform method (DTM) (Zhou 1986; Keskin et al. 2007; 
Benhammouda et al. 2014b; Benhammouda and Vazquez-Leal 2015; Biazar and Eslami 
2010; Chen and Liu 1998; Ayaz 2004; Kangalgil and Ayaz 2009; Kanth and Aruna 2009; 
Arikoglu and Ozkol 2007; Chang and Chang 2008; Kanth and Aruna 2008; Lal and Ahla-
wat 2015; Odibat et al. 2010; El-Zahar 2013; Gökdoğan et al. 2012) through two nonlin-
ear variable delay differential equations (DDEs).

Example 1

Consider the following nonlinear variable delay differential equation

where f (t) = e−
t2

4 − e−2t and t0 = 1.

For this problem the lag function is θ(t) = t2/4 and the variable delay is 
τ (t) = t − t2/4 . Following the procedure described in “Multi-step technique and DTM 
for nonlinear variable DDEs” section, problem (32)–(33) is solved step by step. The first 
interval of approximation is determined by solving the inequalities τ (t) ≥ t − t0 and 
t ≥ t0 which lead to the interval t0 ≤ t ≤ t1, where t1 = 2. Therefore, the first sub-prob-
lem to solve is given by

Since t2/4 ∈ J0 for t ∈ I0, then substituting (35) into (34) reduces problem (34)–(35) into 
the following initial-value problem

where condition (37) is obtained from (33).

(32)u′(t)+ u(t)− u2(t)+ u

(

t2

4

)

= f (t), t0 ≤ t ≤ 2
√
2,

(33)u(t) = e−t , 1/4 ≤ t ≤ t0,

(34)u′0(t)+ u0(t)− u20(t)+ u0

(

t2

4

)

= f (t), t ∈ I0 := [t0, t1],

(35)u0(t) = e−t , t ∈ J0 := [1/4, t0].

(36)u′0(t)+ u0(t)− u20(t) = −e−2t , t ∈ I0,

(37)u0(t0) = e−t0 ,
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To solve (36)–(37), the differential transform is applied to it to obtain the following 
recursion

From recursion (38)–(39), the following U0(k) values are obtained

From these values, an eighth-order approximate solution is constructed

where η0 = t − t0.

Note that one can use more terms in the above series solutions. Nevertheless, some-
times, this may not increase the accuracy of the solution for large intervals. Therefore, 
we use the Laplace–Padé resummation method presented in “Laplace–Padé resumma-
tion method” section to enlarge the domain of convergence of solutions or to find the 
exact solutions as follows.

Applying Laplace transform to u0(t) yields

For simplicity let s = 1/η0, then

All of the [L/M]η0-Padé approximants of (44) with L ≥ 1 and M ≥ 1 and L+M ≤ 9 
yield

Now since η0 = 1/s, we obtain [L/M](t) in terms of s as follows

(38)(k + 1)U0(k + 1)+ U0(k)−
k

∑

l=0

U0(l)U0(k − l) = −
(−2)k

k!
e−2,

(39)U0(0) = e−t0 , k = 0, 1, 2, . . .

(40)U0(1) = −e−t0 , U0(2) =
1

2
e−t0 , U0(3) = −

1

3!
e−t0 , U0(4) =

1

4!
e−t0 ,

(41)U0(5) = −
1

5!
e−t0 , U0(6) =

1

6!
e−t0 , U0(7) = −

1

7!
e−t0 , U0(8) =

1

8!
e−t0 .

(42)u0(t) =
8

∑

k=0

U0(k)(t − t0)
k = e−t0

8
∑

k=0

(−1)k

k!
ηk0 ,

(43)L[u0(t)] = e−t0

8
∑

k=0

(−1)k

k!sk+1
.

(44)L[u0(t)] = e−t0

8
∑

k=0

(−1)k

k!
ηk+1
0 .

(45)

[

L

M

]

(t) =
e−t0η0

1+ η0
.

(46)

[

L

M

]

(t) =
e−t0

s + 1
.
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Finally, applying the inverse Laplace transform to (46) gives the following approximate 
solution

which is the exact solution of delay equation (34)–(35).
In a similar manner, the second interval of approximation is determined. The condi-

tions τ (t) ≥ t − t1 and t ≥ t1 yield the interval t1 ≤ t ≤ t2 where t2 = 2
√
2. Therefore, we 

consider the sub-problem:

Since t2/4 ∈ J1 for t ∈ I1, then substituting (49) into (48) reduces problem (48)–(49) to 
the following initial-value problem

where condition (51) is obtained from (49).
To solve (50)–(51), the differential transform is applied to it to obtain the following 

recursion

From recursion (52)–(53), the following U1(k) values are obtained

From these values, an eighth-order approximate solution is constructed

where η1 = t − t1.

Applying Laplace transform to u1(t) yields

(47)u0(t) = e−t0e−η0 = e−t , t ∈ I0,

(48)u′1(t)+ u1(t)− u21(t)+ u1

(

t2

4

)

= f (t), t ∈ I1 := [t1, t2],

(49)u1(t) = u0(t), t ∈ J1 := [t0, t1].

(50)u′1(t)+ u1(t)− u21(t) = −e−2t , t ∈ I1,

(51)u1(t1) = e−t1 ,

(52)(k + 1)U1(k + 1)+U1(k)−
k

∑

l=0

U1(l)U1(k − l) = −
(−2)k

k!
e−4,

(53)U1(0) = e−t1 , k = 0, 1, 2, . . .

(54)U1(1) = −e−t1 , U1(2) =
1

2
e−t1 , U1(3) = −

1

3!
e−t1 , U1(4) =

1

4!
e−t1 ,

(55)U1(5) = −
1

5!
e−t1 , U1(6) =

1

6!
e−t1 , U1(7) = −

1

7!
e−t1 , U1(8) =

1

8!
e−t1 .

(56)u1(t) =
8

∑

k=0

U1(k)(t − t1)
k = e−t1

8
∑

k=0

(−1)k

k!
ηk1 ,

(57)L[u1(t)] = e−t1

8
∑

k=0

(−1)k

k!sk+1
.



Page 11 of 17Benhammouda and Vazquez‑Leal ﻿SpringerPlus  (2016) 5:1723 

For simplicity let s = 1/η1, then

All of the [L/M] η1-Padé approximants of (58) with L ≥ 1 and M ≥ 1 and L+M ≤ 9 yield

Now since η1 = 1/s, we obtain [L/M](t) in terms of s as follows

Finally, applying the inverse Laplace transform to (60) gives the following approximate 
solution

which is the exact solution of delay equation (48)–(49).
Finally, combining (47) and (61), the exact solution u(t) = e−t , 1/4 ≤ t ≤ 2

√
2 for the 

nonlinear variable delay problem (32)–(33) is obtained.

Example 2

Consider the following nonlinear variable delay differential equation

where g(t) = sin t − sin2 t + sin
(

t3/8
)

 and t0 = 1/8.

For this problem the lag function is θ(t) = t3/8 and the delay is τ (t) = t − t3/8. As for 
example 1, problem (62)–(63) is solved step by step. The first interval of approximation 
is determined by solving the inequalities τ (t) ≥ t − t0 and t ≥ t0 which lead to the inter-
val t0 ≤ t ≤ t1, where t1 = 1. Thus, the first sub-problem to solve is given by:

Since t3/8 ∈ J0 for t ∈ I0, then substituting (65) into (64) reduces problem (64)–(65) to 
the following initial-value problem

(58)L[u1(t)] = e−t1

8
∑

k=0

(−1)k

k!
ηk+1
1 .

(59)

[

L

M

]

(t) =
e−t1η1

1+ η1
.

(60)

[

L

M

]

(t) =
e−t1

s + 1
.

(61)u1(t) = e−t1e−η1 = e−t , t ∈ I1,

(62)u′′(t)+ 2u(t)− u2(t)+ u

(

t3

8

)

= g(t), t0 ≤ t ≤ 2,

(63)u(t) = sin t, 8−4 ≤ t ≤ t0,

(64)u′′0(t)+ 2u0(t)− u20(t)+ u0

(

t3

8

)

= g(t), t ∈ I0 := [t0, t1],

(65)u0(t) = sin t, t ∈ J0 :=
[

8−4, t0

]

.

(66)u′′0(t)+ 2u0(t)− u20(t) = sin t − sin2 t, t ∈ I0,

(67)u0(t0) = sin t0, u′0(t0) = cos t0,
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where conditions (67) are obtained from (63).
To solve (66)–(67), the differential transform is applied to it to obtain the following 

recursion

where k = 0, 1, 2, . . . and U0(0) = sin t0, U0(1) = cos t0 and where 
S(k) = (1/k!) sin(t0 + kπ/2) represents the differential transform of sin t at t0.

From recursion (68), the following U0(k) values are obtained

From these values, an eighth-order approximate solution is constructed

where η0 = t − t0.

To enlarge the domain of convergence of the approximate solution or to find the exact 
solution, the Laplace–Padé resummation method is used as in the previous example.

Applying Laplace transform to u0(t) yields

For simplicity let s = 1/η0, then

All of the [L/M]η0-Padé approximants of (73) with L ≥ 1 and M ≥ 1 and L+M ≤ 9 
yield

Now since η0 = 1/s, we obtain [L/M](t) in terms of s as follows

(68)

(k + 1)(k + 2)U0(k + 2)+ 2U0(k)−
k

∑

l=0

U0(l)U0(k − l) = S(k)−
k

∑

l=0

S(l)S(k − l),

(69)

U0(2) = −
1

2
sin t0, U0(3) = −

1

3!
cos t0, U0(4) =

1

4!
sin t0, U0(5) =

1

5!
cos t0,

(70)U0(6) = −
1

6!
sin t0,U0(7) = −

1

7!
cos t0,U0(8) =

1

8!
sin t0.

(71)

u0(t) =
8

∑

k=0

U0(k)(t − t0)
k = (sin t0)

4
∑

k=0

(−1)k

(2k)!
η2k0

+ (cos t0)

3
∑

k=0

(−1)k

(2k + 1)!
η2k+1
0 ,

(72)L[u0(t)] = (sin t0)

4
∑

k=0

(−1)k

(2k)!s2k+1
+ (cos t0)

3
∑

k=0

(−1)k

(2k + 1)!s2k+2
.

(73)L[u0(t)] = (sin t0)

4
∑

k=0

(−1)k

(2k)!
η2k+1
0 + (cos t0)

3
∑

k=0

(−1)k

(2k + 1)!
η2k+2
0 .

(74)

[

L

M

]

(t) =
η20 cos t0 + η0 sin t0

1+ η20
.
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Finally, applying the inverse Laplace transform to (75) gives the following approximate 
solution

Thus, the exact solution of the nonlinear variable delay equation (64)–(65) is 
u0(t) = sin t, t0 ≤ t ≤ 1.

In a similar manner, the second interval of approximation is determined. This interval 
is obtained by solving the inequalities τ (t) ≥ t − t1 and t ≥ t1 which lead to the interval 
t1 ≤ t ≤ t2, where t2 = 2. Thus, the second sub-problem to solve is given by:

Since t3/8 ∈ J1 for t ∈ I1, then substituting (78) into (77) reduces problem (77)–(78) to 
the following initial-value problem

where conditions (80) are obtained from (78).
To solve (79)–(80), the differential transform is applied to it to obtain the following 

recursion

where k = 0, 1, 2, . . . and U1(0) = sin t1,U1(1) = cos t1 and where S(k) = (1/k!)

sin(t1 + kπ/2) represents the differential transform of sin t at t1.
From recursion (81), the following U1(k) values are obtained

(75)

[

L

M

]

(t) =
s sin t0 + cos t0

s2 + 1
.

(76)u0(t) = sin t0 cos η0 + cos t0 sin η0 = sin(η0 + t0) = sin t, t ∈ I0.

(77)u′′1(t)+ 2u1(t)− u21(t)+ u1

(

t3

8

)

= g(t), t ∈ I1 := [t1, t2],

(78)u1(t) = u0(t), t ∈ J1 := [1/8, t1].

(79)u′′1(t)+ 2u1(t)− u21(t) = sin t − sin2 t, t ∈ I1,

(80)u1(t1) = sin t1, u′1(t1) = cos t1,

(81)

(k + 1)(k + 2)U1(k + 2)+ 2U1(k)−
k

∑

l=0

U1(l)U1(k − l)

= S(k)−
k

∑

l=0

S(l)S(k − l),

(82)
U1(2) = −

1

2
sin t1, U1(3) = −

1

3!
cos t1,

U1(4) =
1

4!
sin t1, U1(5) =

1

5!
cos t1,

(83)
U1(6) = −

1

6!
sin t1, U1(7) = −

1

7!
cos t1,

U1(8) =
1

8!
sin t1.
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From these values, an eighth-order approximate solution is constructed

where η1 = t − t1.

Applying Laplace transform to u1(t) yields

For simplicity let s = 1/η1, then

All of the [L/M]η1-Padé approximants of (86) with L ≥ 1 and M ≥ 1 and L+M ≤ 9 
yield

Now since η1 = 1/s, we obtain [L/M](t) in terms of s as follows

Finally, applying the inverse Laplace transform to (88) gives the following approximate 
solution

Thus, the exact solution of the nonlinear variable delay equation (77)–(78) is 
u1(t) = sin t, t0 ≤ t ≤ 2.

Finally, combining (76) and (89), the exact solution u(t) = sin t, 8−4 ≤ t ≤ 2 of the 
nonlinear variable delay problem (62)–(63) is obtained.

Discussion
Variable delays differential equations (DDEs) with arbitrary types of nonlinear functions 
for the time delay is an open area of research that require new numerical and analytical 
methods in order to deal with their solution. Therefore, from the examples above, it is 

(84)

u1(t) =
8

∑

k=0

U1(k)(t − t1)
k = (sin t1)

4
∑

k=0

(−1)k

(2k)!
η2k1

+ (cos t1)

3
∑

k=0

(−1)k

(2k + 1)!
η2k+1
1 ,

(85)

L[u1(t)] = (sin t1)

4
∑

k=0

(−1)k

(2k)!s2k+1

+ (cos t1)

3
∑

k=0

(−1)k

(2k + 1)!s2k+2
.

(86)

L[u1(t)] = (sin t1)

4
∑

k=0

(−1)k

(2k)!
η2k+1
1

+ (cos t1)

3
∑

k=0

(−1)k

(2k + 1)!
η2k+2
1 .

(87)

[

L

M

]

(t) =
η21 cos t1 + η1 sin t1

1+ η21
.

(88)

[

L

M

]

(t) =
s sin t1 + cos t1

s2 + 1
.

(89)u1(t) = sin t1 cos η1 + cos t1 sin η1 = sin(η1 + t1) = sin t, t ∈ I1.
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worthwhile to remark that the multi-step technique proposed in this work combined 
with modified differential transform method (DTM) (Zhou 1986; Keskin et  al. 2007; 
Benhammouda et al. 2014b; Benhammouda and Vazquez-Leal 2015; Biazar and Eslami 
2010; Chen and Liu 1998; Ayaz 2004; Kangalgil and Ayaz 2009; Kanth and Aruna 2009; 
Arikoglu and Ozkol 2007; Chang and Chang 2008; Kanth and Aruna 2008; Lal and Ahla-
wat 2015; Odibat et al. 2010; El-Zahar 2013; Gökdoğan et al. 2012) based on Laplace–
Padé resummation method (Vazquez-Leal and Guerrero 2014; Filobello-Nino et  al. 
2013; Jiao et al. 2002; Sweilam and Khader 2009; Momani et al. 2009; Khan and Faraz 
2011; Momani and Ertürk 2008; Tsai and Chen 2010; Ebaid 2011) was able to obtain the 
exact solutions of nonlinear DDEs with variable delays. It is important to highlight that 
this multi-step technique was able to obtain the exact solutions for both case studies 
within the given intervals. The straight forward procedure was able to deal with differ-
ent algebraic time delays as quadratic and cubic term highlighting the malleability of the 
technique presented to solve nonlinear DDEs with variable delays.

As far as the knowledge of authors goes, no numerical or analytical approximation 
methods to solve the type of case studies of this work have been reported in the liter-
ature. Hence, we propose as a proof of concept, to solve problems with known exact 
solutions. Therefore, this multi-step technique in combination with the DTM and 
Laplace–Padé resummation was able to obtain the exact solutions within the given inter-
vals. However, it is still pending for future work in order to treat DDEs with unknown 
exact solutions. For such hard to solve problems, we will measure the error of approxi-
mation using the mean square residual (MSR) error as in Benhammouda and Vazquez-
Leal (2015). Finally, further research is required to extend this proposed methodology 
to other delay functions and systems of DDEs, delay differential-algebraic equations and 
delay partial differential equations with variable time delays.

Conclusions
This article deals with the solution of nonlinear DDEs with variable delays using a new 
multi-step method and the DTM (Zhou 1986; Keskin et al. 2007; Benhammouda et al. 
2014b; Benhammouda and Vazquez-Leal 2015; Biazar and Eslami 2010; Chen and Liu 
1998; Ayaz 2004; Kangalgil and Ayaz 2009; Kanth and Aruna 2009; Arikoglu and Ozkol 
2007; Chang and Chang 2008; Kanth and Aruna 2008; Lal and Ahlawat 2015; Odibat 
et al. 2010; El-Zahar 2013; Gökdoğan et al. 2012). This technique was tested on two non-
linear problems. The results obtained show that the technique can be applied to solve 
these types of equations efficiently obtaining the exact solution. On the one hand, it is 
important to highlight that this kind of variable delay present series issues for tradi-
tional numerical and analytical methods, and on the other, the DTM in combination 
with Laplace–Padé resummation method (Vazquez-Leal and Guerrero 2014; Filobello-
Nino et al. 2013; Jiao et al. 2002; Sweilam and Khader 2009; Momani et al. 2009; Khan 
and Faraz 2011; Momani and Ertürk 2008; Tsai and Chen 2010; Ebaid 2011) was able to 
obtain the exact solutions of nonlinear DDEs with variable delays. Future work is neces-
sary to involve into the application of the proposed methodology for the solution of non-
linear DDEs with variable delays and unknown exact solutions. Other types of problems, 
like delay differential-algebraic equations and delay partial differential equations with 
variable time delays, will also be considered.



Page 16 of 17Benhammouda and Vazquez‑Leal ﻿SpringerPlus  (2016) 5:1723 

Authors’ contributions
All authors contributed extensively in the development and completion of this article. All authors read and approved the 
final manuscript.

Author details
1 Higher Colleges of Technology, Abu Dhabi Men’s College, P.O. Box 25035, Abu Dhabi, United Arab Emirates. 2 Facultad 
de Instrumentación, Electrónica, Universidad Veracruzana, Cto. Gonzalo Aguirre Beltrán S/N, 91000 Xalapa, Veracruz, 
Mexico. 

Acknowledgements
The second author gratefully acknowledges the financial support of the National Council for Science and Technology of 
Mexico (CONACyT) through Grant CB-2010-01 #157024.

Competing interests
The authors declare that they have no competing interests.

Received: 24 October 2015   Accepted: 26 September 2016

References
Aiello WG, Freedman H (1990) A time-delay model of single-species growth with stage structure. Math Biosci 

101(2):139–153
Arikoglu A, Ozkol I (2007) Solution of fractional differential equations by using differential transform method. Chaos 

Solitons Fractals 34(5):1473–1481
Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. 

Society for Industrial and Applied Mathematics (SIAM), Philadelphia
Ayaz F (2004) Applications of differential transform method to differential-algebraic equations. Appl Math Comput 

152(3):649–657. doi:10.1016/S0096-3003(03)00581-2
Baker GA, Graves-Morris PR (1996) Padé approximants, encyclopaedia of mathematics and its applications, vol 59. Cam‑

bridge University Press, Cambridge
Benhammouda B, Vazquez-Leal H (2015) Analytical solution of a nonlinear index-three DAES system modelling a slider-

crank mechanism. Discrete Dyn Nat Soc. doi:10.1155/2015/206473
Benhammouda B, Vazquez-Leal H, Hernandez-Martinez L (2014a) Procedure for exact solutions of nonlinear pantograph 

delay differential equations. Br J Math Comput Sci 4(19):2738–2751
Benhammouda B, Vazquez-Leal H, Hernandez-Martinez L (2014b) Modified differential transform method for solving the 

model of pollution for a system of lakes. Discrete Dyn Nat Soc. doi:10.1155/2014/645726
Biazar J, Eslami M (2010) Differential transform method for quadratic Riccati differential equation. Int J Nonlinear Sci 

9(4):444–447
Campbell SL, Linh VH, Petzold LR (2008) Differential-algebraic equations. Scholarpedia 3(8):2849
Caraballo T, Langa JA, Robinson JC (2001) Attractors for differential equations with variable delays. J Math Anal Appl 

260(2):421–438
Chang S-H, Chang I-L (2008) A new algorithm for calculating one-dimensional differential transform of nonlinear func‑

tions. Appl Math Comput 195(2):799–808
Chen CL, Liu YC (1998) Solution of two-point boundary-value problems using the differential transformation method. J 

Optim Theory Appl 99(1):23–35. doi:10.1023/A:1021791909142
de Markus AS, Mickens RE (1999) Suppression of numerically induced chaos with nonstandard finite difference schemes. 

J Comput Appl Math 106(2):317–324. doi:10.1016/S0377-0427(99)00076-X
Ding L, Li X, Li Z (2010) Fixed points and stability in nonlinear equations with variable delays. Fixed Point Theory Appl 

1:195–916
Dix J (2005) Asymptotic behavior of solutions to a first-order differential equation with variable delays. Comput Math 

Appl 50(10):1791–1800
Ebaid AE (2011) A reliable aftertreatment for improving the differential transformation method and its applica‑

tion to nonlinear oscillators with fractional nonlinearities. Commun Nonlinear Sci Numer Simul 16(1):528–536. 
doi:10.1016/j.cnsns.2010.03.012

El-Zahar ER (2013) Approximate analytical solutions of singularly perturbed fourth order boundary value problems using 
differential transform method. J King Saud Univ Sci 25(3):257–265

Eloe PW, Raffoul YN, Tisdell CC (2005) Existence, uniqueness and constructive results for delay differential equations. 
Electron J Differ Equ 121:1–11

Engelborghs K, Luzyanina T, Roose D (2000) Numerical bifurcation analysis of delay differential equations. J Comput Appl 
Math 125(1–2):265–275. doi:10.1016/S0377-0427(00)00472-6

Filobello-Nino U, Vazquez-Leal H, Khan Y, Yildirim A, Jimenez-Fernandez VM, Herrera-May AL, Castaneda-Sheissa R, 
Cervantes-Perez J (2013) Using perturbation methods and Laplace–Padé approximation to solve nonlinear prob‑
lems. Miskolc Math Notes 14(1):89–101

Ford NJ, Wulf V (2000) How do numerical methods perform for delay differential equations undergoing a hopf bifurca‑
tion? J Comput Appl Math 125(1–2):277–285. doi:10.1016/S0377-0427(00)00473-8

Gourley AS, Kuang Y (2004a) A stage structured predator–prey model and its dependence on maturation delay and 
death rate. J Math Biol 49(2):188–200. doi:10.1007/s00285-004-0278-2

Gourley SA, Kuang Y (2004b) A delay reaction–diffusion model of the spread of bacteriophage infection. SIAM J Appl 
Math 65(2):550–566

http://dx.doi.org/10.1016/S0096-3003(03)00581-2
http://dx.doi.org/10.1155/2015/206473
http://dx.doi.org/10.1155/2014/645726
http://dx.doi.org/10.1023/A:1021791909142
http://dx.doi.org/10.1016/S0377-0427(99)00076-X
http://dx.doi.org/10.1016/j.cnsns.2010.03.012
http://dx.doi.org/10.1016/S0377-0427(00)00472-6
http://dx.doi.org/10.1016/S0377-0427(00)00473-8
http://dx.doi.org/10.1007/s00285-004-0278-2


Page 17 of 17Benhammouda and Vazquez‑Leal ﻿SpringerPlus  (2016) 5:1723 

Graef J, Qian C (2000) Global attractivity in differential equations with variable delays. J Aust Math Soc Ser B Appl Math 
41(04):568–579

Gumel A (2002) Removal of contrived chaos in finite-difference methods. Int J Comput Math 79(9):1033–1041
Gumel AB (2003) Preface. J Differ Equ Appl 9(11):989–990. doi:10.1080/1023619031000146968
Gökdoğan A, Merdan M, Yildirim A (2012) The modified algorithm for the differential transform method to solution of 

Genesio systems. Commun Nonlinear Sci Numer Simul 17(1):45–51
Jiao YC, Yamamoto Y, Dang C, Hao Y (2002) An aftertreatment technique for improving the accuracy of Adomian’s 

decomposition method. Comput Math Appl 43(6):783–798. doi:10.1016/S0898-1221(01)00321-2
Kangalgil F, Ayaz F (2009) Solitary wave solutions for the KdV and mKdV equations by differential transform method. 

Chaos Solitons Fractals 41(1):464–472
Kanth ASVR, Aruna K (2008) Solution of singular two-point boundary value problems using differential transformation 

method. Phys Lett A 372(26):4671–4673. doi:10.1016/j.physleta.2008.05.019
Kanth AR, Aruna K (2009) Two-dimensional differential transform method for solving linear and non-linear Schrödinger 

equations. Chaos Solitons Fractals 41(5):2277–2281
Karako F, Bereketoglu H (2009) Solution of delay differential equations by the differential transform. Int J Comput Math 

86(5):914–923
Keskin Y, Kurnaz A, Kiris M, Oturanc G (2007) Approximate solutions of generalized pantograph equations by the differen‑

tial transform method. Int J Nonlinear Sci Numer Simul 8(2):159–164
Khan Y, Faraz N (2011) Application of modified Laplace decomposition method for solving boundary layer equation. J 

King Saud Univ Sci 23(1):115–119. doi:10.1016/j.jksus.2010.06.018
Kuang Y (1993) Delay differential equations: with applications in population dynamics. Academic Press, Boston
Lal R, Ahlawat N (2015) Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differen‑

tial transform method. Eur J Mech A Solids 52:85–94
Li Y, Jiang W (2013) Nonlinear waves in complex oscillator network with delay. Commun Nonlinear Sci Numer Simul 

18(11):3226–3237. doi:10.1016/j.cnsns.2013.04.010
Li J, Kuang Y, Mason CC (2006) Modeling the glucose–insulin regulatory system and ultradian insulin secretory oscilla‑

tions with two explicit time delays. J Theor Biol 242(3):722–735
Liu W, Clements JC (2002) On solutions of evolution equations with proportional time delay. Int J Differ Equ Appl 

4:229–254
Liu B, Zhang C (2015) A spectral galerkin method for nonlinear delay convection–diffusion–reaction equations. Comput 

Math Appl 69(8):709–724
Luo Z, Huang J, Luo L, Dai B (2013) Existence and uniqueness of positive (almost) periodic solutions for a neutral 

multi-species logarithmic population model with multiple delays and impulses. Open J Appl Sci 3(2):247–262. 
doi:10.4236/ojapps.2013.32032

Martín J, García O (2002a) Variable multistep methods for higher-order delay differential equations. Math Comput Model 
36(7):805–820

Martín J, García O (2002b) Variable multistep methods for delay differential equations. Math Comput Model 
35(3):241–257

Milošević M, Jovanović M (2011) An application of taylor series in the approximation of solutions to stochastic differential 
equations with time-dependent delay. J Comput Appl Math 235(15):4439–4451

Momani S, Erjaee GH, Alnasr MH (2009) The modified homotopy perturbation method for solving strongly nonlinear 
oscillators. Comput Math Appl 58(11–12):2209–2220. doi:10.1016/j.camwa.2009.03.082

Momani S, Ertürk VS (2008) Solutions of non-linear oscillators by the modified differential transform method. Comput 
Math Appl 55(4):833–842. doi:10.1016/j.camwa.2007.05.009

Odibat ZM, Bertelle C, Aziz-Alaoui M, Duchamp GH (2010) A multi-step differential transform method and application to 
non-chaotic or chaotic systems. Comput Math Appl 59(4):1462–1472

Sedaghat S, Ordokhani Y, Dehghan M (2012) Numerical solution of the delay differential equations of pantograph type 
via Chebyshev polynomials. Commun Nonlinear Sci Numer Simul 17(12):4815–4830

Skvortsova M (2015) Asymptotic properties of solutions to systems of neutral type differential equations with variable 
delay. J Math Sci 205(3):455–463

Sweilam NH, Khader MM (2009) Exact solutions of some coupled nonlinear partial differential equations using the 
homotopy perturbation method. Comput Math Appl 58(11–12):2134–2141. doi:10.1016/j.camwa.2009.03.059

Tsai P-Y, Chen C-K (2010) An approximate analytic solution of the nonlinear Riccati differential equation. J Frankl Inst 
347(10):1850–1862. doi:10.1016/j.jfranklin.2010.10.005

Vazquez-Leal H, Guerrero F (2014) Application of series method with Padé and Laplace–Padé resummation methods 
to solve a model for the evolution of smoking habit in Spain. Comput Appl Math 33(1):181–192. doi:10.1007/
s40314-013-0054-2

Wanner G, Hairer E (1998) Solving ordinary differential equations II, stiff and differential-algebraic problems, Springer 
Series in Computational Mathematics, vol 14, 2nd edn. Springer, Berlin

Winston E (1970) Uniqueness of the zero solution for delay differential equations with state dependence. J Differ Equ 
7(2):395–405

Zhang F, Zhang Y (2013) State estimation of neural networks with both time-varying delays and norm-bounded param‑
eter uncertainties via a delay decomposition approach. Commun Nonlinear Sci Numer Simul 18(12):3517–3529. 
doi:10.1016/j.cnsns.2013.05.004

Zhou JK (1986) Differential transformation and its applications for electrical circuits. Huarjung University Press, Wuuhahn

http://dx.doi.org/10.1080/1023619031000146968
http://dx.doi.org/10.1016/S0898-1221(01)00321-2
http://dx.doi.org/10.1016/j.physleta.2008.05.019
http://dx.doi.org/10.1016/j.jksus.2010.06.018
http://dx.doi.org/10.1016/j.cnsns.2013.04.010
http://dx.doi.org/10.4236/ojapps.2013.32032
http://dx.doi.org/10.1016/j.camwa.2009.03.082
http://dx.doi.org/10.1016/j.camwa.2007.05.009
http://dx.doi.org/10.1016/j.camwa.2009.03.059
http://dx.doi.org/10.1016/j.jfranklin.2010.10.005
http://dx.doi.org/10.1007/s40314-013-0054-2
http://dx.doi.org/10.1007/s40314-013-0054-2
http://dx.doi.org/10.1016/j.cnsns.2013.05.004

	A new multi-step technique with differential transform method for analytical solution of some nonlinear variable delay differential equations
	Abstract 
	Background
	Differential transform method
	Multi-step technique and DTM for nonlinear variable DDEs
	Padé approximant
	Laplace–Padé resummation method
	Case studies
	Example 1
	Example 2

	Discussion
	Conclusions
	Authors’ contributions
	References




