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Background
Nowadays, technological advances have equipped most citizens with innovative and 
very powerful devices that can be used almost everywhere to communicate quicker and 
broader than ever. As stated by Westlund in 2013, mobile devices are used for report-
ing live from both everyday life events and more significant events (Westlund 2013). 
This phenomenon is also called citizen journalism and it concerns posting all kinds 
of information on social networks or blogs, including text messages, photos, vid-
eos or GPS locations. The volume of shared data grows significantly in case of critical 
events. For example, during the Sandy hurricane on November 2nd, 2012, the official 
Twitter account announced that people sent more than 20 million tweets about the 
storm between Oct 27 and Nov 1 tracking the words hurricane and sandy as well as the 
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hashtags #hurricane and #sandy. More recently, during the first hour after the Ger-
manwings plane crash on March 24th, 2015, 60 thousands of messages containing the 
hashtag #Germanwings were posted on Twitter (Hodgson 2015).

The messages posted on social networks can represent a useful source of information 
for emergency operators in charge of making decisions about activities to perform and 
resources to use, as stated in Lindsay (2010). Moreover, they can be considered as a com-
mon communication channel established between emergency operators and citizens 
for sending and receiving details about the situation. This channel can be also used for 
encouraging citizens to play a more active role depending on their profile and previous 
experiences, as modeled by Díaz et al. (2013).

Considering the great volume of information generated by citizens, it becomes more 
and more necessary to provide emergency operation centers with specific tools for 
analyzing and tracking these data. Several contributions apply visual analytics to the 
collected messages. They mainly focus on what people is saying in social networks, 
extracting opinions together with other useful details, like time, geolocalization and 
word frequency, but in a domain like emergency management this is not enough. When-
ever a crisis happens, thousands of data are generated by citizens, but many of them are 
irrelevant, inaccurate or even false. One of the main challenges that emergency manage-
ment agencies and corps face to integrate social networks in their practice is the lack 
of resources to extract meaningful knowledge from such a heterogeneous mass of data 
(Díaz et al. 2014). Therefore, a tool is needed to analyze the information flow from social 
networks and to extract the most relevant knowledge respect to a specific scope, as for 
example the evolution of a critical event.

Emergency operators are interested in extracting just useful content and identifying 
most critical information (Palen and Liu 2007). But, how to filter data from social net-
works to extract most meaningful topics for emergency operators’ purposes? To answer 
this question, in this paper we propose a semantic approach for monitoring social net-
work activities during a crisis. Our approach consists of four different steps: (1) data 
collection, (2) syntactic analysis, (3) semantic model, (4) categorization. The first one 
collects messages from social networks about a specific topic. The second one processes 
these messages from a syntactic point of view identifying frequencies and speech func-
tions. The third and the fourth ones extract and categorize most relevant terms using 
data mining techniques based on a semantic model. The applied semantic model is an 
existing ontology built for representing the correlation among four knowledge domains, 
including emergency, evacuation, technology and accessibility (Malizia et  al. 2010). In 
this way, data are filtered out automatically and covered by domain specific knowledge 
so they can be presented in a more meaningful way to the operator. For instance, all the 
posts related with evacuation procedures or resources requests can be grouped under 
these categories so the exploration is made easier.

To test the applicability of this approach, we present two real case studies: the Nepal 
earthquake of April 25th, 2015 and the hurricane Sandy of October 27th, 2012. While 
during the Nepal earthquake we have collected 822 tweets identifying 116 relevant 
terms, the hurricane Sandy data set consists of almost 500,000 tweets and 5500 relevant 
terms. Applying our approach to these real cases, we show how different kinds of visu-
alizations are required depending on the collected data. In particular, we notice that the 
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visualization technique rely upon not only on the volume of data but also on the existing 
interrelationships among them in order to support some level of situation awareness in 
decisions makers. Situation awareness has been defined as the perception of the elements 
in the environment within a volume of time and space, the comprehension of their mean-
ing and the projection of their status in the near future (Endsley 2003). The goal will be 
then to provide a visualization that might help decision makers in understanding better 
what’s happening in a specific situation from the analysis of the information that citizens 
are generating in the social networks. Our approach to improve such understanding is 
to rely upon semantics to categorize tweets and, therefore, make them more meaningful 
avoiding trivial information. In this way, we propose an automatic tool to manage data 
flowing from social networks that operators can easily interact with and draw conclu-
sions about what is happening.

Social networks usage in emergency and crisis situation
Information posted on social networks becomes an important source for knowing most 
discussed topics among a community of people. In this way, social interactions have 
been translated from the physical communities to the virtual ones. Thanks to the tech-
nological advances that make it possible to connect different kinds of devices all over 
the world through the Internet, these virtual interactions are growing for both personal 
and business purposes. They work as a new communication channel for sharing a great 
quantity of data, including photos, videos or text messages. Another interesting charac-
teristic of social networks is that connected users can be reached in just few moments 
even if they are geographically distributed in different places.

Kleinberg (2008) defines this information spread as an epidemic wave that could rep-
resent a powerful influence for changing the opinions and the behaviors of people. This 
phenomenon can be observed for example in case of political elections, where social 
networks are used as part of candidates’ campaign. Another interesting application is 
the great volume of information shared when a critical event occurs, like earthquakes, 
tornadoes or terrorist attacks. Posted messages generally are about feelings and situa-
tions that people are experiencing. This sharing activity has been analyzed by Alexander 
(2013) with the identification of seven different usages of social networks in emergen-
cies: listening to public debate, monitoring situations, extending emergency response 
and management, crowd-sourcing and collaborative development, creating social cohe-
sion, furthering causes (including charitable donation) and enhancing research.

How social networks have been employed during crisis is the aim of an extensively 
review of Reuter et al. (2012). The first analyzed use case is the terrorist attacks of 9/11 
(September 11th, 2001), when citizens created wikis looking for useful information 
about missing people. The same behavior has been observed in other situations with the 
usage of different social networks, like Twitter, Facebook, YouTube or Flickr, as direct 
communication channel among citizens. Authors conclude the review proposing a 
model of this bidirectional channel between a receiver and a sender, where both of them 
can be official emergency organizations or common citizens.

Another interesting report about the usage of social media by governmental agencies 
and operation centers (Lindsay 2010) concludes that social media open new opportuni-
ties within the emergency management by establishing a direct communication channel 
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between operators, victims and witnesses in a simple way. From the citizens’ perspec-
tive, they can actively participate during the response activities whilst decision makers 
can use collected information to know more detailed data about human and physical 
damages (Díaz et al. 2014). Nevertheless, there are some limitations to take into account 
like for example the trustability of posted information and the consequent need of spe-
cific policies for guaranteeing the privacy (Hiltz and Kushma 2014). Indeed, a study per-
formed with professional EM workers in the area of British Columbia (Canada) and in 
Spain showed that the main issues that might deter official agencies to use social media 
is the lack of resources to keep up with such a huge quantity of data, and to be able 
to make sense of it (Díaz et  al. 2014). Next section reviews some visual analytics tool 
designed to cope with this problem.

Visual analytics tools for social networks: a comparative study
Messages published on social networks represent a useful source of information for dif-
ferent purposes, including news spread or emergency management, as already explained 
in the previous section. Depending on the topics of interest, the volume of this source 
grows rapidly as new content is published and keeping track of it has become more and 
more complex.

The most common solution to this problem has been the development of visual ana-
lytics tools for monitoring and exploring the data collection. As defined in Thomas and 
Cook (2005), these tools are used to synthesize information and derive insight from mas-
sive, dynamic, ambiguous, and often conflicting data. To do so, they combine information 
visualization techniques with data mining methods. The result is an inclusive experience 
for the users that can explore collected data and eventually access to more details.

In order to understand advantages and disadvantages of this approach, we have 
selected twelve tools as the most relevant contributions proposed in literature during 
the last 5 years. As shown in Table 1, for each one we have studied three aspects: (1) 
main features, (2) proposed visualizations and (3) data mining techniques. In particu-
lar, our analysis focuses on how this last aspect is applied. Indeed, data mining supports 
the identification of relevant content respect to a specific data set. In case of emergency 
management, it plays a crucial role for avoiding misunderstanding and time wasting for 
operators in charge of making quickly critical decisions.

The Vox Civitas (Diakopoulos et al. 2010) is a visual analytics tools for extracting the 
most common opinions over social networks and relating them with broadcasting news. 
Following a more journalistic perspective, it correlates a video source with tweets, speci-
fying for each moment the number of posted messages and the most shared sentiment. 
Using the U.S. State of the Union of 2010 as case study, Vox Civitas allows to identify 
the most commented minutes of Obama’s discourse as well as the sentiments of shared 
posts on Twitter. Collected messages are categorized measuring the term-similarity and 
extracting their relevance in relation to a specific minute of the video. The sentiment 
analysis is based on a two-steps process. First of all, some common words for positive 
and negative opinions are recognized. After that, a learning model is applied based on 
a trained set of 1900 messages manually tagged. Nevertheless, Vox Civitas doesn’t cover 
the selection of tweets related to a specific event.
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Another tool, called Visual Backchannel (Dork et al. 2010), focuses mainly on propos-
ing different visualization techniques: a streamgraph of the evolution of a topic over 
time; a helical graph of the participation of most active users in posting messages; a list 
of tweets; a cloud grouping all the shared images. From a semantic point of view, the 
performed text analysis is based on reducing each term in a tweet to its root form (e.g. 
animals to animal and eating to eat) and computing its frequency for identifying the 
most relevant ones.

Hao et al. (2011) have introduced three innovative sentiment analysis techniques. The 
first one focuses on understanding users’ opinions. The second one extracts the most 
relevant posts considering locations, sentiments and other characteristics, like retweets 
and followers. The last one shows the geographical distribution of collected data over 

Table 1  Visual analytics tools for social networks

Tool Functionality Visualization Semantic

Vox Civitas Diakopoulos et al. (2010) Filtering messages
Relevant terms
Unique messages
Sentiment analysis
Keyword extraction

Video
Volume graph
Timeline
Bar graph

Similarity
Learning model
Stemming

VisualBackchannel Dork et al. (2010) Text analysis
Topic identification

Streamgraph
Helical graph
Image cloud

Stemming

Hao et al. (2011) Sentiment analysis
Stream analysis
Visual analytics

Timeline
Map

NLP techniques

Senseplace2 MacEachren et al. (2011) Filtering tweets
Relevant tweets
History view

Timeline
Map
Heatmap

None

Whisper (Cao et al. 2012) Monitoring
User exploration
Filtering

Timeline
Sunflower

None

Yin et al. (2012) Data capture
Burst detection
Text classification
Online clustering
Geotagging

Date-time slider
Tag/topic cloud
Map

Manual

TweetXplorer Morstatter et al. (2013) Grouping keywords
Timeline
Relevant users/tweets
Geotagging
User patterns

Retweet network
Heat map
Tag cloud

None

TopicPanorama Liu et al. (2014) Topic analysis
Matching social media

Radial tree
Density graph

Ranking

OpinionFlow Wu et al. (2014) Opinion mining
Diffusion model
Relevant users/topics

Strip graph
Timeline

Opinion mining

Matisse Steed et al. (2015) Sentiment analysis
Geotagging

Timeline
Scatterplot
Heatmap

Learning model

Social Newsroom Zimmerman and Vatrapu (2015) Cross-platform
Story success
Relevant users/topics

Statistical graph None

ScatterBlogs Thom et al. (2015) Filtering tweets
Event discovery
Topic model
Tag clusters

Content lens
Tag cloud
Timeline

NLP techniques
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a map. These techniques aim at identifying useful patterns and influences that tweets 
could show on the market. Also in this case, authors apply a natural language processing 
method for analyzing semantically the messages for the opinion mining.

SensePlace2 (MacEachren et  al. 2011) offers an intuitive interface where users can 
query a topic and obtain a list of tweets. They can also specify a time range and select the 
most relevant messages. The relevance measure is based on the term frequency and it is 
also used for clustering the geographical distribution of the tweets over a heat map. The 
users can also interact with the map and choose a place for visualizing tweets published 
there.

Cao et al. have proposed Whisper Cao et al. (2012) for exploring how information and 
opinions about a given event or topic spreads. In particular, they present an innovative 
visualization technique based on a sunflower metaphor. The bloom of the sunflower 
represent tweets of interest, while the seeds that are dispersed by the wind or animals 
are the diffusion paths. The seeds are then gathered and eventually dispersed again (i.e. 
retweeted or favorited) by clusters of users called communities. In this way, Whisper 
allows to relate among each other the activities of communities, the geographical distri-
bution of posts, and users’ opinions.

In 2012, Yin et al. have analyzed the effect of the volume of data generated on Twitter 
over the emergency management activities with the development of an intelligent sys-
tem for capturing automatically any burst of posts. Collected tweets are then manually 
tagged to select the ones with information about a specific event. Finally, two visualiza-
tions are proposed: a map with a geographical clustering of the messages, and a tag cloud 
with a time slider where users can explore most relevant terms at a given time range.

TweetXplorer (Morstatter et al. 2013) offers three different visualizations for answer-
ing to four basic questions in information gathering: who, what, where, and when. The 
first adopted technique is the retweet network as a representation of most relevant 
users and tweets. The second one is a heat map, where both size and color of each circle 
change depending on the number of posts from a specific place. Finally, a tag cloud is 
displayed with the most frequent terms used by users for describing the event.

Liu et al. (2014) have presented TopicPanorama, where messages posted on different 
social platforms about the same topic are merged in a density-based graph. The graph 
combines a pie chart for each topic and its relevance over the considered sources and a 
hierarchical structure for mapping the topics among each other. Exploring the resulting 
graph, the users can easily identify the most discussed topics over social media. Moreo-
ver, TopicPanorama allows to modify the mapping and the topics depending on the spe-
cific needs of the analyst that is using it.

A system called OpinionFlow (Wu et al. 2014) has been developed in 2014 for extract-
ing public opinions. Through a strip graph and a timeline, authors offer a platform where 
analysts can select a topic of interest and visualize the opinion flow among Twitter users. 
Each strip is represented as a diffusion model for strong and weak as well as positive and 
negative opinions. Another feature of the system is to compare opinion flows related to 
different topics and identify diffusion patterns to be used for application like marketing 
or public debates.

Opinion mining is also the scope of Matisse, an intelligent system developed by Steed 
et al. (2015). Apart from opinions, it provides also other information, as term frequency, 
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time range and geographical position. All these data are combined into three linked vis-
ualizations: a timeline, a streamgraph and a heat map. Users can navigate and explore 
them as well as use some filters for selecting messages posted in a specific time range 
and place.

The prototype by Zimmerman and Vatrapu (2015) consists of six different dashboards 
where from different social media are combined. It is called Social Newsroom and it into 
six different dashboards. Three of them have been designed for presenting offline statis-
tics about most relevant topics, sharing activities, likes from other users, and most active 
contributors in the networks. The other three dashboards monitor the same information 
real-time, giving a more detailed view of the message evolution.

The last visual analytics tool included in our analysis is ScatterBlogs (Thom et al. 2015). 
From a dataset of tweets collected about an event, it proposes different analysis. First of 
all, messages are shown in a map and users can apply a content lens for generating a tag 
cloud of most frequent terms in a specific place. Secondly, messages are clustered based 
on the similarity of their content and geographical position. In this way, it is possible to 
easily recognize the most critical events that generate a great volume of data. Finally, 
a sentiment analysis is performed and shown in a timeline. Provided visualizations are 
linked in order to allow an effective exploration of represented information.

Analyzing the features provided by each one of these tools, we have recognized three 
main purpose-oriented categories: Opinion mining, Relevance, and Monitoring. The 
scope of the Opinion mining tools is to identify positive and negative sentiments of peo-
ple about most discussed topics in social networks. This information is useful for that 
applications where end users’ opinions could influence decisions to make or activities 
to perform. The Relevance class aims at looking for that topics and terms that are sig-
nificant for understanding what people is talking about. For example, if we are collect-
ing information about a natural disaster, terms like quake or collapse are more relevant 
respect to support expressions like prayer or donation. Depending on the applied data 
mining techniques, results could be more or less precise. In the Monitoring class we 
include tools for exploring social networks content and keeping track of shared informa-
tion and its evolution on time and geographical distribution. In this way, it is possible to 
obtain some interesting analysis about users’ activities on social networks, like for exam-
ple from where users are mostly posting.

From a semantic point of view, we have detailed this categorization considering the 
implemented techniques for data mining, as shown in Table 2: (1) None, where any anal-
ysis is performed over collected messages; (2) Manual, where just a sample of the entire 

Table 2  A comparison of considered visual analytics tools

Type None Manual Syntactic NLP

Opinion mining Vox civitas
Hao et al.
OpinionFlow
Matisse

Relevance Senseplace2
TweetXplorer
Social Newsroom

VisualBackchannel TopicPanorama
ScatterBlogs

Monitoring Whisper Yin et al.
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collection of messages is analyzed manually by domain experts; (3) Syntactic, where 
syntactic information as the term frequency or its part of speech is extracted; and (4) 
Natural Language Processing or NLP, where language models are applied for obtain-
ing sentiments and relevant terms from a text. The result is that six tools apply NLP 
methods, four of them do not consider any data mining technique, the contribution of 
Yin et al. involves some domain experts for analyzing manually collected messages from 
social networks, while VisualBackchannel implements some syntactic algorithm for fil-
tering stop words using the part of speech.

In these paper we try to go a step forward and analyze data from the perspective of 
the emergency operator who has to make sense of the visualization as soon as possible 
to make informed decisions. For that to be possible, relevant terms are not necessar-
ily those more frequently mentioned but those that are related to meaningful and deci-
sive terms to understand the situation. As posited by Hoffman and Oliver-Smith (2002), 
disasters are multidimensional and each person describes them according to how they 
experience them. However, such description is not necessarily useful for the operator. 
To cope with this fact, we propose to analyze the information generated by citizens by 
filtering it out using a domain ontology that collects meaningful terms in the emergency 
domain. In this way, information can be organized according to relevant categories that 
make sense for the operator.

Considering the amount of published tweets, if a user wants to share her message with 
as many people as possible, she has to find an effective strategy like mentioning accounts 
with a great number of followers. In Twitter (2015), several best practices for using Twit-
ter are collected. Among them, it is presented the case of a user looking for her sister 
after the Japanese earthquake of 2011. In order to be more effective, she asked a NBC 
TV show for help and just in one day she reached her sister safe and sound. The emer-
gency operators have the same need of this user to stand out just the most crucial and 
useful messages through the generated information flow.

Using semantic modeling techniques for Twitter
Our approach consists of analyzing semantically messages collected from Twitter related 
to a specific event so they can be made more meaningful by a categorization based on 
terms from the cognitive framework of decision makers. In this way, we propose a model 
for defining a knowledge ecosystem (Thomson et al. 2007) where different kinds of data 
are interpreted and categorized depending on their meanings and relevance. This is the 
result of a four step mechanism based on an existent ontology and taxonomies, already 
presented in Onorati and Diaz (2015).

The first step, (a) in Fig.  1, queries Twitter for one or more keywords (e.g. Nepal, 
earthquake, hurricane, Sandy) through the Search API available as part of the Twitters 
v1.1 Rest API. Collected tweets are then analyzed syntactically in the second step, (b) 
in Fig. 1. The syntactic analysis consists in applying an algorithm called POS (Part Of 
Speech) for extracting proper and common nouns in their root form (e.g. earthquake, 
emergency and NYC). Considering that each tweet has a limit of 140 characters, people 
use few words for writing their feelings and opinions. For this reason, we posit that con-
tained nouns could carry the most meaningful information respect to the other parts of 
speech, like verbs or adjectives.
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The result of the second step is a large list of nouns that needs to be filtered for iden-
tifying the most relevant ones for the query search. For achieving this objective, in the 
third step, (c) in Fig. 1, the nouns are ordered depending on their frequency in the col-
lection of tweets while in the fourth step, (d) in Fig. 1, they are semantically related to 
seven fixed categories. These categories have been chosen as relevant issues to take 
into account within the domain application of this work: emergency, evacuation, media, 
place, time, hashtags and general. In particular, they came from the six journalistic ques-
tions: who did that (general and emergency), what happened (hashtags, emergency and 
evacuation), where did it take place (place), when did it take place (time), why did that 
happen (emergency) and how did it happen (emergency).

To relate the nouns extracted from Twitter with the seven categories, we use differ-
ent techniques. In hashtags we collect all the labels composed by a pound sign (#) and a 
word (i.e. #hurricane) and in general all the uncategorized nouns. For the remaining five 
categories, we consider the highest semantic similarity. To do so, each category is repre-
sented by a set of meaningful and relevant concepts that then are semantically compared 
with the list of nouns.

For the conceptualization, we use different semantic models depending on the knowl-
edge related to the category. The first one is an existing ontology called SEMA4A (Sim-
ple EMergency Alerts 4[for] All) that has been developed for correlating users needs, 
technologies and relevant information about emergencies (Malizia et  al. 2010). The 
SEMA4A ontology contains several concepts organized in a vertical hierarchy with four 
main classes: emergency, evacuation, accessibility and communication. Each concept 
has a set of meanings and ad-hoc relations with other concepts. For example, evacua-
tion has an include relation with map and typhoon has a kind of relation with emergency. 
Within our scope, we use the three classes emergency, evacuation, and communication 
of SEMA4A to conceptualize respectively emergency, evacuation and media. In particu-
lar, media has concepts related to the kind of content, like photos, videos or audios, and 
the used communication channel, like radio, television or Internet. The time and place 
categories are instead represented by two different taxonomies: the first one has about 
150 time expressions like day, after and later, while the second is an open source list of all 
countries and cities in the world.

The semantic similarity is a binary measure with two results, similar or not similar. In 
this work, we are going to use it for relating a term with one of the considered categories. 

Fig. 1  Semantic modeling technique for categorizing information generated from twitter: a search query; b 
POS tagger; c frequency filter; d semantic categorization
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To do so, we apply a two step technique using the semantic models (i.e. an ontology 
and two taxonomies) previously described as knowledge representations for the catego-
ries. Taking as an example a word w coming from Twitter, during the first step we check 
whether w matches with one of the words included in the semantic models. If yes, w 
is going to be assigned to the represented category. If not, we execute the second step 
where first of all we extract from a lexical database called WordNet (Miller et al. 1990) a 
set of synonyms s1, ..., sn with the same meaning of w. At this point, for each si we check 
if it has a match within one of the semantic models. If yes, for the synonym relation we 
can infer that w is similar to the represented category. if also this last step fails, we con-
clude that the word w cannot be related with any category and consequently it is going 
to be grouped into the general one.

As an example of the semantic similarity measure, let consider the word nyc. This is 
an acronym standing for New York City. Following the two step technique, we look for 
any match with the terms included in the semantic models. Failing this step, we extract 
the synonyms from WordNet and among them we find the acronym US. Looking for it 
in the semantic models, we find a match with the taxonomy representing the place cat-
egory. Consequently, we associate nyc with it.

At the end of the fourth step of the proposed mechanism, we obtain a categorization of 
the most relevant words collected from Twitter. The main contribution of this approach 
is the combination of both a syntactic technique based on the frequency and the part of 
speech and a semantic method with several knowledge models for representing the rel-
evance of the information flow.

Case studies
The proposed semantic modeling technique has been developed as an off-line tool for 
analyzing tweets once they have been collected. Considering that emergency situations 
are generally unforeseeable event, in this way we have the possibility to test whether and 
how the approach could be applied in real cases. We have chosen two case studies that 
vary considerably in the number of information generated and they help also to illus-
trate potential visualization techniques that can be used to support data exploration. The 
visualization of the outcomes of this process plays a fundamental role in order to facili-
tate the interpretation by the operators. It will be the front-end application that emer-
gency operators will interact with for searching, navigating and exploring information 
generated from Twitter in order to understand the situation and make the appropriate 
decisions.

One of the aspects to take into account to choose a specific visualization technique 
is the volume of data to be presented. Depending on how many concepts have been 
extracted and categorized, users could find more effective a technique instead of another. 
Here we are going to present two different visualizations: a Hierarchical Edge Bundle 
and a Bubble Chart. Other types of visualizations might be required in other scenarios, 
but the goal of this paper is not to describe all possible visualizations but to test whether 
semantic mechanisms help to organize information in a meaningful way.

The Hierarchical Edge Bundle focuses on the relation among topics as they have been 
shared by people. Related topics can help in clarifying what people refers to with their 
messages and contextualizing the information. Considering the specific characteristics 
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of this technique, it is suitable to represent few terms and consequently a reduced num-
ber of tweets. We tried it in a previous contribution, where we studied the Nepal Earth-
quake event with a collection of 822 tweets, dated between the 25 and the 28 of April, 
2015 (Onorati and Diaz 2015). Applying the semantic approach here presented, from an 
initial set of 1262 words the final categorization contained 123 terms organized as fol-
lows: 28 in emergency, 10 in evacuation, 1 in media, 5 in place, 17 in time, 9 in hashtags 
and 53 in general.

In the Hierarchical Edge Bundle, categories are coded with different colors, as shown 
in Fig. 2, and terms are grouped all around a circle and linked depending on their co-
occurrences in the same tweet. This technique makes it possible to draw some conclu-
sions about visualized data. (1) Which are the most discussed topics/categories as the 
ones that receive the highest number of arcs (e.g. earthquake, aid or the hashtag #nepa-
learthquake). (2) Which terms are mostly used together for stating an opinion or a feel-
ing as connections among different terms (e.g. people with aid and need). (3) Which 
kind of information is commonly shared during this event as the classes with a higher 
number of terms (e.g. general and emergency). (4) How the information flows from a 
topic to another as the categories that have the greatest number of links between each 
other (e.g. hashtags and emergency). For example, we can conclude that (1) users mostly 

Fig. 2  The hierarchical edge bundle for the Nepal Earthquake case study (Onorati and Diaz 2015)
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discussed about topics related to general (e.g. team, death and child) and emergency 
(e.g. aid, earthquake and relief ) categories. Moreover, (2) the hashtag #neaplearthquake 
and the nouns aid, earthquake, people, Nepal and relief are mostly used together as (3) 
people mainly tweet about the earthquake and how to help affected people. Finally, (4) 
one of the most interesting flow of information goes from #neaplearthquake to donation 
through concepts like team, people, aid and need showing how people started several 
fundraiser initiatives.

The Hierarchical Edge Bundle is useful in case of a small collection of information, but 
what happens if we have a greater volume of data to manage? This is the case of the Hur-
ricane Sandy. At the end of the crisis more than 20 million tweets were published. These 
tweets are the result of querying keywords hurricane and Sandy, as well as hashtags 
#hurricane and #sandy during the hurricane hitting New York bay on October 29, 2012. 
Due to such amount of information, this data set is one of the most studied in literature 
as an example of large volume of critical information shared in few days. In this work, we 
run the proposed mechanism with a subset consisting of almost 500,000 tweets. Con-
sidering that the maximum number of tweets per minute was 16,000 (Imran et al. 2015), 
we select the subset as the messages generated during thirty minutes trying to simulate a 
real time interaction with the information flow.

Applying the semantic modeling technique, after the first syntactic analysis we have 
obtained an initial list of 24,000 nouns reduced to 5600 using the frequency based filter. 
Successively, the result of the semantic analysis gives the following categorization: 265 
terms in emergency (e.g. hurricane occurring 2753 times), 75 in evacuation (e.g. home 
occurring 95 times), 23 in media (e.g. internet occurring 15 times), 1079 in hashtags (e.g. 
#sandy occurring 1207 times), 159 in time (e.g. day occurring 131 times), 179 in place 
(e.g. nyc occurring 327 times), and 3804 in general (e.g. apocalypse occurring 191 times).

Considering the number of terms contained in each category and the great difference 
generated among the relevance of considered terms, the Hierarchical Edge Bundle loses 
its effectiveness in this case. For this reason, we bet for a different technique called Bub-
ble Chart. In Data Visualization, a Bubble Chart represents three dimensions of the same 
data point: the x and y coordinates in the space and the size of the bubble. In our con-
text, each bubble represents a term where the size is its relevance respect to the search 
query. At this point, nouns included in the chart are the result of the previous filtering 
and categorizing phases and we can consider all of them relevant for the specific appli-
cation. For this reason, the size of the bubbles corresponds to the term frequency over 
the entire collection of tweets. Used color for the categories are the same of the previ-
ous visualization: orange for emergency, blue for evacuation, green for media, purple for 
hashtags, yellow for place, sky-blue for time and gray for general.

The kind of conclusions that it is possible to draw here is mainly related to the rel-
evance of both individual terms are general topics. The relevance in this case is rep-
resented by the position of the bubbles respect to the circular space. In this way, it is 
possible to observe that the most relevant term is hurricane right in the center. More-
over, bubbles from the same category create concentric circles of the same color that 
help in identifying the most discussed topics reading them inside out. We can observe 
that people use to share information about the emergency itself, like storm or rain (i.e. 
orange bubbles are right in the center of the visualization) and the evacuation details, 
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like school, plan and home (i.e. blue bubbles are next to the orange ones) using also gen-
eral concepts, like friend, family and wish (i.e. grey bubbles are all around the orange and 
blues bubbles). Finally, with the same relevance there are also hashtags like #sandy and 
#hurricane, media like phone, place like nyc and time like tomorrow (i.e. purple, green, 
yellow and sky-blue bubbles are on the same circumference all around the grey ones).

To offer a more efficient navigation to the emergency operators, we also give the pos-
sibility to vary the number of bubbles shown in the chart. The users can select a different 
relevance range depending on the scope of their exploration. In Fig. 3, the Bubble Chart 
evolution is shown. For a more understandable interface, we decide to represent the rel-
evance measure as a numeric value determined experimentally as included between 1 
and 30: see a, b and c in Fig. 3.

Observing the Bubble Chart evolution, it is possible to note how the terms with a high-
est relevance are mostly contained in the specific categories of emergency, evacuation, 
hashtags and place. Changing the relevance measure, the most general terms disappear 
making the chart more readable. Moreover, the users can click on a bubble and list in a 
separate section the tweets with that term. In the future, we are studying the possibility 
to select more than one bubble and show tweets where the terms co-occur.

The application of proposed approach to the Nepal Earthquake and the Hurricane 
Sandy shows how emergency operators can take advantage of collected information 
through ad-hoc visualizations. While people mostly share general opinions and feelings 
about the emergency, operators can easily choose which data they want to explore fur-
ther or recognize the most discussed topics, avoiding wasting their time with irrelevant 
facts. The situation awareness is in this way enriched by a knowledge model of semanti-
cally relevant data. In this way, we aim at improving the cognitive framework of decision 
makers with a better perception of the context and different levels of details depending 
on their needs for making decisions.

Another interesting advantage is about the usage of hashtags: these special words rep-
resent a useful guide for identifying relevant information flow. In particular, it is possible 
to relate them with other data, like time and geographical position, to understand how 
topics discussed by people evolve during the crisis. Emergency operators can use these 
details to monitor people’s reaction and execute the corresponding emergency proto-
cols. This is what happens for the Hurricane Sandy during the final hours of October 29, 
when people started to use the hashtag #staysafe for sharing information about evacua-
tion and safety procedures.

Conclusions and future works
The citizen participation during critical events, like hurricanes or earthquakes, is an 
important aspect to take into account for improving the emergency response phase. In 
particular, the flow of messages generated by social networks represents an important 
source where it is possible to find interesting information about the emergency evolu-
tion or the rescue actions. The problem stands in the volume of shares, likes and posts 
published every moment in Internet: How can emergency operators make sense of them 
without losing time? The answer is an intelligent tool able to collect, analyze and extract 
relevant information for them.



Page 14 of 17Onorati and Díaz ﻿SpringerPlus  (2016) 5:1782 

In literature, several visual analytics tools have been developed offering different kinds 
of data analysis and visualization techniques. From our survey, we have found out a lack 
of a semantic perspective that could take into account the emergency operators’ point of 

Fig. 3  The bubble chart evolution for the hurricane Sandy case study: a minimum relevance of 1;  
b minimum relevance of 15; c minimum relevance of 30
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view showing them just data that they really could need for making informed decisions 
as soon as possible. For this reason, in this paper we try to go a step forward performing 
a semantic analysis of collected dataset based on specific knowledge domain. The result 
is a categorization where the most relevant terms are related to one of the following 
seven concepts: emergency, evacuation, media, hashtags, time, place, and general. In this 
way, emergency operators can choose which topic they are more interested in or find 
some interesting conclusions about how the information flows from a tweet to another.

The proposed semantic modeling techniques is based on the assumption that each cat-
egory is meaningful for representing the emergency search query. For relating each term 
extracted from the tweets, we use three different semantic models: an ontology with con-
cepts about emergency, evacuation and media that has been already validated in Onorati 
et  al. (2014), and two taxonomies about time expressions and names of places. These 
models can be considered a quite complete representation of the knowledge contained 
in each category. Our approach aims at abstracting the individual terms to contribute 
with a more general knowledge base that users can consider as part of their baggage.

Relying upon these semantic models, an intelligent tool has been designed to be easily 
integrated in the emergency center avoiding any distractions for the operators or waste 
of resources and time. In this way, the proposed solution becomes an effective support 
for making decisions or discovering new information.

From a theoretical point of view, the performed semantic analysis is based on standard 
data mining techniques that make it easy to generalize or adapt for other domains of 
applications, like politics or marketing. In this last case, other researchers could apply 
our ontology-based methodology changing adequately the knowledge base to obtain 
meaningful topics according to predefined relevance criteria.

Another interesting outcome from this research concerns the visualization technique. 
As shown in the two case studies of Nepal Earthquake and Hurricane Sandy, the visuali-
zation technique has to be chosen depending on the volume of generated data and their 
semantic distribution in the categorization. The chosen techniques are an example of 
a possible interpretation of collected information. In the future, we are planning to try 
different visualizations with the same data-sets and compare them during a qualitative 
evaluation with emergency workers in operational centers.

The mechanism proposed in this work can be applied both off-line during the recovery 
phase to collect as much information as available about victims and damages, as shown 
with the case studies, and real-time. To be used real-time, the four step mechanism will 
be executed over a dynamic data-set each time a new tweet or a set of new tweets are 
published about an event. Consequently, the visualization can change giving the pos-
sibility to the emergency operators to work also on the evolution and the dynamism of 
the situation. The next step of this research work is to test our approach real-time during 
a large scale emergency situation involving also domain experts. In this way, we will be 
able to evaluate not only the usability of the tool but also its performance in term of run-
ning time.
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