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Abstract

Combining subspace correction method with least-squares finite element procedure, we
construct a new overlapping domain decomposition parallel algorithm for solving the
first-order time-dependent convection—diffusion system. This algorithm is fully parallel.
We analyze the convergence of approximate solution, and study the dependence of the
convergent rate on the spacial mesh size, time increment, iteration number and sub-
domains overlapping degree. Both theoretical analysis and numerical results suggest that
only one or two iterations are needed to reach to given accuracy at each time step.
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Background
In this paper, we consider the following initial-boundary value problem for time-
dependent convection—diffusion system:

c%—l—wa—i—qu:f, xef, 0<t<T,
o+ AVu+bu=0, xef2, 0<t<T,

u=020, x € Ip, (D
o-v=0, xeln, 0<t<T,
u(x,0) = uo(x), x € 2,

where £2 is an open bounded domain R? (1 <d < 3), with a Lipschitz continu-
ous boundary I' = I'p U I'y; and v is the unit vector normal to I'y; the flow field
b= (b1,b,...,by)T; the source term g = q(x,t) >0 and exterior flow function
f =f(x,t) are some given functions; the coefficient ¢ = c(x) is positive function and the
diffusion coefficient matrix A = (a(i,/)) x4 is @ symmetric uniformly positive definite
matrix, i.e., there exist some positive constants c, and a, such that

d

d
a. Y & <> ayWEE, o <c@), Y& R xe 2. o
i=1 ij=1

This type of partial differential equation arises in many important fields, such as the
mathematical modeling of aerodynamics, porous medium fluid flow, fluid dynamics (e.g.
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Euler equations, Navier-Stokes equations), meteorology, and semiconductor devices.
Many numerical methods have been established to simulate this problem, for exam-
ple, finite element and finite difference method, Eulerian—Lagrangian localized adjoint
method Celia et al. (1990). The streamline diffusion finite element method Hughes and
Brooks (1979), least-squares mixed element methods Yang (1999, 2000, 2002), Zhang and
Guo (2012), Zhang et al. (2011) and Zhang (2009), and so on. Generally, these numerical
procedures result in a large scale of algebraic system, so it is very important and useful to
develop effective parallel algorithms both in engineering applications and mathematical
analysis.

Recently domain decomposition parallel computation has become a powerful tool for
solving a large scale system of partial differential equations. A lot of work has been done
on domain decomposition parallel algorithms, for example, see Beilina (2016), Bramble
et al. (1990, 1991), Cai (1989), Dolean et al. (2008, 2015), Dryja and Widlund (1987), Lu
et al. (1991), Ma et al. (2009), Tarek (2008), Xu (1989, 1992, 2001) and Yang (2010). But
many parallel algorithms based on overlapping domain decomposition are iterative algo-
rithms so that many iteration steps are needed to reach given accuracy, which leads to
much more global amount of computational work. On the basis of the idea of the paral-
lel subspace correction method proposed by Xu (1989, 1992, 2001), the first author of
this paper and Yang established a new parallel algorithm combined with characteristic
finite element scheme, finite difference scheme and least-square scheme for one dimen-
sional convection—diffusion problem in Zhang et al. (2011) and Zhang and Yang (2011a,
b), where both theoretical analysis and numerical results suggest that when overlapping
degree has a positive lower bound independent of mesh size, only one or two iterative
times is needed to reach the optimal convergence precision at each time level.

In this paper, using the same technique as in Zhang et al. (2011), Zhang and Yang
(2011) and Zhang and Yang (2011), we establish a new parallel algorithm for solving
the convection—diffusion system. Here the arbitrary dimensional problem is considered,
unlike in Zhang and Yang (2011) only one dimensional model was studied. And the dif-
ferent least-squares finite element scheme from the one in Zhang and Yang (2011) is
used to obtain the optimal L?-norm error estimate. The partition of unity is applied to
distribute the corrections in the overlapping domains reasonably in this parallel algo-
tithm. We analyze the convergence of approximate solution, and study the dependence
of the convergent rate on the spacial mesh size, time increment, iteration number and
sub-domains overlapping degree. Both theoretical analysis and numerical experiments
indicate the full parallelization of the algorithms and very good approximate property.

Parallel algorithm

Throughout this paper we use usual definitions and notations of Sobolev spaces as in
Adams (1975). Let WKk? (§2) (k > 0, 1 < p < o0) be Sobolev spaces defined on §2 with
usual norms || - [lyyxp () and H*(£2) = Wk2 (22). Define inner products as follows:

(u,v):/ u(x)v(x)dx Yu,ve L*(2),
2

d
(0,0) =Y (ohw) Yo,well’(2))¢ 1<d=<3.
i=1
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Introduce the spaces W = {w € (L2 V- -wel*(2),w-v=00n Ty} and V =
{ve HY(£2); v=0 on I'p}. Make a time partition 0 =ty <) < --- <ty—1 <ty =T
and sett, = ¢, — t,—1and T = maxj <<y Tn. Let w”(x) = w(x, t,). By use of the difference
technique with first-order accuracy to discretize the first-order system (1), we can rewrite the
system (1) as follows [see Yang (1999)]

c(x)du"(x) + V- 0" (%) + ¢"(x)u (x) = f"(x) + R"(x), x € £2,
9;0" (%) + A(x)Vou (x) + 0: (" ()" (x)) =0, x € £,
u'(x) =0, x¢€lp, 3)
o"(x)-v(x) =0, «x¢€ Ty,

uo(x) =up(x), x€f2

where

n q.n 821/l
R ) = () (B (%) — (%)) = O<Tn8t2)’

" (x) = W' — " Y/,

To construct parallel subspace correction algorithm, we firstly make a domain decompo-
sition. Assume that {£2/ }fi 1 is a non-overlapping domain decomposition of £2. In order to
obtain an overlapping domain decomposition, we extend each subregion £2; to a larger
region §2; such that 2] C £2; C §2 and dist(352/\052,92;\352) > H for each1 <i <N,
where H > 0 is called as overlapping degree. Let 7;, and 7}, be two families of quasi-
regular finite element partitions of the domain £2 such that the elements in the partitions
have the diameters bounded by /1, and /1, respectively. Assume that 7;, ; = 7;, () §2; and
Tn,,i = Tn, [ §2; just are one finite element partition of £2;for1 <i < N.Let W, C W,
and V;,, C V be piecewise r-degree and k-degree polynomial spaces defined on the parti-
tions Ty, and 7}, respectively.
Denote by A the inverse of A and define a bilinear form

1
an((o,w), (®,v)) = (C(cw + (Vo +4"W),cv+1,(V -0+ q”V)>
+ 1,(A(0 + AVw + b'w), 0 + AVv + b").

Based on (3) and Yang (1999), we get the standard least-squares finite element procedure:
Least-squares scheme Given an initial approximation (92, wg) € Wy, x Vy,. For
n=12,...,M,seek (o}, wy) € Wy, x Vy, such that

ﬂn((QZr WZ)) (a)hr Vh))
1
= (C(cwz_1 + tf™), evy + 1 (V- wp + q”vh)>

+ 1, (A(Qfl + AVw271 + b”wZﬁl), wy, + AVvy, + b”vh>,
Y (g Vi) € Wi, X V. 4)

In the following part of this section, we propose the parallel domain decomposition
algorithm of the system (4). Define finite element sub-spaces:
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V, ={vieVi: vy=0in 2\2}, 1<i<N
and

W, ={on€Wy,: o, =0in 2\2i}, 1<i=<N.
It is clear that

Vi, =V, + Vi +- -+
and

Wi, =Wy +Wi 4+ Wy

It is easily seen that there exists a finite open covering family {Oi}g‘i , of the domain 2

such that O’ N £ C £2;. We know that there exists a partition of unity {goi}fi 1 (see Toselli
and Widlund (2005), Lemma 3.4) such that

@ supp(p) CO, 0<¢; <1, lgillwre <CH ', 1<i<N;
b)) g1+¢2+---+ony=1in 2.
Let wiu and 9”;16 be the nodal piecewise linear interpolation of ¢; on the finite element
meshes 7;, and 7}, , and 7, and 7, be the interpolating operators on Vj,, and W, .
Based on (4), we formulate the parallel subspace correction algorithm.
Parallel algorithm Let m denote the iteration number at each time step. Give an ini-
tial approximation (a}?, ug) = (92, wg) eWy, xVy, For n=1,2,...,M, seek
(o), upy) € Wy, x Vy, by four steps:
Step 1. Set (6, uiy) = (a,f‘*l,uzfl) and j := 1
Step 2. Fori =1,2,...,N, seek (5},6}) € W;la X V;lu, in parallel, such that

an ((8;) e/l:)’ (wh: Vh))
1 .
= (c(cuz_l + tf™), <L, (9}, Vi)

+1u(V - Ty, (9}, @) + 4", (w;im)))

+ 1, (A(alf_l + AVMZ_l + b”uz_l), Ty, (goila a)h)
+ AT, (¢}, vi) + b, (6, 1))

= (@0, T, (@, 1), T (0, 7)) ),

Y (wn, Vi) € Wy, x V. (5)

Step 3. Set corrections

N

N
~n __ ~n i ~n __ ~n i
5 =6+ g a =0+ e (6)
i=1 i=1



Zhang et al. SpringerPlus (2016) 5:1690 Page 5 of 19

Step 4. If j < m, then set j := j + 1 and return the step 2; or set
) = i

and then return back to the first step to start iteration at the next time step.

Some lemmas and main result

In the following sections, we denote by K and § some general constants and small posi-
tive constants independent of the mesh parameters H, %, 4, and t, which may be differ-
ent at different occurrences. Let

1
(e, v)||§n = (C(cv + (V- -0o+4q"v),cv+1,(V- -0+ q"v))
+ 7 (A + AV + b"), 0 + AVY + b).
In order to analyze the convergence of parallel algorithm, we introduce projection oper-
ators Pin:WhJ — W;;” and Q;lu VY, — V;;u such that
(P}, . @}, 1), @1 71) ) = @n((@, 7). @1 1),

V (wpvp) €W, xVj i=12..,N.

Now, we give some important lemmas which are used to analyze the convergence of par-
allel algorithm.

We assume that finite element spaces W, and V,, have the inverse property and
approximate properties [see Ciarlet (1978)] that there exist some integers r, r1, k > 0,
such that, for1 < g < coand Vo € H(div; 2) N [W’t14(2)]4,

inf [lo — opllgaoye < Ko ol yro oy
ho

wpEW,
inf V- (0—wp)lliae) < Kh} IV - ollwmae),
wp€Wh,,
Jnt v = villzae) < KBS Vo), Vv € L2(2) N W),
h hu

Based on Theorem 3.3 in Yang (1999), the following result can be read:

Lemma 1 Let (0,u) and (o), w),) be the solutions of (1) and least-squares scheme,
respectively. Then there holds the a priori error estimate

max [lu” — wyll2 (o) +maxlo” — oyl @ye < KW + 1) + 7). (7)

Lemma 2 [See Yang (2001)] For any function ¢ € W (2) and wy, € Wi, we have the
following estimate

lowy — Ih(, (@wh)”[y(g)]d < Khg min(”("”lew(_Q) ||U)h||[L2(_Q)]dr ||</’||]—[1(_Q) ||0)h||[L00(g)]d),

whered = 1,2, 3.
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Lemma3 Forl <i <N, we have
i ho
IZ = Zn, ) (@h, om 22y = Kppllonllyz@ye ¥ on € W
8)
. h (
1T = Zn) (e, vidll 22y < Kﬁu”VhHLZ(_Q); Vv, € Vy,.
Proof Using Lemma 2, we know that

‘ . h
Iz - Ihg)(ﬁl)zaa)h)n[y(g)]d < Khy ”90;40 ||W1-OC(_Q)||0)h||[L2(_Q)]d = Kﬁona)h”[y(fz)]d-

This is the first inequality of (8).
In addition, by using the technique of Theorem 3.1 in Yang (2001), we can easily obtain

IZ = Zn) (@}, vl 2e2)

< Khy min(ll@), llwroo () Iall 22y, 195, 1 o) 1Vallze @)
i hu
= Khu”‘/’hu lwioo@)IValli2i2) = Kﬁ”"h”]}(gy
That is the second inequality of (8). The proof of Lemma 3 is completed. O

Lemma4 The following estimate

N
an <<w, W), (@,9)) = Y _ an((f, w), (Tn, (9}, P} @), Ty, (0}, QZ/)) '

i=1
h
=< K(H + f) I Wla, 1 (@ps Vi)l a, 9

holds for each (Y, w) and (w,v) in Wy, x V.

Proof ltis easily seen that

an ((w, w), Tn, (@}, P, @), In, (0}, QZJ”)
=ay ((w; W)¢ ((p]iquilg , (pilu Qzuv))

+ an (), (Tn, = D@}, P}, @), @, = D@}, Q7))

and

Page 6 of 19
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an (W w), @}, P 0, 01, Q1))
= a (B}, @}, ¥), @}, (@), W), (@, )

(et s

1 4 ‘ , ‘
~ (599l 0V Bl ) +40h )
+ AW +AVw + b"w),Awa’QZMV)

—(Vgj, w, P o+ AV(Q), v)+ b”Qzuv)}

and

N

an(w), @, V) = an (@], 0}, W), (@, 1))

i=1

Hence we have

N
an((Y,w), (@, V) = > an((, w), (T, (@}, P}, @), T, (¢}, Q}, v)))

i=1

=Y an((@ = B}, )@}, 0, @ — Q) ), W), (@, )

i=1

N
— > an(@, W), (Tn, = D@}, P}, @), (T, — D)}, Q). 1))
i=1
N

1 . .
— Ty Kc(cw + (V- +q"w)), (PLUw)V%J)

i=1
1 . . . .

- (Cllfwfqa,CQLuv + (V- (P, ) + q"QLMV))

+ (A(Y + AVw +b"w), AV, Q] v)

~ (Vg}, w, B}, @ + AV(Q}, v) + Q) v)|. (10)

Noting that
1(Zh, — D) (@}, P @), T, — D)@}, Q) Mla,
< K{le(@p, — D¢}, Q) W2y + wlV - @ny — D), Py )22
+ tullq" @n, — D@}, Q) Vliz2eay + Tn | 1@ny = D@ Pl )20,

+ 14V (Tn, = Deh, @, Wiy + 6" Tn, = D, Qe | |
he 1 h,
<K{Q+ T”)E”QhuV”LZ(Qi)T”Eﬁ”Phow”[Lz(Qi)]d

ho 1 h
I [H”Plia“”'u%fz»ld o 1z + 1@V,

h o JT . . .
< 1<<H + H) { 1€}, Y120y + v/ [I1Ph, llizzae + 1 iz |}

h T , ,
< K<H + H> ||(P;,{ra), Q;,MV)”a,,,.Qi,

Page 7 of 19



Zhang et al. SpringerPlus (2016) 5:1690 Page 8 of 19

we have
N . . . .
S an(( W), (i, — D@}, Pl ), T, — Dl Q)

i=1

1/2
h T 1P ’
< 1<(H + \;1_) 1 W), [Z 1P}, @ QLMV)Himm] :

i=1

N
> an((@ = B}, ), 1), (T = Q) W), (@, 1)) ’

i=1

N
=) an (((I — In,) (@, V), @ = Tn, ) (@), W), (T — P}, ), (T — Qé;u)v)) ‘

i=1

1/2
h
<K (HJF\/_)”(V,,W)“%[E I — P} ), (T — Q, WIIZ, ]

i=1

and

N 1 n i i
Tnz (C(cw—i-Tn(V'l/f"‘q w)), (Phaa))tha>’
i=1

1 ) ) ) )
+ <CWV¢;’U,CQLMV +1,(V - (P;l{ra)) + q”Q;,uv)> ‘

+ | A +AVw + b"w), AV}, Qzuv)’

" )(w;‘,uw, P o+ AV(Q, v) +b"Q}, v) ’]

<K

¥ N 1/2
'C . .
< K3 [Z 1, W)l | (P, 0, QLMV)IIf,n,g,.] :

i=1

Substituting these estimates into (10) leads to (9). This ends the proof of Lemma 4. O
For parallel algorithm , we have the following convergence result:

Theorem 1 Let (0, u) and (0}, uy) are the solutions of the system (1) and parallel algo-
rithm, respectively. If > = O(t), then there holds the following a priori error estimate

m;lx ||I/ln - MZ”LZ(Q) + myleX ||O'n — O';H[LZ(_Q)]d

2T \? (11)
§1<{<H2+HZ> +h§+1+hgl+r},

where h = max(hy, hy,).

Proof of Theorem 1

It is easily seen that parallel algorithm is also equivalent to use an iteration with initial
values (o}’ -1 uzfl) to solve the following equation: (67, &) € W), x Vy, such that for
any (wp, Vi) € Wy, X Vy,
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an A 1 _
an((6}, 1)), (wp, viy)) = (C(CMZ Y™, v+ (Vo + q”Vh)>

+ 1, (;\(U}f’fl +AVuf1 —+ b"_luzfl),a)h + AV, + b”vh),

(12)
From (12) we have
1
an((o};, up), (wp, vi)) = (C(CMZ_1 + tf ™), v+ T (V - 0 + anh)>
+ 1, (A(ol:’_l +AVMZ_1 + b"iluz_l),wh + AV, + b”vh)
+ an((of — &7, uf — &), (wp, vi))- (13)

Let 0" = up — wy, p" = wy — u", 7" = 0}’ — 0 and " = @j; — o". Subtracting (4) from
(13), we can get
an(@", 0", @n ) = (67 evy + TV -+ q"vp)

t1, (A(n"—l F AV £ b0 ), oy + AV, + b"vh)

Lemma 5 For parallel algorithm, we have the estimate

2

. R h T\ ? 1 . 1
o) — &6/l — i) la, < K<H2 + H2> o™t =6, ul™ = i), (15)

Proof From (5), we have

an((e}, €), (0p, vi) = an((e}, €), (P},_wp, Q) Vi)

=a,((6" — &/, 0" — &' 1), (Tp, (¢}, Py on), Tn, (0}, Q) vid))-
(16)

In addition, from parallel algorithm we can obtain the following equation

an(G] — 8111 — i), (p, i)

N N
= a,((6/21 — 6, ity — i), (p, Vi) + an ( (Z ey e}) s (wps Vh))
i=1 i=1

= an((&j’il - A;:y ~;’1,1 - I:{Z), (@, V)
N o N o
+an((6) — &'y ity — i), (Z T, @4, Pho @) > T, (@), Q’huvh») a7
i=1 i=1
Taking (wy, vi,) = (6/.” - o, ~}’7 — i) in (17) and using Lemma 4, we have
2

“n anmoen A h T - an - .
(6" — 63> ,’-“—uZ)llzﬂ5K<m+m>n(oj’“1— my —apls . (18)
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Thus, we have

. . I N
G — 671y, — DI, < 1<< + H2> 1&g — &g — a2 (19)
That is the inequality (15). This ends the proof of Lemma 5. O

Hence, we need to estimate the bounds of 0;771 — 6 and uzfl — iy,

Lemma 6 For parallel algorithm, we have the following estimate

6 —op =t ity — w12,
"\ /oo, 0
<Kty / ﬂ el
tnfl Bt 8t

Proof From (14) we have

dt+rn[||v 7" Mo + 167" 1||L2<9)]}. (20)

S 1 ~ -1
dn((ah - G;:l ,MZ - MZ ) (@, vi))

-1 -1
n ’ WZ - WZ )s (@, Vi)

= ﬂn((@h
-1, ((V e q"G”_l),cvh +1,(V -y + q”vh)>
c
_1, (A(b” — b 10" ), wy, + AV, + b"vh) 1)

Taking (wp,vy) = (6] — 0}~ l,ﬁZ—uZ Y in (21) and using the inequality

ab < %a2 + 8b2, we can obtain

1 ~ 2
167 —op Y iy — )~ H12,

¢ doy O
< Ke, / (@h Wh)
tn—l Bt 8t

n—1 ~n
+ 381165 — o~ gy — uy O,

dt + IV - 7" o) + 11677 1||L2<m]}

Hence, when we choose sufficiently small §, we can obtain the estimate (20). This ends

the proof of Lemma 6. O
Finally, we prove Theorem 1.
Proof Let (wy, vy) = (",60" — 6" 1)in (14), we have
ap (", 6" — 0" 1), (", 6" — 6" 1))
=1, (A(n”—l — "), 7"+ AV(O" — ") + b (0" — 9"—1))
_z, (i(v "0, (0" — 0" + 1o (V- 7" 4 ¢ 0" — enl))>

+ .L,n (A(bn—l _ b}’l)en—l,nn +AV(9” _ 9}’1—1) + bn(en _ 9}1—1))

+an((o] — &, ull — il (x",0" — 0" 1)),
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Since
an((",0" — 0" 1), (7", 6" — ")) — 1, (A" — "), 7"

= (c(0" — 6" 1),0" — 0" 1) + 1, [(AV(Q” — 0" Y, v@e" — 6"y
+ (Ab" (" — 0" 1), 6" — ") 4 1, (iv A n”>
+ 1 <1q”(9” — 0", 4" (0" - 9”1)>] + T, (A", ")
+ %[(Ann’nn) — A" LY & A — 7Y, 2 — Y]
+ 21, <i(c(9” — 0" Y 41,V -2, q" (0" — 9”—1))
+ 27, (A + V(0" — 0", b" (0" — ")),

we have
(c(®" — 0" 1,0" —0" 1) + 1, [(AV(@” — 0", v@e" —6"1y)

+ (Ab"(0" — 0" 1), 0" — 0" ) 4 1, (iv "V - 7'[”)
+ (iq"(en — 6", 4" (" — 9"—1)” + T, (An", ™)
+ %[(Aﬂ,n’n,n) FA@E" — 7", 7" — 7D

- %(Z\n"—l,n"_l) + (A(n”—l — "), AV(0" — 0"y £ b (0" — 9"—1))
-7 C(v A"+ q"0" ), 0" — 0" + 1, (V" + 4" (0" — 9"—1»)
+1, (A(bnfl — e " + AV — 0" 1) + b0 — enfl))

+an((of — &, ull — il (2", 0" — 0" 1)), (22)

Next, we estimate the terms on the right-hand side of the error equation (22).
It is clear that

A" — 7", AV (0" — 6 1))
= Z|(A@" =2t =2+ @ver -0, Ve — o' )|

and

Page 11 of 19
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Tn

(A(n”—l — ™), b (0" — 9"—1)) ] t 1,

1

((V . n}’l + q}’lel’l—l)’ C(e}’l _ 9}’1—1)
c

+ Tn(v . an + q}’l(el’l _ 07171)))‘

+ T

(A(bﬂfl _ bn)el’l*l,n,n +AV(9VI _ 9}‘171) + bVl(QVl _ 97171))‘

+ lan((o) — 61y — i), (", 0" — 0" 1))|
2
dt + ,[))0" !

h? T ¢ doy, Owy,
<Kt (o3 + )" ok
= T”{ <H2 ) /tH ( ot ot ) .

HIVEO" = 0" D7 g + 17" g + 17" 12 0

|12
L2(2)

+V- n“niz(m]} +8016" = 0" M2 ) + T IV - 72 ) -
Substituting the above estimates into (22) and then summing it up from 1 to », we get
n
17" 2 ype + D 5 (18602 ) + GV 1 0 + IV 7 g
j=1
h2 T "ot 30'],, 8Wh 2 z i
4 —_n 7 A2
=K <H2 +H2> /0 < 5t o > ) dt+zl:T] [”77 22y
n ]:

6122 ) + TPIVEO 20 ] - (23)

Applying a known inequality

n n
1671172 ) < 16°172 ) +8 D G198 172 ) + K D 5110 72,
j=1 j=1

and discrete Gronwall’s lemma to (23), we derive that

n? r\?
n n
m’flx 1071122y + m;IX I ||[L2(_Q)Jd = I<(]_[2 + l‘[2> . (24)

Using Lemma 1, we can obtain the estimate (11). The proof of Theorem 1 is complete. [

Numerical results
As in Zhang and Yang (2011), we first consider the one dimensional convection—diffu-
sion problem:

u 9%y du
— —a—— —b— = €[0,1], 0<¢t<T. 25
ot Yo by tusS xel0dl 0sts (22)

We divide the domain [0, 1] into three sub-domains: £2; = [0,% + %},
§29 = % - g,% + %} and 23 = [% - %, 1}, where H is the overlapping degree (see
Fig. 1).

Page 12 of 19
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Fig. 1 The sub-domains of £2

We use piecewise linear polynomial spaces, set &1, = h, = h and take the linear unit
decomposition functions as in Zhang et al. (2011). We define the L?>-norm error as
follows:

2
(e, E)II5 = m;lx lla" — MZ”LZ(_Q) + m;lx lo" — G;"LZ(Q)’

and the L°°-norm error
(e, E)lloo = m;}X(Ie"I, [E")).

t 2

Experiment I In this experiment, the exact solution is chosen as u = e’ sin” wx. Set
T =1, and b = 1. For different parameters a, /4, T and the iterative number m at each
time step, we give L2-norm errors and the L>®-norm errors in Tables 1, 2 and 3. These
numerical results suggest that we can get a good result for convection—diffusion prob-
lem using parallel algorithm , even iterating only one or two cycle at each time step.
Moreover, these numerical results also imply that the errors caused by decomposing
domain decrease as the discretization parameters / and t decrease and increase as the

overlapping degree H becomes small, which are coincided with our theoretical result.

Table1 H=}, h=1
m

h a=1 a=le-2 a=1le-4
-2 I lleo Iz I lleo Iz I lleo

4ls * 2.9866e-2 1.9250e-1 8.6118e—3 2.6493e-2 7.4344e—3 1.542%-2
4‘78 1 4.0090e-2 2.0819%-1 8.5534e—-3 2.553%-2 7.4495e—3 1.4833e-2
4ls 2 4.0086e-2 1.7485¢e-1 8.6384e—3 2.5532¢e-2 7.4785e—3 1.5375¢e-2
4‘78 3 4.1043e-2 1.7967e-1 8.6403e—3 2.5532e-2 7.4790e—3 1.537%-2
4ls 4 4.1164e-2 1.7947e-1 8.6403e—3 2.5532e-2 7.4790e—3 1.537%-2
9% * 1.4800e-2 9.5488e-2 4.9541e—-3 2.5220e-2 3.6348e—3 74154e—3
9% 1 1.7513e-2 1.0523¢-1 4.9351e-3 2.4967e-2 3.6397e—3 7.3584e—3
9% 2 1.795%-2 9.1683e-2 4.9457e—3 2.4967e-2 3.6420e—3 74145e—3
9% 3 1.8186e-2 9.3327e-2 4.9458e—3 2.4967e-2 3.6420e—3 74147e—3
9% 4 1.8219%-2 9.3540e-2 4.9458¢e—3 2.4967e-2 3.6420e—3 74147e—3
ﬁ * 7.5407e—3 4.7396e-2 2.9959e—3 2.061%e-2 1.8231e—3 4.2963e—3
ﬁ 1 7.9423e—3 5.156%e-2 2.9899%—3 2.053%-2 1.823%—3 4.2920e—-3
ﬁ 2 8.1633e—3 4.7424e-2 2.9912e—-3 2.053%-2 1.8240e—3 4.2920e-3
ﬁ 3 8.1986e—3 4.7096e-2 2.9912e—-3 2.053%-2 1.8240e—3 4.2920e—-3
& 4 8.2016e—3 4.7458e-2 2.9912e—3 2.0539%-2 1.8240e—3 4.2920e—3

*The numerical results by least-squares algorithm
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Table2 H= -1, h=1

127

h m a=1 a=1le-2 a=1le-4

Iz I llo -2 I o -2 I lleo
4i8 * 2.9866e-2 1.9250e-1 8.6118e—3 2.6493e-2 7.4344e—3 1.542%-2
4178 1 8.4704e-2 2.2515¢e-1 8.7074¢—-3 2.4202e-2 7.5866e—3 1.6164e-2
4i8 2 8.0447e-2 1.913%-1 8.7352e—-3 2.4202e-2 7.5212e—-3 1.537%-2
4178 3 7.9085¢-2 1.8885e-1 8.7459¢—3 2.4202e-2 7.5203e—-3 1.5388e-2
4i8 4 7.7713e=2 1.8467e-1 8.7464e—3 2.4202e-2 7.5202e—-3 1.5389%-2
9% * 1.4800e-2 9.5488e-2 4.9541e—3 2.5220e-2 3.6348¢e—-3 74154e—3
9% 1 3.7063e-2 1.0595e-1 4.9336e—3 2.4609e-2 3.6506e—3 74109e—3
glé 2 3.5576e-2 84116e-2 4.9480e—3 2.4609e-2 3.6484e-3 74152e—3
9% 3 3.5206e-2 8.2344e-2 4.9480e—3 2.4609e-2 3.6481e—-3 74153e—3
glé 4 3.4930e-2 8.0713e-2 4.9480e—3 2.4609e-2 3.6481e-3 74153e—3
@ * 7.5407e—-3 4.7396e-2 2.9959 -3 2.061%-2 1.8231e-3 4.2963e—3
@ 1 1.3608¢e-2 5.2234e-2 2.9850e—-3 2.043%-2 1.8251e-3 4.2847e—3
@ 2 1.3257e-2 4.1956e-2 2.9875e—-3 2.043%-2 1.824% -3 4.2847e—3
@ 3 1.3210e-2 4.2262e-2 2.9875e—-3 2.043%-2 1.824%—3 4.2847e—3
ﬁ 4 1.3183e-2 4.2067e-2 2.9875e—-3 2.043%-2 1.824%—3 4.2847e—3
*The numerical results by least-squares algorithm
Table3 H= 3, h=1
h m a=1 a=le-2 a=Tle—4

-1z I lloo -1z I lloo -1z I lloo
4178 * 2.9866e-2 1.9250e-1 8.6118¢e—-3 2.6493¢e-2 74344e—3 1.542%-2
4i8 1 2.0573e-1 4.6896e-1 9.1964e—-3 2.8774e-2 8.0709¢—-3 2.1458e-2
4178 2 2.017%-1 4.5896e-1 8.9982¢—3 2.1092¢e-2 7.6579¢—3 1.5340e-2
4i8 3 2.006%-1 4.5878e-1 9.0836e—-3 2.2172e-2 7.6797e—3 1.5379%-2
4178 4 1.9834e-1 4.5297e-1 9.1164e-3 2.2495¢e-2 7.6884e—3 1.5387e-2
9]7; * 1.4800e—2 9.5488e—2 4.9541e—3 2.5220e-2 3.6348e—-3 74154e—3
9% 1 1.1518e-1 2.8223e-1 4.8606e—3 2.3682e-2 3.667% -3 7.6455e—3
9]7; 2 1.1342e-1 2.7485¢e-1 4.8758e—3 2.3682e-2 3.6564e—3 74153e—3
9% 3 1.1266e-1 2.7333 4.8861e—3 2.3682e-2 3.6596e-3 74153e—3
9]7; 4 1.1186e-1 2.6995¢e-1 4.8874e—3 2.3682e-2 3.6598e—3 74153e—3
@ * 7.5407¢—-3 4.7396e—2 2.9959¢—-3 20611e-2 1.8231e-3 4.2963e—3
@ 1 5.5060e—-2 1.4802e-1 2.9586e—3 2.0194e-2 1.8251e-3 4.2712e-3
@ 2 5.4280e—-2 1.444%-1 2.9635e—-3 2.0194e-2 1.825%—3 4.2712e-3
@ 3 5.3930e-2 1.4334e-1 29641e—-3 2.0194e-2 1.8261e—3 4.2712e-3
1 4 5.3683e—-2 1.4217e-1 29641e-3 2.0194e-2 1.8261e—3 4.2712e-3

19

Nl

*The numerical results by least-squares algorithm
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Experiment II As in Zhang and Yang (2011), we select the right-hand side function with

complex structure and the initial condition as follows:

fxt) = 100e' 5 cos(8mxt) sin (77 x),
u(x) = 0.

Choosing H = 1/12, h =t =1/48, b = 1, and a = le—4, we observe numerical results

“ g

at different time (see Figs. 2, 3). We use to denote 1y, and oy, the values of the parallel
algorithm and use “ - ” to denote wy, and gy, the values of least-squares algorithm. These
figures clearly show that uy,, o, approximate to wy, and gy, at different time, respectively,
which is coincided with our theoretical analysis.

Next, we consider the two dimensional convection—diffusion problem:

ou
—+V-o+u=f, x€82,0<t<T,
at (26)

o0 +AVu+bu=0 xe€2,0<t<T,

where £2 = [0,1] x [0,1], A = aE, E is the unit matrix, and b = (1, 1). We divide £2 into
four sub-domains: £2; = [0,0.6] x [0, 0.6], 25 = [0.4, 1] x [0, 0.6], 23 = [0,0.6] x [0.4, 1],
§24 = [0.4,1] x [0.4, 1], see Fig. 4.

In this section, we use piecewise linear polynomial spaces. And We take the linear unit

decomposition functions {¢;}#_; as follows:

1, (x,7) € [0,0.4] x [0,0.4],

3 -5y, (x,9) €[0,0.4] x [0.4,0.6],
p1(x,9) = 3 —5x, (x,7) € [0.4,0.6] x [0,0.4],

3 5

3~ E(x + y), otherwise,

1, (x,9) € [0.6,1] x [0,0.4],

3 -5y, (x,5) € [0.6,1] x [0.4,0.6],
@2(x,9) = 5x —2, (x,7) € [0.4,0.6] x [0,0.4],

1 5

Y E(x — ), otherwise,

1, (x,9) € [0,0.4] x [0,0.4],

5y —2, (x,y) € [0,0.4] x [0.4,0.6],
@3(x,9) = ¢ 3 — 5x, (x,y) € [0.4,0.6] x [0.6,1],

1 5

1 + a(y — x), otherwise,

1, (x,9) € [0.6,1] x [0.6,1],

5y —2, (x,y) € [0.6,1] x [0.4,0.6],
@4(x,y) = 5x —2, (x,7) € [0.4,0.6] x [0.6,1],

5

E(x + ) — 1, otherwise.

Experiment III Here we still select the same right-hand side function with complex

structure and the initial condition as in Zhang and Yang (2011),

{f(x, t) = ey =02t sin(3wx — 6y + t2) cos(4myt),
u’(x) = 0.

Page 15 of 19
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H=1/12,h=1=1/48, m=2,T=1.0 H=1/12,h=1=1/48,m=2,T=1.5
T

10 T T T 60 T

-10

| | |
0 0.2 0.4 0.6 0.8 1
Fig.2 Numerical results at timeT = 1.0, 1.5

H=1/12,h=1=1/48,m=2,T=2
T T T

H=1/12,h=1=1/48, m=2,T=2.5
40 T 40 T T T T
¥ w
¥ w
20 u 20+ ul
h h
of 3 0% 3
-20 -20
_40 | | | | _40 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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¥ P,
20 g
—0a
h
o |
-20
—40 | | | | _40 | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 3 Numerical results at time 7T = 2.0, 2.5

Set H=02,h=1t=1/40,and a = 1le—2, T = 1.0, m = 1. We can get Figs. 5, 6 and 7.
These results suggest that the values uy, 0, = (a}}, aﬁ) by parallel algorithm approximate

to wy, and the values p, = (,o;, phz) by least-squares scheme respectively, which implies
that our method is valid for two-dimensional problem.



Zhang et al. SpringerPlus (2016) 5:1690
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Fig. 4 The sub-domains of £2
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Fig. 5 The values of wyandupatT = 1.0

Conclusions

In this paper, combined subspace correction method with least-squares mixed ele-
ment procedure, a new class of parallel domain decomposition algorithm is proposed to
solve convection—diffusion problem. The convergence of approximate solution, and the
dependence of the convergent rate on the spacial mesh size, time increment, iteration
number and sub-domains overlapping degree are studied. Both theoretical analysis and
numerical experiments indicate the full parallelization of the algorithms and very good

approximate property.
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Fig. 7 The values of,of7 and aﬁ atT =10

In fact, though we consider the convection—diffusion problem in this paper, we can
extend our method to other complex problems, e.g. saltwater intrusion problem, aerody-
namic problems, nuclear waste disposal, etc., which are our future work.
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