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Introduction
Support vector machine (SVM) (Vapnik 1995; Cortes and Vapnik 1995), founded on 
Vapnik’s statistical learning theory, has already reached many achievements in practical 
problems. For binary classification problems, its target is to find a separating hyperlane 
being the middle one between two parallel hyperplanes, where the two hyperplanes are 
constructed following the maximum margin principle. As for its solution, obtained by 
solving a quadratic programming problem (QPP) in the dual space, is global optimal. 
Furthermore, the kernel function (Shawe-Taylor and Cristianini 2004) introduced into 
SVM not only maps training vectors into a high-dimensional space, but also success-
fully transforms the nonlinear case into linear case. Thus, the case of nonlinear kernels 
is handled along lines similar to that used for linear kernels. Although the classical SVM 
has many good properties, one of the main challenges for it is the high computational 
complexity of the QPP. In addition, the trained performance also depends on the optimal 
parameters, which are usually found by cross-validation method. These shortcomings 
not only cause SVM to take a long time to train on a large database, but also prevent it 
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from locating the optimal parameters from a very fine grid over a large span. Recently, 
many efficient learning algorithms and models related to SVM have emerged, such as the 
chunking algorithm (Cortes and Vapnik 1995), the decomposition method (Osuna et al. 
1997), sequential minimal optimization (SMO) (Keerthi et  al. 2001), the least squares 
support vector machine (LS-SVM) (Suykens et al. 1999), ν− SVM (Schölkopf et al. 2000), 
the generalized eigenvalue proximal support vector machine (GEPSVM) (Mangasarian 
and Wild 2006), and geometric algorithms (Franc and Hlavác 2003; Mavroforakis and 
Theodoridis 2007; Tao et al. 2008).

A common disadvantage of the existing large margin classifiers, including SVM, is 
that they fail to exploit the prior structural information which may be very important 
for classification effectiveness. In fact, for different problems, different classes may have 
different underlying data structural information. Thus, it is desirable that a classifier 
should be adaptable to the discriminant boundaries to fit the geometric structures of the 
data, especially for improving the generalization performance of the classifier. Recently, 
some efficient algorithms related to SVM have been developed to give more weightage 
to the structural information, which provide a novel view to design a classifier, i.e., a 
classifier should be sensitive to the prior structural distribution of the data (Yeung et al. 
2007). Currently, there are mainly two strategies to design various algorithms based 
on the structural distribution of the training data. The first one is cluster assumption-
based (Rigollet 2007), which assumes that the training data contains several clusters, and 
then deduces several popular large margin classifiers, such as ellipsoidal kernel machine 
(EKM) (Shivaswamy and Jebara 2007), minimax probability machine (MPM) (Lanckriet 
et al. 2002), maxi-min margin machine (M4) (Huang et al. 2004), and structured large 
margin machine (SLMM) (Yeung et  al. 2007), structural regularized support vector 
machine (SRSVM) (Xue et al. 2011). The second strategy is manifold assumption-based, 
which assumes that the training data actually lies on a low-dimensional submanifold in 
the input space. A typical paradigm in this strategy is Laplacian support vector machine 
(Lap-SVM) (Belkin et  al. 2004), which constructs a Laplacian graph for each class by 
exploiting the local neighborhoods of each data to form the corresponding Laplacian 
matrix to reflect the geometric structure of each class data. And then they are embedded 
into the traditional SVM framework as additional manifold regularization terms.

Even though the above modified SVM methods utilize the prior structural information 
of the training data to adjust the discriminant boundaries, there still might be some use-
ful knowledge neglected, for example, the additional regularization term only indicates 
the relationship between two corresponding samples, without considering the high-
order relationship between several samples.

The traditional pairwise constraints (PC) method (Hu et al. 2008; Yu et al. 2012a, b; 
Qian et al. 2013), which is powerful in semi-supervised or unsupervised learning tasks, 
mainly pays attention to the discrimination distance between two patterns while neglect-
ing the spatial distance that might be also important. To overcome this drawback (Zhu 
et  al. 2015), designed a new strategy to combine the discrimination metric based on 
the traditional PC and the Euclidean distance measure together, i.e., the modified pair-
wise constraints (MPC) method. In MPC, the spatial measure strategy is based on the 
simple-graph-constructing. However, the simple graph learning methods only consider 
the pairwise relationship between two samples and ignore the high-order relationship 
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between several samples. Hypergraph learning (Zhou et al. 2006; Yu et al. 2012a, b; Wei 
et al. 2015) aims to get the relationship between several samples in a higher order, and 
thus achieves a promising performance in many applications. Inspired by the above 
studies, we design a novel hypergraph-based pairwise constraints (HPC) regularization 
term, which not only acquires the discriminative information about each constrained 
pair, but also considers the higher order relationship between different patterns. In this 
paper, we introduce the newly-designed HPC regularization term into SVM, and pre-
sent a novel algorithm, i.e., support vector machine with hypergraph-based pairwise 
constraints (HPCSVM). This HPCSVM not only retains the superior characteristics of 
SVM, but also has its additional advantages: (1) getting comparable or better classifica-
tion accuracies compared to SVM and its variants; (2) acquiring high-order relationship 
between several samples by hypergraph learning; (3) presenting a more reasonable dis-
criminative regularization term by combining the discrimination metric and the hyper-
graph learning.

The rest of this paper is organized as follows. In Background” section, brief overviews 
of SVM and hypergraph learning are given. In “Support vector machine with hyper-
graph-based pairwise constraints” section, we first introduce the newly-designed HPC 
regularization term, and then detail the proposed HPCSVM, both the linear and nonlin-
ear cases are included. “Experiments” section discusses the comprehensive experimental 
results on the UCI benchmark datasets to investigate the feasibility and validity of our 
proposed algorithm, and “Conclusion” section concludes the paper.

Background
Support vector machine

SVM is a powerful and promising paradigm for pattern classification and regression. 
It emerges from research in statistical learning theory about how to regulate the trade-
off between empirical risk and structural complexity. And its main attempt is to reduce 
the generalization error by maximizing the margin between two parallel supporting 
hyperplanes.

Given a training dataset T = {(x1, y1), . . . , (xl , yl)}, where xi ∈ Rn, yi ∈ {+1,−1}, 
i = 1, 2, . . . , l. SVM searches for an optimal separating hyperplane to correctly separate 
the positive points and the negative points defined as

where w ∈ Rn and b ∈ R.
By introducing the regularization term 1

2
‖w‖2 and the slack variable 

ξ = (ξ1, ξ2, · · · , ξl)
T , the optimization problem corresponding to SVM can be expressed 

as

(1)(w · x)+ b = 0

(2)

min
w,b,ξ

1

2
||w||2 + C

l
∑

i=1

ξi

s.t. yi((w · xi)+ b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , l.
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where C > 0 is a penalty parameter. Note that the minimization of the regularization 
term 12‖w‖

2 is equivalent to the maximization of the margin between two classes. Gen-
erally, rather than solving (2), we solve its dual problem to get the appropriate margin 
classifier.

Using the dual optimization technique, one can show that the dual problem of (2) can 
be expressed as

where αi, i = 1, . . . , l, are the Lagrangian multipliers.
Suppose the solution of (3) is α∗ = (α∗

1 , · · · ,α
∗
l )

T , then

where α∗
j  is a component of α∗, and α∗

j ∈ (0,C).
A new sample x is classified as +1 or −1 according to the final decision function as 

follows

Hypergraph learning

Hypergraph learning is derived from the theory of simple graph learning. In a simple 
graph, an edge is connected with two samples and the weight of the edge only indicates 
the relationship between two corresponding samples. While in reality, the high-order 
relationship between several samples is critical. Thus we can completely represent the 
complex relationships among samples by using hypergraph, in which each hyperedge 
could connect more than two samples. Below we give out a concrete example (Fig. 1) to 
show the difference between simple graph and hypergraph.

Given a dataset V = {x1, . . . , xl}, where xi ∈ Rn, i = 1, 2, . . . , l. Hypergraph 
G = (V ,E,W ) is composed of the vertex set V  and the hyperedge set E. W  is a diagonal 
matrix with its diagonal elements indicating the weights of the hyperedges. Each hyper-
edge e is a subset of V , and the weight of hyperedge e is denoted as w(e). The incidence 
matrix ϕ|V |×|E | of G is defined as follows

(3)

min
α

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyj(xi · xj)−

l
∑

j=1

αj

s.t.

l
∑

i=1

yiαi = 0,

0 ≤ αi ≤ C , i = 1, · · · l.

(4)w∗ =

l
∑

i=1

α∗
i yixi

(5)
b∗ = yj −

l
∑

i=1

α∗
i yi(xi · xj)

(6)f (x) = sgn

(

l
∑

i=1

α∗
i yi(xi · x)+ b∗

)

(7)ϕ(v, e) =

{

1 if v ∈ e
0 if v /∈ e
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The degree of a vertice v is defined as

The degree of a hyperedge e is defined as

The weight of a hyperedge e is defined as

where xe is the centroid vertex of the hyperedge e.
And the distance between two samples is

where

Then, the adjacency matrix P of the hypergraph G is defined as P = ϕWD−1
e ϕT , where 

De is a diagonal matrix with its diagonal elements indicating the degrees of hyperedges, 
ϕT is the transpose of ϕ.

(8)
d(v) =

∑

{e∈E|v∈e}

w(e) =
∑

e∈E

w(e)ϕ(v, e)

(9)δ(e) = |e| =
∑

v∈V

ϕ(v, e)

(10)
w(e) =

∑

xj∈e

dist(xe, xj)

(11)dist(xi, xj) = exp

(

−
||xi − xj||

2

σ 2

)

(12)σ =

√

√

√

√

1

l − 1

l
∑

i=1

||xi − x̄||2, x̄ =
1

l

l
∑

i=1

xi.

1e 1e 1e

1v 1  0  0  

2v 1  0  1  

3v 0  0  1  

4v 0  0  1  

5v 0  1  0  

6v 0  1  1  

7v 0  1  0  
Fig. 1  Simple graph versus hypergraph. Left: an article set V = {v1, v2, v3, v4, v5, v6, v7} and an author set 
E = {e1, e2, e3}. The element (vi , ej) is set to 1 if ej is an author of article vi, and 0 otherwise. Middle: an undi-
rected simple graph in which two articles are joined together by an edge if there is at least one author in 
common. While, this graph cannot tell us whether the same person is the author of three or more articles or 
not. Right: a hypergraph which could completely illustrate the high-order relationships among authors and 
articles



Page 6 of 18Hou et al. SpringerPlus  (2016) 5:1651 

Support vector machine with hypergraph‑based pairwise constraints
In theory, the connection between the intra-class patterns should be as strong as pos-
sible, while the connection between inter-class patterns should be as weak as possible. In 
this section, we present an HPC strategy to strengthen the connection of intra-class pat-
terns and weaken the connection of inter-class patterns, and then introduce this novel 
trick into SVM. More specifically, on the one hand, the relationships between several 
samples in a higher order are acquired by hypergraph learning, on the other hand, a 
more reasonable discriminative regularization term is presented by combining the dis-
crimination metric and hypergraph learning, at last, this novel regularization term is 
introduced into SVM to get a better classifier.

Hypergraph‑based pairwise constraints

This subsection first introduces the previous work of PC, and then presents an MPC 
strategy to overcome the drawback of PC without acquiring the spatial distribution of 
samples, finally, an HPC strategy combining hypergraph learning is proposed.

The traditional pairwise constraints method

PC, i.e., the must-link and cannot-link constraints, were first introduced in Lange et al. 
(2005). In detail, the must-link means a pair of samples should be allotted to the same 
cluster, while the cannot-link performs the opposite operation. Since then, efforts have 
been made to apply PC to both clustering (Hu et al. 2008; Zeng et al. 2012; Qian et al. 
2013) and supervised classification (Ko et al. 2007; Li et al. 2012) tasks. Besides, it is also 
utilized for semi-supervised classification (Goldberg et al. 2007; Zhang et al. 2010), the 
feature extraction (Sun and Zhang 2010; Yang and Song 2010), the dimension reduction 
(Wang et al. 2010), and the neural network (Maggini et al. 2012).

The form of the traditional PC discussed in this paper goes along the same lines as that 
was defined in (Qian et al. 2013; Ko et al. 2007; Li et al. 2012)

where xi and xj are two samples, whose labels are yi and yj, respectively, and zij = yiyj. 
This form gives out a discrimination metric to strengthen the connection of intra-class 
samples and weaken the connection of inter-class samples, which plays a similar role as 
the Laplacian loss in (Hu et al. 2008).

Modified pairwise constraints method

The traditional PC method might lose its efficacy when dealing with classification prob-
lem because it learns the relationship between each pair of samples from the prediction 
function without acquiring the spatial distribution of samples. To overcome this draw-
back (Zhu et al. 2015), combined the spatial information and the traditional PC and pre-
sented a modified PC as

where xi and xj are two samples, whose labels are yi and yj respectively, zij = yiyj, and the 
spatial measure strategy is adopted as

(13)|f (xi)− zijf (xj)|

(14)mpc = wij||f (xi)− zijf (xj)||
2
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where, Nk(xi) contains the k-nearest neighbors of the sample xi, γ is the coefficient to 
control the influence of t, and t is the mean squared mutual distance between each pair 
samples.

In MPC, the weight wij is relatively large when the two samples are spatially close to 
each other, while wij becomes relatively small when the two samples are spatially away 
from each other, which is the most commonly used spatial distribution learning strategy.

Hypergraph‑based pairwise constraints method

In MPC, the spatial measure strategy is essentially based on simple graph. So, the weight 
only indicates the relationship between the two corresponding samples. While in reality, 
relationships among the samples of our interest are more complex than pairwise. There-
fore, we consider using hypergraph instead of the simple graph to completely represent 
the complex relationships among the samples.

Extract the vertex set V = {x1, . . . , xl} from the given training set 
T = {(x1, y1), . . . , (xl , yl)}, then establish a hypergraph G = (V ,E,W ) as in “Hypergraph 
learning” section. The adjacency matrix P of hypergraph G is defined as P = ϕWD−1

e ϕT , 
where ϕ,W ,De represent the same meaning as in “Hypergraph learning” section. We 
present the hypergraph-based PC as follows

where xi and xj are two samples, whose labels are yi and yj, respectively, and zij = yiyj.
To be more feasible and effective, here we adopt the distance measure strategy as 

follows

where γ is the coefficient to control the influence of σ 2, and

Linear case

SVM aims to find an optimal separating hyperplane, which is defined as 
f (x) = (w · x)+ b = 0, to correctly separate the two class points. According to Formula 
(16), the hypergraph-based regularization term Rpc is formulated as

where f = [f (x1), f (x2), . . . , f (xl)]
T = Mw + sb, M ∈ Rl×n includes all of the samples, 

s is a vector of ones of appropriate dimensions, L′ = L+ (U − Z) · P, L = D − P, D is a 

(15)
wij =







exp

�

−
||xi−xj ||

2

γ t

�

if xj ∈ Nk(xi) or xi ∈ Nk(xj)

0 otherwise

(16)hpc = pij||f (xi)− zijf (xj)||
2

(17)
dist(xi, xj) = exp

(

−
||xi − xj||

2

γ σ 2

)

(18)σ 2 =
1

l − 1

l
∑

i=1

||xi − x̄||2 , x̄ =
1

l

l
∑

i=1

xi.

(19)Rpc =
1

2

l
∑

i=1

l
∑

j=1

pij||f (xi)− zijf (xj)||
2 = f T L′f
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diagonal matrix with dii =
∑l

j=1 pij, U is a all-one matrix and · is the Hadamard product. 
Similarly, we can also formulate the regularization term corresponding to the negative 
hyperplane.

By adding the proposed regularization term Rpc into SVM, we construct the optimiza-
tion problems as follows:

where c, c1 > 0 are the parameters used to denote the trade-off among each term in 
the objective function, ξi, i = 1, . . . , l, are the slack variables, and s is a vector of ones of 
appropriate dimensions.

The first term of (20) has the same effect as in SVM, i.e., maximizing the margin 
between two disjoint half planes. The second term is the discriminative information reg-
ularization term, which exploits the similarity and the dissimilarity of the labels through 
utilizing pairwise constraint information. If the two items belong to the same class, we 
encode the similarity between xi and xj as pij(f (xi)− f (xj))

2, and minimization of this 
penalty term tends to compel f (xi) ≈ f (xj), i.e., the examples which have the same label 
should have the approximate real values. If the two items belong to different classes, we 
encode the dissimilarity between xi and xj as pij(f (xi)+ f (xj))

2, and minimization of 
this penalty term tends to compel f (xi) ≈ −f (xj), i.e., the real values of the examples 
which have different labels should be close to a pair of opposite number. And pij is the 
weight between two patterns, which implies the relationship between several samples in 
a higher order. The third term is the empirical risk, which restricts that negative samples 
should lie below the bounding plane (w · x)+ b = −1, while positive samples should lie 
above the bounding plane (w · x)+ b = 1.

In order to solve the problem (20), we construct its matrix form

where y is a label vector of all the samples, and · is the Hadamard product.
By introducing the Lagrangian function of (21)

where α = (α1,α2, . . . ,αl)
T and β = (β1,β2, . . . ,βl)

T are the Lagrange multiplier vec-
tors. And the Karush–Kuhn–Tucker (K.K.T) conditions for (22) are given by

(20)

min
w,b,ξ

1

2
||w||2 +

c1

2

l
∑

i=1

l
∑

j=1

pij||((w · xi)+ b)− zij((w · xj)+ b)||2 + c

l
∑

i=1

ξi

s.t. yi((w · xi)+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , l.

(21)

min
w,b,ξ

1

2
||w||2 +

c1

2
(Mw + sb)TL′(Mw + sb)+ csT ξ

s.t. y · (Mw + sb) ≥ s − ξ ,

ξ ≥ 0.

(22)

L =
1

2
||w||2+

c1

2
(Mw+ sb)TL′(Mw+ sb)+ csT ξ −αT (y • (Mw+ sb)− s+ ξ)−βT ξ

(23)
∂L

∂w
= w + c1M

TL′(Mw + sb)− (y ◦M)Tα = 0,

(24)

∂L

∂b
= c1s

TL′(Mw + sb)− yTα = 0,
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where y ◦M defines a matrix of the same size as M, of which the ith row is yi ·Mi.
Since β ≥ 0, from (25) we have

Next, combining (23) and (24) leads to

Define H =

(

I
0

)

, J = [M s]. The Eq. (30) can be rewritten as

Then

To avoid the positive semi-definite matrix H + c1J
TL′J  being irreversible, a regulariza-

tion term εI(ε > 0) is introduced. Then, (32) gets modified to the following formulation

Finally, the Wolfe’s dual of (21) is derived as follows

Suppose the solution of (34) is α∗ = (α∗
1 , . . . ,α

∗
l )

T , then the augmented vector of (32) 
can be obtained. And a new testing sample x is classified as +1 or −1 according to the 
final decision function as follows

Nonlinear case

In order to extend our HPCSVM to the nonlinear case, we rewrite the decision function 
as:

(25)
∂L

∂ξ
= cs − α − β = 0,

(26)y · (Mw + sb) ≥ s − ξ , ξ ≥ 0,

(27)αT (y · (Mw + sb)− s + ξ) = 0 βT ξ = 0,

(28)α ≥ 0,β ≥ 0.

(29)0 ≤ α ≤ cs.

(30)

(

I
0

)[

w
b

]

+ c1

[

MT

sT

]

L′[M s]

[

w
b

]

− (y ◦ J )Tα = 0.

(31)(H + c1J
TL′J )

[

w
b

]

− (y ◦ J )Tα = 0,

(32)

[

w
b

]

= (H + c1J
TL′J )−1(y ◦ J )Tα.

(33)

[

w
b

]

= (H + c1J
TL′J + εI)−1(y ◦ J )Tα.

(34)
max
α

sTα −
1

2
αT (y ◦ J )(H + c1J

TL′J )−1(y ◦ J )Tα

s.t. 0 ≤ αi ≤ c, i = 1, 2, . . . , l.

(35)f (x) = sgn((w∗ · x)+ b∗)

(36)f (x) = (w ·�(x))+ b = 0
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where �(·) is a nonlinear mapping from a low dimensional space to a higher dimensional 
Hilbert space. According to Hilbert space theory (Schölkopf and Smola 2002), w can be 
expressed as w =

∑l
i=1 ui�(xi). So the decision function can be expressed as:

where K (·) stands for a kernel function: K (xi, xj) = (Φ(xi) ·Φ(xj)). So the nonlinear 
optimization problems can be expressed as

where c, c1 > 0 are the predefined parameters, ξi, i = 1, . . . , l, are the slack variables, s 
is a vector of ones of appropriate dimensions, and M ∈ Rl×n includes all of the samples.

Similarly, we rewrite the matrix form of (38) as follows

where K = K (M,MT ).
Adopting the similar process to the linear case, we can derive the dual formulation of 

(39) as follows

where y is a label vector of all the samples, HΦ =

(

K
0

)

, JΦ = [K s].
Furthermore, we can get

Once the augmented vector of (41) is obtained, a new testing sample x is classified as +1 
or −1 according to the final decision function as follows

Analysis of algorithm

According to statistical theory, the training points are generated independently and 
identically according to an unkow but fixed probability distribution, i.e., all the train-
ing points should have some degree of underlying correlation. However, in SVM and 
its many variants, the potential structural information of the training data has not been 
taken into account when constructing optimization problems. In this paper, we present a 
novel discriminative regularization term named Rpc with hypergraph-based PC method, 
which is expected to acquire the prior distribution knowl- edge about each constrained 

(37)f (x) = K (xT ,MT )u+ b = 0

(38)

min
u,b,ξ

1

2
uTKu+

c1

2

l
∑

i=1

l
∑

j=1

pij||(K (xTi ,M
T )u+ b)− zij(K (xTj ,M

T )u+ b)||2 + c

l
∑

i=1

ξi

s.t. yi(K (xTi ,M
T )u+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , l.

(39)

min
u,b,ξ

1

2
uTKu+

c1

2
(Ku+ sb)TL′(Ku+ sb)+ csT ξ

s.t. y · (Ku+ sb) ≥ s − ξ ,

ξ ≥ 0.

(40)
max
α

sTα −
1

2
αT (y ◦ JΦ)(HΦ + c1J

T
ΦL′JΦ)

−1(y ◦ JΦ)
Tα

s.t. 0 ≤ αi ≤ c, i = 1, 2, . . . , l.

(41)

[

u
b

]

= (HΦ + c1J
T
ΦL′JΦ + εI)−1(y ◦ J )Tα.

(42)f (x) = sgn(K (xT ,MT )u∗ + b∗)
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pair with both the discrimination metric from the traditional PC and the high-order 
relationship between different samples from hypergraph learning, and then introduce it 
into SVM.

Now we analyze our proposed HPCSVM concretely:

1.	 Inheriting the maximal-margin principle. In SVMs, the minimization of the regulari-
zation term 12‖w‖

2 is equivalent to the maximization of the margin between the two 
parallel supporting hyperplanes. In our HPCSVM, we still choose the same regulari-
zation term ‖w‖2 to reflect the capacity of the decision function and the size of mar-
gin.

2.	 Extracting the potential structural information of the data. In SVM and its many var-
iants, the optimal separating hyperplane is established with considering each sample 
independently, i.e., without considering the relationship between every pair of sam-
ples. In our algorithm, we design a novel HPC regularization term to extract the dis-
criminative information about each constrained pair as the potential structural infor-
mation, and then apply it to adjust the separating hyperplane.

3.	 Getting the relationship between several samples in a higher order. In MPC, the spa-
tial measure strategy is essentially based on simple graph. While in reality, relation-
ships among the samples are more complex than pairwise. Therefore, we use a hyper-
graph instead of the simple graph to completely represent the complex relationships 
among the samples and propose a novel discriminative information regularization 
term named HPC.

4.	 The limitation of our HPCSVM. A limitation of HPCSVM is that it cannot handle 
large-scale problems. There are two main reasons leading to such a limitation. On 
the one hand, our HPCSVM has to find the k-nearest neighbors for all the samples 
in the stage of the establishment of hypergraph. On the other hand, the computation 
and storage of kernel function are the bottlenecks of almost all SVMs, so does the 
HPCSVM.

Experiments
In this section, we demonstrate the validity and efficiency of our proposed method 
HPCSVM on twenty-five benchmark datasets from UCI machine learning repository by 
comparing with SVM, LSSVM, structural regularized support vector machine (SRSVM) 
and support vector machine with modified pairwise constraints (MPCSVM). To make 
the results more convincing, we use five-fold cross-validation (Duda et al. 2001) to esti-
mate the accuracy of each experiment. More specifically, the training set is randomly 
partitioned into five subsets which are roughly of equal size, and one of those subsets is 
reserved as the testing set whereas the remaining subsets serve as the training set. This 
process is repeated five times until all of the five subsets have been set to be a testing one 
once, and the average of the five accuracies is regarded as the classification accuracy of 
each experiment.

All the algorithms are written in MATLAB 2012a on Windows 7 running on a PC with 
system configuration Intel(R) Core(TM) 2 Duo CPU E7500 (2.93 GHz) with 2.00 GB of 
RAM. And the evaluation criterion of each algorithm is the classification accuracy of the 
testing examples, which is defined as follows:



Page 12 of 18Hou et al. SpringerPlus  (2016) 5:1651 

where TP, TN , FP and FN  are the numbers of true positive, true negative, false positive 
and false negative on the testing examples, respectively.

Parameter selection

In our experiments, we adopt the grid search method to get the optimal param-
eters. In addition, for the nonlinear case, all the algorithms adopt Gaussian kernel 
K (x, y) = exp(−σ ||x − y||2) for the decision space. As for the tuning parameters, i.e., the 
Gaussian kernel parameter σ, the penalty parameter c, and the trade-off parameter c1 are 
all selected from the set: {10−2, 10−1, 100, 101, 102}. And the optimal value k for k-near-
est neighbors in MPCSVM and HPCSVM is searched from the set: {3, 4, 5, 6, 10, 15}. For 
large-scale problems, the range of all the parameters will be narrowed uniformly due to 
the long training time.

Experimental results and discussions

We experiment our HPCSVM on twenty-five real-world datasets from the UCI machine 
learning repository. These datasets represent a wide range of fields (include pathology, 
finance, agronomy and so on), sizes (from 100 to 1473) and features (from 3 to 60). All 
the datasets are normalized such that the feature’s scale is in [0, 1] before training.

Comparisons of different methods

In order to prove our proposed method be better, we compare the experimental results 
of various methods mentioned above. The main objects and motivations of the compari-
son are shown in Table 1.

Result comparisons and discussion

This subsection describes empirical comparisons of various models, such as SVM, 
LSSVM, SRSVM, MPCSVM and HPCSVM. The average classification accuracies and 
standard deviations are reported in Tables 2 and 3. And the average execution time of 
five-fold cross-validation for each experiment is demonstrated too. Complementally, 
for MPCSVM and HPCSVM, the execution time includes graph establishment. The 

(43)Acc =
TP + TN

TP + FP + TN + FN

Table 1  The objects and motivations of the comparison

Situation Objects Motivations

1 SRSVM versus SVM To demonstrate the prior structural information within classes in the data 
is effective for classification

2 MPCSVM versus SVM To demonstrate the discriminative information about each constrained 
pair in data is effective for classification

3 MPCSVM versus SRSVM To display the discriminative information is more effective than the struc-
tures in data within classes for classification

4 HPCSVM versus MPCSVM To demonstrate our newly-designed HPC regularization term is more 
reasonable than the MPC regularization term

5 HPCSVM versus LSSVM To display our proposed HPCSVM is also better than SVM’s variant
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comparison results in italic face are the best results. Table 2 shows the performance of 
linear HPCSVM with that of linear SVM, LSSVM, SRSVM and MPCSVM. Table 3 gives 
the performance of nonlinear HPCSVM with that of nonlinear SVM, LSSVM, SRSVM 
and MPCSVM. By comparing, we find:  

1.	 SRSVM versus SVM: In SRSVM, we adopt the Ward’s linkage clustering to capture 
the underlying data distribution within classes, and then the structural information 
is directly embedded into the objective function by the minimization of the com-
pactness between the estimated clusters. For both linear and nonlinear classifiers, 
we can find that, except for Tic-tac-toe, all the remaining experimental results of 
SRSVM are much better than that of SVM. In a word, the comparison between these 
two methods illustrates the prior structural information within classes in the data is 
effective for classification.

2.	 MPCSVM versus SVM: In MPCSVM, we adopt the MPC trick to extract the dis-
criminative information, then introduce the coresponding regularization term into 
SVM. For linear classifiers, we can find that, except for Tic-tac-toe, all the remaining 
experimental results of MPCSVM are better than that of SVM. For nonlinear classi-
fiers, MPCSVM and SVM get the same experimental results on Sonar and Tic-tac-
toe, while for other twenty-three datasets, all the experimental results of MPCSVM 
are superior to that of SVM. Thus, we may safely draw the conclusion, the discrimi-
native information about each constrained pair in data is effective for classification.

3.	 MPCSVM versus SRSVM: For both linear and nonlinear classifiers, there exist six-
teen datasets whose experimental results of MPCSVM are  better than that of 
SRSVM, respectively, even if the datasets are not exactly the same in the two cases. 
Thus, we may safely draw the conclusion, the discriminative information about each 
constrained pair is more effective than the structures in the data within classes for 
classification.

4.	 HPCSVM versus MPCSVM: In our HPCSVM, we adopt the HPC trick to extract 
the discriminative information in data, then introduce the coresponding regulariza-
tion term into SVM. For linear classifiers, we can find that, HPCSVM and MPCSVM 
get the same experimental results on nine datasets, while for other sixteen datasets, 
there are twelve datasets whose experimental results of HPCSVM are  better than 
that of MPCSVM. For nonlinear classifiers, there exist only six datasets whose exper-
imental results of HPCSVM are poorer than that of MPCSVM. So, the comparison 
of these two methods demenstrates that the discriminative information with high-
order relationship between different samples is more reasonable.

5.	 HPCSVM versus LSSVM: For linear classifiers, except for Tic-tac-toe, all the remain-
ing experimental results of HPCSVM are better than that of LSSVM. For nonlinear 
classifiers, except for Seeds, Sonar and Tic-tac-toe, the remaining twenty-two experi-
mental results of HPCSVM are better than that of LSSVM. Hence, the comparison of 
these two methods illustrates our proposed HPCSVM is not only better than SVM, 
but also better than its variants.
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From Tables  2, 3, we may safely draw the conclusion, as long as the discriminative 
information regularization term is adopted, the best results always appear in the last two 
columns, i.e., experimental results on the twenty-five benchmark datasets demonstrate 
the discriminative information about each constrained pair in data is more effective than 
the structural information within classes for classification. Furthermore, we remodify 
the recently presented MPC regularization term with HPC method, which is expected 
to acquire the high-order relationship between different samples. And the comparison 
of the last two columns demonstrates the discriminative information with high-order 
relationship between several samples is more reasonable than with the pairwise relation-
ship between two samples. In the following paper, we further analyze the statistically 
significant difference between results and the influence of parameter k in our HPCSVM.

Statistical test

In statistics, the Holm–Bonferroni test is a simple method for multiple Student’s 
t test. For this, first, we order the p value of each dataset in ascending order as 
p(1), p(2), p(3), p(4) , and denote the associated hypotheses as H(1),H(2),H(3),H(4). For the 
given significance level α = 0.05, let m be the minimal index such that

Then, the null hypotheses H(1), . . . ,H(m−1) are rejected and H(m), . . . ,H(4) are not 
rejected. In this way, we can find that, for the linear case, among the 100 null hypothe-
ses, there exist 4 hypotheses which are judged that our method has significant advantage 
over others, while for the nonlinear case, there only exist 2. These test results illustrate 
that our method is not obviously better than others. However, it is worth mentioning 
that HPCSVM obtains the better accuracies than the other algorithms on most datasets. 
This indicates that HPCSVM does not reduce any generalization performance compared 
with others.

Influence of cluster parameter

Below, in order to investigate the influence of cluster parameter k in our HPCSVM, we 
perform an experiment on a relatively large dataset, i.e., Diabetes. And the value of k 
ranges from 2 to 15. The comprehensive experimental results are shown in Fig. 2, which 
shows the tendency of testing precision as the growth of k. Note that, for both linear and 
nonlinear cases, the testing precision first increases and then decreases as the growth of 
k. The main reason may be, a too small k could easily remove some useful information, 
whereas, a too large k could introduce some noise points, and both of the two cases could 
reduce the prediction accuracy. Thus, an appropriate parameter k is very important.

Conclusion
As we know, the potential structural information of the training data is ignored by SVM. 
In order to mitigate this shortcoming, in this paper, we present a novel algorithm termed 
as HPCSVM to improve the generalization performance of SVM. More specifically, on 
the one hand, we could acquire the high-order relationships between different samples 
by hypergraph learning, on the other hand, we present a more reasonable discriminative 

(44)p(m) >
α

4 + 1−m
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regularization term by combining the discrimination metric and hypergraph learning 
together, at last, we introduce this novel regularization term into SVM to adjust the opti-
mal separating hyperplane which is obtained by SVM. As expected, the novel model yields 
better generalization performance than SVM and its variants. However, it has more tuning 
parameters, so, effective model selection for the new method is an open research area.
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