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Background
Many real phenomena can be described by deterministic ordinary nonlinear differential 
equations (Hilborn 2000; Parker and Chua 1989; Wiggins 1990). Explicit expression of 
solutions are unavailable for the most interesting systems, thus we can use of numerical 
procedures for approximating solutions. This process may be applied even for systems 
with a wide range of chaotic behaviors. Chaotic systems are well-known for their com-
plex nonlinear behaviors and they possess certain characteristics as sensitivity to initial 
conditions. These systems have been studied in various fields such as physics, chemistry, 
engineering, biology and information sciences (Hilborn 2000; Brin and Stuck 2003; Stro-
gatz 1994). Recently, the Lie algebra method has used to obtain exact solutions for some 
nonlinear ordinary differential equations (Shang 2012, 2013, 2015b).

Since 1990, researchers have realized that chaotic systems can be synchronized. There 
are very noticeable results reported about chaos synchronization in secure communica-
tion, image processing and other fields. Synchronization of chaos is a phenomenon that 
may happen when some dissipative chaotic systems are coupled. It seems that Chaotic 
systems oppose with synchronization, because two identical chaotic systems with nearly 
the same initial conditions have trajectories in phase space which diverge quickly. By 
synchronization, the trajectories of one of the systems will converge to the same values 
as the other (Boccaletti et al. 2002; Brown and Kocarev 2000; Gonzalez Miranda 2004; 
Molaei 2011; Singh and Handa 2012; Wikipedia). In fact, the synchronization appears 
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to be structurally stable (Pecora and Carroll 1990). By depending on the nature of the 
interacted systems and of their coupling configuration, the forms of synchronization 
may be different. Some of them are identical synchronization, generalized synchroni-
zation, phase synchronization, anticipated and lag synchronization, and other kinds of 
synchronization schema as generalized lag synchronization (Huanga et  al. 2009) and 
adaptive pinning control for the projective synchronization (Xiao et al. 2012) that are the 
recent development for the synchronization of chaos. Many different forms of synchro-
nization are possible in unidirectional or bidirectional coupling configuration (Brown 
and Kocarev 2000; Gonzalez Miranda 2004; Pikovsky et al. 2001; Singh and Handa 2012; 
Wikipedia). In identical (complete) synchronization, two dynamical systems have the 
same behavior at the same time that restricted to a hyperplane, the synchronization 
manifold, in the phase space (Carroll et al. 1997; Tarai et al. 2009). Therefore in studying 
the synchronization, there are two fundamental investigations: finding the synchroni-
zation manifold and determining its stability (Carroll et al. 1997; Fujisaka and Yamada 
1983a, b).

We mention that there is different between synchronization and consensus. In the 
consensus problem (Shang 2015a), we change a system with parameters to a system 
with simple parameters so that these two systems have the same behavior but in the syn-
chronization problem we do not need to change the parameters to simple parameters. 
Consensus systems usually require linear and identical dynamics for uncoupled systems. 
Consensus problems have many applications in engineering, social and biological fields.

There is an additional complication to synchronization of chaotic systems when they 
are non-autonomous (They have some explicit time dependence.). One of the reason 
for considering non-autonomous systems is that in the some of physical systems, the 
parameters associated with these systems may vary with time.

In this article we introduce a non-autonomous unified chaotic system with continuous 
periodic switch between the Chen and Lorenz systems. This system exhibits abundant 
wonderful dynamics for different values of its parameter that in very beautiful figures 
will be shown. Many studies in the future can be discerned about this system and its 
applications. For recognizing better this system, we will consider the general properties 
of its dynamical behaviors as symmetry, dissipativity, existence of attractor and instan-
taneous equilibria with their stability. Then we will discuss the identical synchronization 
between two systems of this type with bidirectional coupling configurations; started at 
slightly different initial conditions. Finally we will study the synchronized motion and its 
stability by estimating the Lyapunov characteristic exponents (LCE) spectrum which are 
shown in various figures of two and three dimentional.

The article is organized as follows: In the next section we will consider unified cha-
otic system. Then in section three we will introduce a non-autonomous unified chaotic 
system. Its dynamical behaviors will be studied in section four. Lyapunov characteris-
tic exponents (LCE) of it, will be considered in sections five and six. In section seven, 
we will study the identical synchronization and its stability with Mathematica (Gray 
1998) implementation for calculating LCE spectrum. Finally, section eight will be the 
conclusion.
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Unified chaotic system
In many natural phenomena, an nth-order autonomous continuous-time dynamical sys-
tem is defined by differential equation

where Ẋ = dX
dt
,X(t) ∈ R

n is the state vector at time t, and F : Rn → R
n is a C1 (the space 

of continuously differentiable functions) function. The solution of system is often writ-
ten as f t(X).

The one-parameter family of mapping f t : Rn → R
n, satisfies the two conditions, 

f t1+t2 = f t1of t2 and f 0(X) = X is called the flow. The set of points {f t(X0) : t ∈ R} is 
called the trajectory through X0.

An nth-order non-autonomous continuous-time dynamical system is defined by dif-
ferential equation

In this case the vector field depends on time and the solution of system passing through 
X0 at time t0 is denoted by f t(X0, t0) (Parker and Chua 1989).

Since Lorenz found the first chaotic attractor (Lorenz 1963), chaos has been exten-
sively studied in science, engineering, physics and mathematics (Pecora and Carroll 
1990; Carroll et  al. 1997). In 1999, Chen found another similar but topologically not 
equivalent chaotic attractor (Chen and Ueta 1999). In 2002, Lu et al. produced a unified 
chaotic system that not only bridges the gap between the Lorenz and the Chen system 
but also represent the entire family of chaotic systems between them (Lu et al. 2002). 
The unified chaotic system, for α ∈ [0, 1] is described by

In 2004, Junan and Xiaoqun introduced a non-autonomous unified chaotic system with 
continuous periodic switch between the Lorenz and Chen systems under inspiration of 
the unified chaotic system (3) with α = sin2(ωt) and ω is an adjustable parameter system 
that was called switching system (Junan and Xiaoqun 2004).

Currently it is being actively discussed the question of the equivalence of various Lor-
enz-like systems and the possibility of universal consideration of their behavior in view 
of the possibility of reduction of such systems to the same form with the help of various 
transformations. Leonov and Kuznetsov have discussed the differences and similarities 
in the analysis of these systems and they have shown that the Chen and the Lu sys-
tems stimulate for the development of new methods for the analysis of chaotic systems 
(Leonov and Kuznetsov 2015).

The another unified chaotic system with continuous periodic switch
We introduce a non-autonomous unified chaotic system with continuous periodic 
switch between Chen and Lorenz systems under inspiration of the unified chaotic sys-
tem (3), which is described as follows:

(1)Ẋ = F(X), X(t0) = X0,

(2)Ẋ = F(X , t), X(t0) = X0.

(3)







ẋ = (25α + 10)(y− x);
ẏ = (28− 35α)x − xz + (29α − 1)y;

ż = xy− (α+8)
3 z.
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where ω is adjustable parameter of system (4). When the system evolves, t increases, the 
system (4) switches continuously between the Chen and Lorenz systems. The frequency 
of switching is controlled by the parameter ω. This system exhibits abundant wonderful 
dynamics that for ω = 0, 0.01, 1, 1000 are shown in Figs. 1, 2, 3 and 4.

In these figures we demonstrate the three dimentional chaotic attractor of system, pro-
jections of the chaotic attractor to three orthogonal planes and the time series obtained 
from the time evolution of the variables x(t), y(t) and z(t).

For ω = 0, we will obtain the Chen system from system (4), while, for this value of ω, 
one can obtain the Lorenz system from switching system. It might be suggested that the 
system (4) is the dual to the switching system in Junan and Xiaoqun (2004).

(4)







ẋ = (25cos2(ωt)+ 10)(y− x);

ẏ = (28− 35cos2(ωt))x − xz + (29cos2(ωt)− 1)y;

ż = xy− cos2(ωt)+8
3 z.

Fig. 1  ω = 0

Fig. 2  ω = 0.01
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Dynamical behaviors
Symmetry

The system (4) has a natural symmetry under the coordinates transform,

for all values ω. Furthermore, the trajectory on the z-axis tends to the origin as t → ∞, 
since for such a trajectory, we have:

 Dissipative property and the existence of attractor

The system (4) is dissipative: volumes in phase space contract under the flow. For under-
standing that how to do volumes evolve, in general, we consider a three-dimensional 
system Ẋ = F(X) (Ott 1994; Strogatz 1994). Choose an arbitrary closed surface S(t) of 
volume V(t) in phase space. Suppose the points on S be as initial conditions for trajecto-
ries, and they evolve for an infinitesimal time dt. Then the surface S evolves in to a new 
surface S(t + dt) of volume V (t + dt). If n denotes the outward normal on S, then F.n is 
the outward normal component of velocity (Because F is the instantaneous velocity of 

(x, y, z) → (−x,−y, z),

dx

dt
=

dy

dt
= 0,

dz

dt
= −

cos2(ωt)+ 8

3

Fig. 3  ω = 1

Fig. 4  ω = 1000
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the points). Therefore in time dt, a patch of erea dA sweeps out a volume (F.ndt)dA and 
we obtain,

and so,

then by the divergence theorem, we have,

For our system,

therefore,

Since the divergence is constant with respect to the state vector, we have,

which has solution,

Thus volumes in the phase space shrink to zero with an exponential rate independent of 
x, y, z as t → ∞ and the system (4) is dissipative for all ω. This does not imply that each 
small volume shrinks to a point but may imply become flattened into a surface. There-
fore all trajectories ultimately become confined to a specific subspace with zero volume, 
and the motion of system asymptotically settles onto an attractor.

Instantaneous equilibria and stability

Suppose t0 is arbitrary and constant, for every time t ≥ t0, from system (4) we can solve 
the bellow system:

It can be verified that system (5) has three solutions: S0(0, 0, 0),

V (t + dt) = V (t)+

∫

S
(F .n dt) dA,

V̇ =
V (t + dt)− V (t)

dt
=

∫

S
F .n dA,

V̇ =

∫

V
∇ .FdV .

∇ · F =
∂ ẋ

∂x
+

∂ ẏ

∂y
+

∂ ż

∂z
= −(25cos2(ωt)+ 10)+ (29cos2(ωt)− 1)−

cos2(ωt)+ 8

3
,

∇ .F = −
41− 11cos2(ωt)

3
< 0, t ≥ 0.

V̇ = −
41− 11cos2(ωt)

3
V ,

V (t) = V (0) exp

(

−
41− 11cos2(ωt)

3

)

.

(5)







�

25cos2(ωt)+ 10
�

(y− x) = 0;
�

28− 35cos2(ωt)
�

x − xz + (29cos2(ωt)− 1)y = 0;

xy− cos2(ωt)+8
3 z = 0.
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which we call them instantaneous equilibrium points. We see that S+ and S−, are sym-
metrically placed with respect to the z-axis. Jacobian matrix in linearizing the system (4) is:

The characteristic equation of matrix J at S0 is,

Thus from f (�) = 0, one of eigenvalues is �1 = −
cos2(ωt)+8

3 < 0 and the others satisfy 
�2 > 0 > �3. So, S0 is a saddle point in the phase space.

The characteristic equation of matrix J at the other instantaneous equilibria is:

and

By the Routh-Hurwitz stability criterion, a necessary and sufficient condition that each 
root of f (�) have negative real part is that

These conditions are satisfied if and only if −0.4 < cos2(ωt) < −0.013681. But this is 
impossible. Therefore the three instantaneous equilibria of system (4) are unstable for all 
values of parameter. The correlation between real parts of eigenvalues and parameter ω 
for t = 0, . . . , 5 are shown in Figs. 5 and 6.

S+

(

√

72− 7cos2(ωt)− 2cos4(ωt),
√

72− 7cos2(ωt)− 2cos4(ωt),−3(−9+ 2cos
2(ωt))

)

,

S−

(

−
√

72− 7cos2(ωt)− 2cos4(ωt),−
√

72− 7cos2(ωt)− 2cos4(ωt),−3(−9+ 2cos
2(ωt))

)

,

J =





−10− 25cos2(ωt) 10+ 25cos2(ωt) 0

28− z − 35cos2(ωt) − 1+ 29cos2(ωt) − x

y x 1
3 (−8− cos2(ωt))



.

f (�) = (�2 + (11− 4cos
2(ωt))�+ (25cos2(ωt)+ 10)(6cos2(ωt)− 27)

(

�+
cos

2(ωt)+ 8

3

)

.

f (�) = �
3 + A�2 + B�+ C = 0, with A =

41− 11cos2(ωt)

3
,

B =
(38− 10cos2(ωt))(cos2(ωt)+ 8)

3
,

C = 2(25cos2(ωt)+ 10)(cos2(ωt)+ 8)(−2cos2(ωt)+ 9).

A > 0,AB− C > 0, (AB− C)C > 0.

Fig. 5  Real �1, t = 0, . . . , 5
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 Lyapunov characteristic exponent
Lyapunov characteristic exponents (LCE) give the rate of exponential divergence from 
perturbed initial conditions in a phase space. We consider an infinitesimal hypersphere 
of initial conditions in the phase space. The effect of the dynamics for sufficiently short 
time scales, will turn this hypersphere to the shape of a hyperellipsoid, contracted along 
one direction and stretched along another. This is because the rate of divergence of the 
trajectories that start in the points initially in hypersphere will be different along differ-
ent directions. The asymptotically rate of expansion of the largest axis, is measured by 
the largest LCE that is corresponded to the most unstable direction. Since a positive LCE 
indicates expansion, the existence of it distinguishes strange attractors from non-chaotic 
attractors. On the other hand for any attractor other than a fixed point, one LCE must 
be zero and the sum of the LCEs of an attractor of a dissipative system must be negative 
(Parker and Chua 1989). Therefore a strange attractor must have at least three LCEs that 
their numbers are equal to the dimension of the phase space. For a chaotic system, the 
spectrum of its LCEs in decreasing order by magnitude is �1 ≥ �2 ≥ · · · ≥ �n. Since the 
direction of the axes of the ellipsoid change with time, therefore there is no well-defined 
direction associated to each LCE.

Suppose X0 and X0 + δX0 are two nearby points in the phase space where δX0 is a 
small perturbation of the initial state. The perturbation δXt, after a time t, will become:

where f t(X0) and f t(X0 + δX0) are images of two points under the flow and the last 
term is obtained by linearizing f t. Now, the average exponential rate of divergence of the 
two trajectories is defined by:

This limit exists, for almost all points, and for almost all tangent vectors in basin of 
attraction and is called the largest LCE, �1 (Sandri 1996).

Definition (7) refers to LCEs of order one of vectors. In general (Parker and Chua 1989; 
Sandri 1996), the LCEs of order 1 ≤ p ≤ n, is defined by

(6)δXt = f t(X0 + δX0)− f t(X0) = DX0 f
t(X0) · δX0,

(7)�(X0, δX0) = lim
t→∞

1

t
ln
||δXt ||

||δX0||
= lim

t→∞

1

t
ln||DX0 f

t(X0) · δX0||.

(8)�
p(X0,M0) = lim

t→∞

1

t
ln
[

Volp(DX0 f
t(M0))

]

,

Fig. 6  Real �2, �3, t = 0, . . . , 5
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where Volp is the p-dimensional volume of a parallelepiped M0 in the tangent space 
whose edges are the p vectors u1,u2, . . . ,up. These LCEs describe the average rate of 
change of a Volp. There exist p linearly independent vectors u1,u2, . . . ,up such that

If {w1,w2, . . . ,wp} be the set of orthogonal vectors of {u1,u2, . . . ,up}, obtained by Gramm-
Schmidt method, then volume of the parallelepiped spanned by {u1,u2, . . . ,up} is

 Estimation of the entire LCE spectrum
Consider the n-th order system

with X0 , as an initial condition in the basin of attractor. According Parker and Chua 
(1989), one can verify that the vector defined in (6), satisfies in the variational equation:

where �t(X0) is the derivative with respect to X0 of f t at X0, that is, �t(X0) = DX0 f
t(X0) . 

Equation (11) is a matrix-valued time-varying linear differential equation whose coef-
ficients depend on the evolution of the original system (10). It is the linearization of the 
vector field along the trajectory f t(X0, t0). Initial condition is the identity matrix I. Since 
the variational equation (11) depends on both f t and �t, they must be calculated at the 
same time. To perform this work, we append the variational equation to the original sys-
tem for obtaining the new combined system:

For non-autonomous system Ẋ = F(X , t), it will be sufficient to treat t as an additional 
dependent variable with the trivial evolution equation ṫ = 1, and we will rewrite every 
non-autonomous system as an autonomous system (Parker and Chua 1989; Sandri 1996)

For the calculation of LCEs, via the algorithm of Benettin et al. (1980a, b), Sandri (1996), 
we choose an initial vector X0, an n× n matrix M0 = [u

(0)
1 , . . . ,u

(0)
n ], and by Gramm-

Schmidt method, we obtain the matrix N0 = [v
(0)
1 , . . . , v

(0)
n ] of orthonormal vectors cor-

responding to M0. Now integrate the variational equation (12) by using 
(

X0

N0

)

 in a short 
interval T of time, for obtaining X1 = f t(X0) and

Again, we obtain the matrix N1 = [v
(1)
1 , . . . , v

(1)
n ] of orthonormal vectors correspond to 

M1 and integrate the Eq. (12) by using 
(

X1

N1

)

 in the same short interval T, for obtaining 

X2 = f t(X1) and

(9)�
p(X0,M0) = �1 + �2 + · · · + �p,

Vol{u1,u2, . . . ,up} = ||w1|| . . . ||wp||.

(10)Ẋ = F(X , t),

(11)�̇t(X0) = DXF
(

f t(X0)
)

·�t(X0), �0(X0) = I ,

(12)

(

Ẋ

�̇

)

=

(

F(X)
DXF(X).�

)

,

(

X(t0)
�(t0)

)

=

(

X0

I

)

(13)Ẋ = F(X , t), ṫ = 1.

M1 =

[

u
(1)
1 , . . . ,u(1)n

]

= DX0 f
t(M0) = �T (X0) ·

[

u
(0)
1 , . . . ,u(0)n

]

.
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The procedure of integration and orthonormal method repeats for K times.
Through the k − th step, the volume Volp changes by a factor of ||w(k)

1 || . . . ||w
(k)
p ||, 

where {w(k)
1 , . . . ,w

(k)
p } is the set of orthogonal vectors calculated from Mk by Gramm-

Schmidt method. From (8), we have

By subtracting �p−1 from �p and (9), we obtain the p− th LCE of order one:

Therefore, for a suitable value of T, and a large enough number of iterations K, we have 
the LCE spectra (Sandri 1996),

The relationship between the largest LCE and parameter ω of system (4) is shown in 
Fig. 7, where the horizontal component in log10w and the vertical component is the larg-
est LCEs.

Synchronization with bidirectional coupling configurations
 Identical synchronization

In this section, we want to consider the identical synchronization for the chaotic system 
(4). The possibility of synchronization in a coupled chaotic system composed of identi-
cal chaotic oscillators was first reported by Fujisaka and Yamada (1983a, b) and later by 
Pecora and Carroll (1990). This type of synchronization, identical synchronization (IS), 
is also known as complete synchronization (CS).

When there are initial conditions so that the systems eventually evolve identically in 
time, the systems are to be completely synchronized. In bidirectional coupling, both sys-
tems are coupled to each other and the coupling factor drives a regulation of the dynam-
ics onto a common synchronized behavior. A linear bidirectional coupling between 
identical chaotic systems can be discussed as the preliminary of an additional dissipative 
term in the dynamics of system (10):

where C is a constant symmetric matrix which describes the strength of the coupling 
between the oscillators and also is called the interaction matrix. The type of coupling 

M2 =

[

u
(2)
1 , . . . ,u(2)n

]

= DX1 f
t(M1) = �T (X1) ·

[

u
(1)
1 , . . . ,u(1)n

]

.

(14)
�
p(X0,M0) = lim

k→∞

1

kT

k
∑

j=1

ln
(

||w
(j)
1 || . . . ||w

(j)
p ||

)

.

�p = lim
k→∞

1

kT

k
∑

j=1

ln||w
(j)
p ||.

(15)�i ≈
1

KT

K
∑

j=1

In||w
(j)
i ||, i = 1, 2, . . . , n.

(16)
dX

dt
= F(X)+ C .(Y − X)

(17)dY

dt
= F(Y )+ C .(X − Y )
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defined by (16) and (17) is also called diffusive coupling (Chen et al. 2011; Kim and Chwa 
2011; Pikovsky et al. 2001; Shao et al. 2002).

When one increases the coefficients in systems (16) and (17), a transition to a IS state 
occurs at a critical value of the coupling. Here, our purpose of the IS state is to be estab-
lished the asymptotic condition limt→∞ ||X − Y || = 0. In general, the motion of the 
coupled system, occurs in a phase space of dimension 2n. However, when the IS state 
is achieved, the motion collapses to a subspace X = Y  (the synchronization manifold) 
of phase space. The phase space is combined of two geometrical entities: the synchro-
nization manifold, and the transverse subspace that they are perpendicular subspaces 
together (Carroll et al. 1997). Here, the systems synchronize in a complete way for all 
c > CT, that CT

∼=
�1
2  is a critical coupling strength and �1 is the largest LCEs.

For the system (4), by using (16), (17), (13), the bidirectional coupled system with diag-
onal matrix C = cI and t1, t2 as time variables in Eq. (13), is:

Synchronized motion and its stability

Now, the important problem here is the stability of the synchronization manifold, the 
question of what happens when an infinitesimal perturbation occurs in the synchroniza-
tion manifold. If the perturbation dies off exponentially and the trajectory returns to the 
synchronization manifold, the synchronized state is said to be stable and it is unstable 
when the perturbation grows exponentially (Fujisaka and Yamada 1983a). The condition 

ẋ1 =
(

25cos2(ωt1)+ 10
)

(y1 − x1)+ c(x2 − x1);

ẏ1 =
(

28− 35cos2(ωt1)
)

x1 − x1z1 +
(

29cos2(ωt1)− 1
)

y1 + c(y2 − y1);

ż1 = x1y1 −
cos2(ωt1)+ 8

3
z1 + c(z2 − z1);

ṫ1 = 1+ c(t2 − t1);

ẋ2 =
(

25cos2(ωt2)+ 10
)

(y2 − x2)+ c(x1 − x2);

ẏ2 =
(

28− 35cos2(ωt2)
)

x2 − x2z2 + (29cos2(ωt2)− 1)y2 + c(y1 − y2);

ż2 = x2y2 −
cos2(ωt2)+ 8

3
z2 + c(z1 − z2);

ṫ2 = 1+ c(t1 − t2).

Fig. 7  the largest LCEs
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of stability is that the LCEs obtained from the variational equation of the transverse part 
of the perturbation have to be negative. These are called transverse LCEs that depend on 
the numerical values of the components of the matrix C.

It is evident that the negativity of transverse LCEs represents a necessary condition for 
the local stability of the synchronized motion. If these are positive, we will never observe 
the system in its synchronous motion, because perturbations in the vicinity of the mani-
fold would grow exponentially and they have the effect to destroy synchronization (Pec-
ora and Carroll 1990; Carroll et al. 1997).

Inspired by the described algorithm in “Estimation of the entire LCE spectrum” sec-
tion, and by using the program implemented with Mathematica , we calculate the LCE 
spectra for some of values ω that illustrated in Fig. 8.

The transverse LCEs decrease monotonically from the values of LCEs of a single free 
oscillator by increasing coupling strength. The positive value of LCEs becomes negative 

Fig. 8  a ω = 0, CT ≃ 1.1. b ω = 0.001, CT ≃ 0.98. c ω = 0.01, CT ≃ 1.1. d ω = 0.1, CT ≃ 0.9. e ω = 1, CT ≃ 0.9. f 
ω = 10, CT ≃ 0.92. g ω = 100, CT ≃ 0.98. h ω = 1000, CT ≃ 1
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at transition value (critical coupling strength), CT . The first value stays positive constant 
in the whole range of values of c. This means that the coupled system stays chaotic even 
in the asymptotically stable synchronized state. Indeed, it is hyperchaotic below CT , and 
the transition from hyperchaos to chaos at CT , is the transition to stable synchroniza-
tion. The motion is restricted to the synchronization manifold for c > CT. The phenom-
enon of identical synchronization between bidirectionally coupled chaotic systems is 
illustrated in Figs. 9, 10, 11 and 12.

The simplest way to see the relation between two coupled systems is to plot the vari-
ables of one versus (vs.) the variables to the other.The difference between two chaotic 
states can be also seen from the time series. In Fig. 9, for ω = 0 and below the transi-
tion to synchronization (c = 0.5), part (a) demonstrates the parametric plots x1 vs. x2 
(x2(x1)), y1 vs. y2 and z1 vs. z2. In part (b) the components x1, y1, z1 of the first system 
and the components x2, y2, z2 of the second system are individually seen pairwise versus 
each other; for example x1 vs. y1, x2 vs. y2 and so on, for t = 10s. It is not difficult to see 
the difference between two systems. Part (c) demostrates the two time series x1(t) (red 
curve) and x2(t) (green curve); y1(t) (red curve) and y2(t) (green curve); z1(t) (red curve) 
and z2(t) (green curve). In this figures we also demonstrate the sensitivity to small per-
turbation. Oscillations of components for every two time series have started at different 
but very close initial conditions.

Fig. 9  c = 0.5 < CT , ω = 0. a Parametric plots: x2(x1), y2(y1), z2(z1)

. b Parametric plots:y1(x1), y2(x2), z1(x1), z2(x2), z1(y1), z2(y2), t = 10s. c Time 
series:x2(t), x1(t), y2(t), y1(t), z2(t), z1(t),
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In Fig.  10, for ω = 0 and above the transition to synchronization (c =  1.8), part (a) 
demonstrates the parametric plots from the identical synchronization attractor. The 
states of two systems are identical, as can be easily seen on the planes x1 vs. x2, y1 vs. 
y2 and z1 vs. z2. The trajectories lie on the diagonal x1 = x2, y1 = y2, z1 = z2respectively. 
Part (b) demonstrates that strong coupling makes the trajectories of two systems nearly 
identical; for example x1 vs. y1, x2 vs. y2 and so on. Part (c) demonstrates the time series 
of two systems are chaotic in time, but completely coinciding (red and green curves). 
Similarly, in Figs. 11 and 12 for w=1000 one can see the status of two coupled systems 
before and after identical synchronization.

Figure 13, for ω = 0 and c = 1.8 and Fig. 14, for ω = 1000 and c = 1.5, above the tran-
sition to synchronization demonstrate the identical synchronization errors.

Fig. 10  The transition to synchronization c = 1.8 > CT , ω = 0. a Parametric plots: 
x2(x1), y2(y1), z2(z1),. b Parametric plots: y1(x1), y2(x2), z1(x1), z2(x2), z1(y1), z2(y2), t = 10s. c 
Time series:x2(t), x1(t), y2(t), y1(t), z2(t), z1(t)
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Conclusion
Although there are many well-known autonomous chaotic systems, but a few of non-
autonomous have been presented in the articles. This article focuses on another non-
autonomous unified chaotic system that is obtained by replacing a fixed parameter in 
unified chaotic system with a function of time. The system has very rich chaotic dynami-
cal behaviors for varying its parameter. We have studied the special properties of the 
system in detail. By simulation that performed with mathematica, we have demonstrated 
that these type of chaotic systems can be synchronized. Then by estimating the LCE 
spectrum, the synchronized motion and its stability have been studied. The main results 
of our work in relation to the estimates of the LCE spectrum and the status of the bidi-
rectional coupled systems before and after identical synchronization, for different values 
of parameters, are shown in two and three dimentional figures beautifully. We think that 
by replacing the fixed parameter in unified chaotic system with other functions such as 

Fig. 11  c = 0.5 < CT , ω = 1000. a Parametric plots: x2(x1), y2(y1), z2(z1)

. b Parametric plots: y1(x1), y2(x2), z1(x1), z2(x2), z1(y1), z2(y2), t = 10s. c Time series: 
x2(t), x1(t), y2(t), y1(t), z2(t), z1(t)
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Fig. 12  The transition to synchronization c = 1.5 > CT , ω = 1000. a Parametric plots: 
x2(x1), y2(y1), z2(z1),. b Parametric plots: y1(x1), y2(x2), z1(x1), z2(x2), z1(y1), z2(y2), t = 10s. c 
Time series: x2(t), x1(t), y2(t), y1(t), z2(t), z1(t),

Fig. 13  Identical synchronization error c = 1.8 > CT , ω = 0

Fig. 14  Identical synchronization error c = 1.5 > CT , ω = 1000
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unit step function and error function, one can introduce the systems that will be widely 
applicable in engineering. We will investigate the generalized synchronization between 
two different systems of this type as soon as possible.     
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