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Background
A system such as mechanical, biological or social-economic system consists of inde-
pendent components. These components influence one another to maintain their activ-
ity for the existence of a system in order to achieve the goal of the system. The system 
changes behavior when a component is changed or removed significantly. This moti-
vates us to find the reason or cause behind fault and discover the cause parameters in 
explaining the interactions among the components of a system or process. The causal 
discovery indicates not only that the indicators are correlated, but also how changing 
a cause variable is expected to induce a change in an effect variable. For example, with 
analyzed cause–effect relationships, we can predict potential effects before taking any 
actions (causes), which is useful in preventing inaccurate decision or policy making in 
the social-economical system. Time series data can be used to extract delayed relation-
ship between two variables, for example, “CO2 emission occurring at a place might 
cause air pollution at another place after some delay”. These lagged relationships sig-
nify the time lag between the cause–effect parameters. Identifying lagged relationships 
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between socioeconomic processes is challenging due to the presence of various com-
plex dependencies in the data. This dependency among the various parameters has ena-
bled us to identify relationships among different domain parameters in time series data 
(Madsen 2007; Geweke 1984). The cause–effect relationship for time series prediction is 
a step towards extracting the various existing causal relations between different domain, 
such as employment, education, agriculture and rural development etc. Causal discov-
ery has been used in various fields with great success as bioinformatics (Needham et al. 
2007), biology (Shipley 2002), earth sciences, etc. to identify protein interactions (Sachs 
et al. 2005; Chen et al. 2010), gene regulatory networks (Pinna et al. 2010; Friedman et al. 
2007) and to study atmospheric teleconnections (Chu et al. 2005). It has also emerged in 
economics and social sciences (Spirtes et al. 2000; Neapolitan 2004) such as to improve 
the economic development (Easterly and Levine 2003) and growth (Asafu-Adjaye 2000) 
of a country and to study the impact of climate change (Ebert-Uphoff and Deng 2014; 
Deng and Ebert-Uphoff 2014). Before describing the proposed method to extract vari-
ous causal rules, we explain the following example (Fig. 1) to show the motivation of our 
research.

Suppose we have set of indicators such as exercise, weight, diseases, calcium, alcohol, 
and bone growth etc. Various causal relationships can exists among them. An indicator 
may affect other instantly or after some time. For example, if a person takes alcohol he 
may feel a lack of energy (lethargy) instantly or after some time (Fig. 1a). If he takes alco-
hol frequently, the changes can be observed and it can be concluded that alcohol is one 
of the causes behind tiredness. We could identify the time between alcohol was taken 
and occurrence of lethargy and can also identify the amount of alcohol dose tends to 
cause the lethargy. More relationship like transitive can be analyzed between set of indi-
cators (shown in Fig. 1), such as lack of exercise increases weight, which increases the 
chance of diseases (Fig. 1b, c). Many to one, shows the relationship such as if a person 
is taking the proper dose of calcium and vitamin D, it will help in bone growth i.e. bone 
growth requires both calcium and vitamin D. Figure 1d describes the cyclic relationship 
mean properties affecting each other in a cyclic manner, for example, lethargy increases 
weight which in turn also increases lethargy. These extracted relationships are referred 
as binary, transitive, many to one and cyclic respectively.

Fig. 1  Causal relationships
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In this paper, we have proposed a method to extract various causal relationships as 
binary, transitive, many to one and cyclic with properties such as time required to occur 
an effect (as lag value), rate of change (of both cause and effect parameter) and strength 
of a relationship without using statistical information.

Related work and contributions
The common way to identify cause–effect relationships is to plan randomized con-
trolled experiments, which is generally expensive and unattainable with a huge number 
of parameters. Therefore, much concentration is needed to discover cause–effect rela-
tionships from increased growth of the huge amount of observational data. Discovery 
of cause–effect relationships in large observational data is a demandable task. Pearl and 
Verma (1991) suggested a framework that discovered causal structures from connected 
conditional independence, based on that some techniques have been developed to iden-
tify the causal relationships. However, still it cannot discover causal structures effectively 
from large databases and also the computational cost is high for the discovery. Probabil-
istic dependence is one technique, used to represent causality. Probabilistic cause–effect 
relationships have been examined and suggested in the literature (Reinchenbach 1978; 
Reichenbach and Reichenbach 1991; Good 1959; Suppes 1970). More recently, Bayes-
ian networks (Pearl 2014), graphical causal modeling have emerged as a leading tech-
nique for discovering causal relationships. Authors (Heckerman 1995, 1997; Zhang and 
Poole 1996; Waldmann and Martignon 1998; Nadkarni and Shenoy 2001) describe the 
techniques they have proposed for characterizing, interpreting and learning probabil-
istic independence among parameters. However, Bayesian network learning to discover 
complete cause–effect models is an NP-complete problem (Chickering 1996). Con-
straint-based techniques are more efficient by avoiding the search for a generic Bayes-
ian network. Currently, several constraint-based approaches have been implemented to 
identify causal relationships in large databases and achieved some satisfactory results 
(Cooper 1997; Silverstein et  al. 2000; Mani et  al. 2012; Pellet and Elisseeff 2008; Alif-
eris et  al. 2010). These approaches use observational data to detect and learn causal 
structures using conditional independence among variables. It is significantly notable 
that these constraints-based approaches directly or indirectly implement the concept of 
Bayesian network learning, by creating a directed acyclic graph (DAG) which describes 
the conditional independence between variables (parameters). Even constraint-based 
methods shown promising results with large databases, they typically are designed to 
detect causality with few fixed structures in a directed acyclic graph (DAG), such as Y 
structures (Mani et al. 2012), CCC (Cooper 1997), and CCU (Silverstein et al. 2000).

Another technique in this area is Granger causality (GC) (Granger 1969). It has also 
been discussed in the previous literature (Lozano et al. 2009a, b; Arnold et al. 2007; Pang 
and Su 2010) and well known in economics causal inference. The method calculates the 
impact of one time series on another by finding out whether the response prediction can 
be improved by including the knowledge of a predictor or not. GC is reported to perform 
well for stationary time series data but is sensitive to non-linearity. All these methods 
infer directed networks. Although these methods are fast and, the inferred interactions 
are undirected. Moreover, these approaches are well suited for small sample data analy-
sis (Veiga et al. 2007) but are not designed to detect combined causal parameters. Most 
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of the time, two or more parameters may enhance the strength of effects. Even when 
individual parameter does not cause more effect, together they may do. We noticed that 
discovering causal structures in observational data only is insufficient. So, the discov-
ered relationships have to be verified with time series data and controlled experiments. 
Still, it is acceptable to remove noncausal relationships discovered from data. Cause–
effect relationship discovery is to find a brief list of rules that are probably causal. These 
causal rules provide a set of statistically decisive relationships which are acceptable to 
embed cause–effect relationships. This differentiates between the causal and normal 
rule discovery.

Association rule mining (Agrawal et al. 1993) has an efficient and versatile means for 
discovering relationships in data (Han et al. 2011). Authors (Jin et al. 2012; Li et al. 2013; 
Ma et  al. 2016) use the advantage of association rule mining for causality discoveries. 
Jin et al. (2012) discovers the causal relationships with multiple cause variables in large 
databases of binary variables and excludes non-causal associations. Researchers (Li et al. 
2013; Ma et al. 2016) discover potential causal rules using cohort study (Euser et al. 2009; 
Fleiss et  al. 2003) and capable to generate combine causal rules in observational data. 
Author (Li et al. 2015) presented four approaches PC, HITON-PC, CR-PA and CR-CS 
for causality detection around a given target variable and discuss their efficiency. The PC 
and HITON-PC methods are based on Bayesian network learning theory and use con-
ditional independence tests to eliminate non persistent associations, CR-PA use associa-
tion rule and partial association and CR-CS uses the concept of a cohort study.

These proposed methods are able to find single and combined causal rules effectively 
in small and large database with low and high dimensional data, but they are restricted 
to discrete data and unable to extract the cyclic relationships and strength of relation-
ships, although causality can be observed in various hidden relationships. However, sta-
tistically predictable associations do not illustrate cause–effect relationships, although 
mostly causality is usually observed as an association in the dataset. Therefore, in this 
paper, initially we use the concept of temporal association (Ji et al. 2011) and odds ratio 
(Fleiss et al. 2003) to extract binary causal relationship and further other relationships 
are extracted.

To the best of our knowledge, there is no previous work on discovering cyclic and 
transitive causal relationships with properties as the rate of change of parameters and 
their relationship strength in time series data. We should observe that discovering causal 
relationships in observational and constraint-based data only are insufficient.

The contributions of this work are listed in the following:

• • First, we present a method to extract cause–effect relationships like binary, transitive, 
many to one and cyclic in large time series database.

• • Second, we define the concept of temporal association lag rule and temporal odds 
ratio to extract cause–effect relationships between various parameters.

• • Third, we are generating more specific cause–effect rules like binary, transitive, many 
to one and cyclic with their relationship strength which is useful for strategic deci-
sions.
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Our proposed method is useful to extract time lagged relationships across different 
field indicators that can be used to understand the lagged response of one indicator on 
another and various relationships such as binary, cyclic, many to one and transitive. 
We show the utility of our approach by extracting some relationships between differ-
ent field indicators. For example, the rule (Cereal production, D, 2 %, 2) ⇒ (Agricultural 
raw materials exports, 3  %), indicates a causal rule that cereal production is directly 
related to agricultural raw materials exports and if it is changed by 2  %, it affects the 
export of agricultural raw material by 3 % after 2 years. The proposed approach can be 
broadly applied to other problems in the temporal domain to extract various time lagged 
relationships.

Preliminaries
In this section, first we define the terms used in this paper. Then we define the con-
cepts for describing proposed cause–effect relationship extraction method. Finally, we 
describe the formal definition of various cause–effect relationships, discovering such 
causal relationships is the aim of this paper.

This paper deals with continuous parameters. Since all the parameters are having dif-
ferent ranges and we are interested in finding relationships. So instead of taking the 
absolute value of parameters, the rate of change is used to extract the effect of change of 
one parameter on another parameter, each time series value is categorized as a positive 
rate of change (U), a negative rate of change (D) and no rate of change (Q). To find an 
association between two parameters temporal association rule is used and defined using 
following terms:

n	� Number of elements in time-series
z	� Number of parameters in database P
l	� Lag parameter, l ≠ 0
lmax	� Maximum lag difference value
Tk	� Value of kth time unit
Pi,k	� Value of Pi parameter in kth time unit
γi,k	� Rate of change of parameter Pi in kth year, can be calculated as: 

δ	� Minimum rate of change used to consider a significant change
Ri,k	� Parameters indicate type of change, defined as: 

The time series of parameter Pi is converted into a set of tuple 〈Pi, Tk, Ri,k〉 where Tk 
is kth time period and Ri = Ri,k ∊ {U, D, Q} indicates the positive, negative or no rate of 
change for kth time unit. For example, if GDP is having a positive rate of change in 1970 
than it is indicated by tuple 〈GDP, 1970, U〉.

(1)γi,k =
Pi,k − Pi,k−1

Pi,k−1

(2)Ri,k =







U if γi,k ≥ δ

D if γi,k ≤ −δ

Q if − δ ≤ γi,k ≤ δ






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Based on above structure of time series, the relationship between two parameters Pi 
and Pj for lag l is defined using following terms:

Di,j,k,l	� Parameters indicate direct relationship, defined as: 

i.e. the rate of change of Pi matches with the rate of change of Pj after time period l
SD(Pi,Pj , l)	� Support count of direct relationship, defined as: 

αD(Pi,Pj , l)	� Support percent of direct relationship, defined as:

Ii,j,k ,l	� Parameters indicate inverse relationship, defined as: 

i.e. the rate of change of Pi is opposite to rate of change of Pj after time period l
SI (Pi,Pj , l)	� Support count of inverse relationship, defined as:

αI (Pi,Pj , l)	� Support percent of inverse relationship, defined as:

ΘR	� Strength of relationship. It indicates toughness of relationship exists between 
parameters. The relationship between Pi and Pj is calculated as:

With our approach, we first consider the temporal association between indicators Pi 
and Pj since an association is needed for a cause–effect relationship. User defined sup-
port count threshold are defined as follows:

α1	� Support count threshold for all causal relationships (considered as 70 % for 
experimentation).

β	� Threshold for temporal odds ratio (considered as 3 for experimentation)Since 
α1 is set 70 %, β is set to 3.

(3)Di,j,k ,l =

{

1 if (Ri,k = U and Rj,k+l = U) or (Ri,k = Dand Rj,k+l = D)
0 otherwise

}

(4)SD(Pi,Pj , l) =

n−l
∑

k=1

Di,j,k ,l

(5)αD(Pi,Pj , l) =
SD(Pi,Pj , l)

n− l

(6)Ii,j,k ,l =

{

1 if (Ri,k = U and Rj,k+l = D) or (Ri,k = Dand Rj,k+l = U)

0 otherwise

}

(7)SI (Pi,Pj , l) =

n−l
∑

k=1

Ii,j,k ,l

(8)αI (Pi,Pj , l) =
SI (Pi,Pj , l)

n− l

(9)
ΘR

(

Pi,Pj
)

= α ∗ log (n), where

α = αD
(

Pi,Pj , l
)

or αI
(

Pi,Pj , l
)
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Definition 1  (Temporal association) Using direct or indirect relationship [Eqs. (3)–(8)] 
temporal association can be defined as follows.

Temporal direct association Temporal direct association between two parameters Pi 
and Pj for time lag l is defined as Pi

l
→Pj if αD(Pi,Pj , l) ≥ α1.

Temporal inverse association Temporal inverse association between two parameters Pi 
and Pj for time lag l is defined as Pi

l
→Pj if αI (Pi,Pj , l) ≥ α1.

Next, we define the terms to calculate the temporal odds ratio of temporally associated 
parameters to check whether the temporal association rule Pi

l
→Pj is also causal rule or 

not.
CE(Pi,Pj , l) = Count of the number of pairs when no rate of change in Pi is associated 

with positive or negative rate of change in Pj after time period l, defined as:

where Ei,j,k ,l = Parameters indicate neutral-change relationship, defined as:

CF (Pi,Pj , l)  =  Count of the number of pairs when the positive or negative rate of 
change in Pi is associated with no rate of change in Pj after time period l, defined as:

where Fi,j,k ,l = Parameters indicate change-neutral relationship, defined as:

CN (Pi,Pj , l) = Count of the number of pairs when no rate of change in Pi is associated 
with no rate of change in Pj after time period l, defined as:

where Ni,j,k ,l = Parameters indicate neutral relationship, defined as:

Definition 2  (Temporal odds ratio) It quantifies how strongly the presence or absence 
of change in value of parameter Pi effecting change in value of parameter Pj. Using above 
terms [Eqs. (11)–(16)] temporal odds ratio is defined as follows.

(10)CE(Pi,Pj , l) =

n−l
∑

k=1

Ei,j,k ,l

(11)Ei,j,k ,l =

{

1 if (Ri,k = Q and Rj,k+l = U) or
(

Ri,k = Q and Rj,k+l = D
)

0 otherwise

}

(12)CF (Pi,Pj , l) =

n−l
∑

k=1

Fi,j,k ,l

(13)Fi,j,k ,l =

{

1 if (Ri,k = U and Rj,k+l = Q) or (Ri,k = D and Rj,k+l = Q)

0 otherwise

}

(14)CN

(

Pi,Pj , l
)

=

n−l
∑

k=1

Ni,j,k ,l

(15)Ni,j,k ,l =

{

1 if (Ri,k = Q and Rj,k+l = Q)

0 otherwise

}
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Temporal direct odds ratio Temporal direct odds ratio between two parameters Pi and 
Pj for time lag l is defined as:

Temporal inverse odds ratio Temporal inverse odds ratio between two parameters Pi 
and Pj for time lag l is defined as:

In our experimentation, if the value of CN (Pi,Pj , l) or CE(Pi,Pj , l) or CF (Pi,Pj , l) 
between parameters is zero, we considered it as 1 to avoid infinite temporal odds ratio.

Further causal rules are defined using terms define in Definitions 1 and 2.

Definition 3  (Binary rule) A binary causal rule (Pi,D, l) ⇒ (Pj) , exists between Pi and  
Pj if there is temporal association rule Pi

l
→Pj andOddratioD(Pi,Pj , l) ≥ β or

OddratioI (Pi,Pj , l) ≥ β.

In experimentation results, we represent direct causal rule by (Pi,D, l) ⇒ (Pj) and 
inverse by (Pi, I , l) ⇒ (Pj).

This rule will serve as a forward pruning criterion where all parameters which are 
not associated with another parameter with non-zero lag value are excluded from the 
combination of future search. The minimum required support makes the search space 
manageable.

Definition 4  (Precise binary rule) A precise binary rule (Pi,D, δ1, l) ⇒ (Pj , δ2), exists 
between Pi and Pj if there is binary rule (Pi,D, l) ⇒ (Pj) and (δ = δ1), i.e. minimum 
growth rate of change of Pi and (δ = δ2), i.e. minimum growth rate of change of Pj and 
the rule will not hold either δ > δ1 for Pi or δ > δ2 for Pj.

Definition 5  ( fscore(δ1, δ2)) A function is used to calculate the specificity of 
the rule. In the experimentation, it is defined as fscore(δ1, δ2) = δ21 + δ22. If rule 
(Pi,D, δ1, l1) ⇒ (Pj , δ2) is satisfied for multiple value of δ1, δ2 than the rule which gives 
the maximum valid fscore is retained.

Based on binary causal rule, we try to extract other causal relationships as transitive, 
many to one (combined cause) and cyclic. We define these relationships as follows.

Definition 6  (Transitive rule) A transitive rule (Pi,D, δ1, l1) ⇒ (Pj ,D, δ2, l2) ⇒ (Pk , δ3),  
exists between Pi, Pj and Pk if there is r1 : (Pi,D, δ1, l1) ⇒ (Pj , δ2), r2 : (Pj ,D, δ2, l2) ⇒

(Pk , δ3), (Pi,D, δ1, l3) ⇒ (Pk , δ3), l3 ≥ l1 + l2 and r1(Pj) ∩ r2(Pj) �= ∅.

(16)ORD

(

Pi,Pj , l
)

= OddratioD
(

Pi,Pj , l
)

=
SD

(

Pi,Pj , l
)

∗ CN

(

Pi,Pj , l
)

CE

(

Pi,Pj , l
)

∗ CF

(

Pi,Pj , l
)

(17)ORI

(

Pi,Pj , l
)

= OddratioI
(

Pi,Pj , l
)

=
SI
(

Pi,Pj , l
)

CE

(

Pi,Pj , l
)

∗ CF

(

Pi,Pj , l
)
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Definition 7  (Combined cause rule) A many to one rule ((Pi,D, δ1, l1),
(

Pj ,D, δ2, l2
))

⇒ (Pk , δ3), exists between Pi, Pj and Pk if there is (Pi,D, δ1, l1) ⇒ (Pk , δ3), 
(Pj ,D, δ2, l2) ⇒ (Pk , δ3), SD(Pi,Pk , l1) ≥ α1, SD(Pj ,Pk , l2) ≥ α1 and SD((Pi ,Pj),Pk , l1, l2) ≥ α1.

Definition 8  (Cyclic rule) A cyclic rule (Pi,D, δ1, l1) ⇔ (Pj ,D, δ2, l2), exists between Pi and 
Pj if there is (Pi,D, δ1, l1) ⇒ (Pj , δ2), (Pj ,D, δ2, l2) ⇒ (Pi, δ1) and SD((Pi,Pj), l1, l2) ≥ α1.

Proposed method
In this section, we described an algorithm based on the definitions. The algorithm is 
explained in five steps. Step 1 generates the binary causal rule. Step 2 generates more 
precise rules of binary causal rules. Steps 3, 4, and 5 generate the transitive, many to one 
and cyclic rules. Further, we give the explanation of each step of an algorithm. Table 1 
represents the abbreviations used in the algorithm and in this paper. Let P be a time 

Table 1  Abbreviation table

Abbreviation Description

TOR Temporal odds ratio

BRS Binary rule set

SRS Specific rule set

TRS Transitive rule set

MOS Many to one rule set

CRS Cyclic rule set

AG Agriculture land

AR Arable land

ARME Agricultural raw materials exports

CAB Current account balance

CY Cereal yield

CO2 CO2 emissions

CP Crop production

CPI Crop production index

EDOE Electronic data processing and office equipment

FDI Foreign direct investment

FMP Fuels and mining products

FR Forest rents

GDP Gross domestic product

GGR General government revenue

GNS Gross national savings

I1 to I10 No of indicators (10)

ICEC Integrated circuits and electronic components

IS Iron and steel

OM Other manufactures

OTE Office and telecom equipment

TI Total investment

VEG Volume of exports of goods

VEGS Volume of exports of goods and services

VIG Volume of imports of goods
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series database in discrete form and Pi is a time series of parameter Pi have U, D, and Q 
values as mentioned in the definitions, z is a number of parameters in database P.

Step 1: Binary rule generation

A causal rule may be generated for multiple lag values, the lag value which gives maxi-
mum support of rule will be considered. Suppose P =  {P1, P2, P3, P4, P5}, set of time 
series dataset and using this step 1 BRS generated results are as follows.

BRS = {(P1, P2, D, l, 75, 4), (P1, P3, D, 2, 73, 4), (P2, P3, I, l, 77, 3), (P4, P3, I, l, 71, 6), (P2, 
P5, D, l, 76, 5), (P5, P2, D, l, 72, 4)}. Here (P1, P2, D, l, 75, 4), describes that parameters P1 
and P2 have a direct relationship with lag 1, support 75 and TOR = 3, which indicates 
that (P1, P2) are causally related, i.e. P1 effects P2 after 1  year. Similarly, by comparing 
support and their odds ratio between parameters for each tuple, the other binary causal 
relationship can be extracted and interpreted.

Explanation  To describe this step, we consider the time series using rate of change as 
positive (U) or negative (D) of two parameters say Pi and Pj for a time period (91–97).
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Let

T = {1991, 1992, 1993, 1994, 1995, 1996, 1997}
Pi = {U, U, U, U, U, D, U}
Pj = {D, U, U, U, U, U, U}

Here we calculate support value α for lag value = 1.
Support value for lag value 1 αD (Pi, Pj, 1) = 83 % and temporal odd ratio (TOR), Odd-

ratioD (Pi, Pj, 1) = 5.
Since calculated αD > α1 and TOR > 3 the rule (Pi,D, 1) ⇒ (Pj), is correct and exists for 

lag value 1 (i.e. l ≠ 0).
Relationship strength [using Eq. (10)] of this rule is, 70.13.
If time series data are given for some parameters, we can calculate αD and TOR 

between parameters and rules can be extracted. So with the help of the above algorithm, 
we would be able to extract all two-variable causal relationships between parameters for 
a time series data set.

Step 2: Specific rules generation

In this step, we calculated the specific rule for binary causal rules generated in the above 
algorithm.

Let γi and γj are the rate of change of parameters Pi and Pj and parameters have a direct 
relationship.
Letδimax = maximum value of the rate of change of Pi, δjmax = maximum value of 

the rate of change of Pj, δimin = minimum value of the rate of change Pi, δjmin = mini-
mum value of the rate of change Pj.

Calculation of interval value ηPi (increment, value for a parameter Pi)

where δimax or δjmax = µ+ 2σ and δimin or δjmin = µ− 2σ

(18)ηPi =
δimax− δimin

n
and ηPj =

δjmax− δjmin

n
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Let δ1, δ2 is the minimum rate of change of parameters Pi, Pj. Then, using this step 2 
more specific causal rules (Pi,D, δ1, l) ⇒ (Pj , δ2) can be generated. The rule indicates 
that Pi and Pj have a direct causal relationship with lag 1 and if Pi is changed by δ1 it leads 
to change Pj by δ2. Based on BRS results assumed in step 1 more specific rules can be 
generated as follows:

SRS = {(P1, P2, D, 1 %, 2 %, 1), (P1, P3, D, 2 %, 1 %, 2), (P2, P3, D, 2 %, 1.5 %, 1), (P4, P3, I, 
1.5 %, 2 %, l), (P2, P5, D, 2 %, 3 %, 1), (P5, P2, I, 3 %, 2 %, 1)}.
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Step 3: Transitive rule generation

Based on SRS results in step 2, tuple (P1, P2, D, 1 %, 2 %, 1), (P2, P3, D, 2 %, 1.5 %, 1) and 
(P1, P3, D, 2  %, 1  %, 2) satisfies all the conditions of transitive relation and generate a 
transitive rule

If the same parameter has a different rate of change in different rules minimum of them 
is considered.

Explanation  To understand this, we consider the time series of three parameters Pi, Pj, 
and Pk as follows.

Let TOR > 3 and δ1, δ2, δ3 is the rate of change of parameters Pi,Pj ,Pk . Calculate sup-
port values from Table 2 is:

Support value ofPi(U) andPj(D), αij
(

Pi,Pj , 1
)

= 77.7.

Support value ofPj(D) and Pk(D),αjk
(

Pj ,Pk , 1
)

= 88.8,

Support value ofPi(D) and Pk(D),αik(Pi,Pk , 2) = 75,

Since αij > α1,αjk > α1,αik > α1, generated binary causal rules are

(P1,D, 1%, 1) ⇒ (P2,D, 2%, 1) ⇒ (P3, 1%)

(Pi, I , δ1, 1) ⇒ (Pj , δ2), (Pj ,D, δ2, 1) ⇒ (Pk , δ3), (Pi, I , δ1, 2) ⇒ (Pk , δ3).

Table 2  Parameter time series

Time Pi Pj Pk

1991 U D U

1992 U D D

1993 U D D

1994 U D D

1995 U D D

1996 D D D

1997 D D D

1998 U D U

1999 D D D

2000 U D D
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The condition l3  ≥  2 (1  +  1) is also satisfies and generated transitive rule is 
(Pi, I , δ1, 1) ⇒ (Pj ,D, δ2, 1) ⇒ (Pk , δ3).

Step 4: Many to one (combined causal) rule generation

Based on SRS results in step 2, tuple (P1, P3, D, 2 %, 1 %, 2), (P4, P3, I, 1.5 %, 2 %, l) and using 
this step 4 generated combined causal rule is ((P1,D, 2%, 2), (P4, I , 1.5%, 1)) ⇒ (P3, 1%).

Explanation   Let we have the following values for parameters Pi,Pj , and Pk.

 Let TOR  >  3, δ1, δ2, δ3 is the rate of change of parameters Pi,Pj ,Pk. Calculate  
support values from Table  3 as: Support value ofαik(Pi,Pk , 1) = 77.7%, Support value

ofαjk
(

Pj ,Pk , 1
)

= 88.8%.
Calculated support values αik ,αjk andαijk > α1 which satisfies Definitions 4 and 7. In 

Table 3 highlighted rows indicates the ((Pi,Pj),Pk) relationship. Since all the conditions 
are satisfied the generated combined rule is((Pi, I , δ1, 1), (Pj , I , δ2, 1)) ⇒ (Pk , δ3).

Step 5: Cyclic rule generation

Based on SRS results in step 2, tuple (P2, P5, D, 2 %, 3 %, 1), (P5, P2, I, 3 %, 2 %, 1) and 
using this step generated cyclic rule is (P2,D, 2%, 1) ⇔ (P5,D, 3%, 1).

Explanation  To understand this rule, we consider two parameters say Pi, and Pj, for a 
time period 1998–2015. Let δ1 and δ2 are rate of change for parameters Pi,Pj which have 
the following values.

We can identify that relationship (Pi, I , δ1, 1) ⇒ (Pj , δ2), (Pj , I , δ2, 1) ⇒ (Pi, δ1), are sat-
isfied in Table 4 from Definition 4. In Table 4, the time period satisfies cyclic relation 
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between parameters is {(1988–1991), (1990–1992), (1992–1994), (1993–1995), (1995–
1997), (1996–1998)}. For example (1988–1991) indicates that if Pi increases in 1988 Pj 
goes down in 1989 which in turn increases Pi in 1990.

Calculated support value αij for parameters Pi and Pj: 75 %. Since αij > α1 cyclic relation 
is satisfied and generated cyclic causal rule is (Pi, I, δ1, 1) ⇔ (Pj, I, δ2, 1).

Experiments
We implemented our method using Java programming language with Net Beans IDE 7.3. 
The computation time to check the causal relationship between parameters is high using 
serialized programming. So we use a parallelization approach in our program using 
threads in Java on a machine with configuration Dual-Core CPU contains 12-Cores, 
8 GB RAM, and 64-bit Windows 7 Operating System. Our goal is to discover various 
causal relationships between the different economic parameters. Firstly, we find all the 
binary causal rules (i.e. one cause and one effect parameter) and then other causality 
rules are discovered using proposed method. For experimentation, minimum support 
threshold α1 is set 70 % and β is set 3.

Table 3  Parameter time series

Italic letters indicate the temporal association between parameters for given time. For example, Pi and Pj are associated for 
lag 0 in 1991 and (Pi, Pj ) are associated with Pk at lag 1. So, Pi and Pj values are italic at 1991 and Pk at 1992

Time Pi Pj Pk

1991 U U D

1992 U U D

1993 U D D

1994 D U D

1995 U U D

1996 U U D

1997 U U D

1998 U U D

1999 U U D

2000 U U D

Table 4  Parameter time series

Time Pi Pj

1988 U U

1990 U D

1991 U D

1992 U D

1993 D D

1994 U U

1995 D D

1996 D U

1997 D U

1998 D U
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Dataset

The approach is discussed using 2 synthetic and 3 real-world dataset. Table  5 shows 
the summary of data sets. The synthetic dataset is generated using R software based on 
Bayesian network (BN). First, we create random numbers, next build a BN on it and then 
generate the data from BN. Real world economic datasets are obtained from the World 
Trade Organization (1995), International Monetary Fund (1945) and World Bank data 
(1944). The WTO provides data on international trade in merchandise and commercial 
services. IMF contains time series data of 189 countries on economic parameters. World 
Bank contains time series data from 250 countries on a variety of topics such as agri-
culture, education, health, and an environment, etc. In World Bank and IMF, both we 
tested our algorithm for south-Asian countries (India, Pakistan, Sri Lanka, Bangladesh, 
Nepal, Bhutan and the Maldives, Afghanistan). In WTO, we used the data of Merchan-
dise trade: Network of world merchandise trade in Asia.

All the datasets are selected to test the effectiveness of proposed method. In our 
experiments first, we preprocess the continuous data set [Eq. (1)] and represented them 
by positive, negative and neutral (no) rate of change as U, D, and Q value [Eq. (2)] from 
the primitive data sets.

Results

This section presents the various extracted causal relationships for World Bank data 
sets. Results on other datasets are shown in “Comparison” section. To save space, at 
below, we omitted all relationships and consider only those relationships which are pre-
sent in multiple countries and displaying some of them. The discovered causal rules with 
our approach are shown in Table  6 for south-Asian countries. In Table  6 causal rela-
tionship between parameters is described with its support, strength and rate of change 
of indicators. For example, a rule (Cereal production, D, 3  %, 1) ⇒  (Crop production 
index, 1 %), indicates direct relationship, i.e. increase in cereal production by 3 %, will 
increase the crop production index by 1 % after 1 year. This rule is discovered in four 
countries Srilanka, Nepal, Pakistan and India with different strength and support val-
ues. On the basis of support and strength value, we can say that this rule is more valid 
for Nepal rather than the other three countries. We can also identify a rule which has 
more valid for a country. In Table  6 from the binary causal rule, we can observe that 
three rules are present in India and above discussed rule is more valid than other rules 
in India. The transitive causal rules: (Rural population, D, 1 %, 1) ⇒ Population density, 
D, 0.33 %, 1) ⇒ Population, total, 0.68 %) can be described as, a 1 % increase in rural 
population increase population density by 0.33 % after 1 year, which tends to increase 

Table 5  Datasets

Name Length of time series (years) No of indicators (parameters)

Synthetic-1 40 6

Synthetic-2 40 10

WTO 31 30

IMF 34 40

World Bank 52 1346
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the total population by 0.68 % after a year. This rule is present in four countries, Afghani-
stan, India, Maldives, and Nepal. The rule is having more impact on India. As compared 
to binary and transitive causal rules, the algorithm extracts the less number of causal 
rules for many to one (combined causal) and cyclic. The many to one causal rule: {(Forest 
rents, I, 5 %, 2), (Foreign direct investment, D, 3 %, 1)} ⇒ (Crop production index, 7 %) 
indicates that the decrease in forest rent by 5  % and increase in foreign direct invest-
ment by 3 % would tend to increase the crop production index by 7 %. The cyclic causal 
rule: (Gross domestic savings, D, 1 %, 1) ⇔ (Cereal yield, D, 0.5 %, 2) can be described 
as, a 1 % increase in gross domestic savings increase cereal yield by 0.5 % after a year and 
increases in cereal yield would again increase gross domestic savings after 2 years. Simi-
larly, other rules in all causal relationships can be analyzed.

Table 6  Causality rules

Rules Countries Support Strength

Binary causal rules

(Cereal production, D, 2 %, 2) ⇒ (agricultural raw materials exports, 3 %) India 74 120.8767

Pakistan 76 124.1436

(Air transport, D, 1 %, 2) ⇒ (GDP growth, 0.22 %) India 74 120.8767

Nepal 79 129.0440

(Cereal production, D, 3 %, 1) ⇒ (crop production index, 1 %) Srilanka 76 124.1436

Nepal 81 132.3109

Afganistan 76 124.1436

India 76 124.1436

Transitive causal rules

(Rural population, D, 1 %, 1) ⇒ (population density, D, 0.33 %, 1) ⇒ (popula-
tion total, 0.68 %)

Afghanistan 74 120.8767

India 83 135.5779

Maldives 77 125.7771

Nepal 71 115.9763

(Land under cereal production, D, 3 %, 1) ⇒ (food exports, D, 1 %, 2) ⇒ (GDP 
growth, 1.5 %)

India 71 115.9763

Pakistan 72 117.6097

Bangladesh 71 115.9763

(Arable land, D, 1 %, 1) ⇒ (agricultural land, D, 1 %, 3) ⇒ (CO2 emissions, 
1.5 %)

India 71 115.9763

Srilanka 71 115.9763

India 70 114.3428

Many to one (combined causal) causal rule

{(Rural population, D, 2.3 %, 1), (urban population D, 0.5 %, 1)} ⇒ (population 
density, 1 %)

India 79 129.0440

Afghanistan 72 117.6097

Pakistan 72 117.6097

{(Forest rents, I, 5 %, 2), (Foreign direct investment, D, 3 %, 1)} ⇒ (crop pro-
duction index, 7 %)

Srilanka 72 117.6097

{(Land under cereal production, D, 0.8 %, 1), (rural population, I, 1 %, 
2)} ⇒ (cereal production, 2 %)

Afghanistan 73 119.2432

India 72 117.6097

Pakistan 70 114.3428

Cyclic causal rules

(Land under cereal production, D, 2.5 %, 2) ⇔ (agricultural land, D, 4.5 %, 1) India 72 117.6097

(Gross domestic savings, D, 1 %, 1) ⇔ (cereal yield, D, 0.5 %, 2) Srilanka 70 114.3428

India 70 114.3428
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Prediction effectiveness

The rules can be validated by calculating the mutual information (Meyer 2014) between 
indicators and the conditional entropy (Marsh 2013; Meyer 2014) change of the indica-
tor before and after applying the rule. It is shown in Table 7 that the indicators are mutu-
ally related and the entropy of the indicator is decreased after applying the rule.

Table  7 results show that the target indicator entropy is decreased after the rule is 
applied, which represents that indicator value is more uncertain when it is considered 
alone. For example, the large value of mutual information between CP and ARME, indi-
cates that the two indicators are related and the entropy of ARME is decreased after the 
rule CP → ARME is applied. So it can be concluded that the proposed method achieves 
high prediction effectiveness. We validated all the generated causal rules using the con-
cept of decrease in entropy and mutual information to check their prediction effectiveness. 
Generated causal rules can also be validated using time series graphs shown in “Appendix”.

Scalability

Further, we do experimentation to evaluate the scalability of the algorithm with the 
involved years and the number of indicators. Considering Figs. 2 and 3, it could be seen 
that, the proposed cause–effect discovery method scales up with the number of indica-
tors. We examine the performance degradation of the algorithm on the basis of various 
causal rule discoveries for nine different scales (number of indicators): 50, 75, 100, 125, 

Table 7  Entropy of indicators

Indicators Target indicator entropy Proposed method conditional 
entropy after applying rule

Mutual information 
between indicators

CP → ARME 1.0973 0.51 0.837

AG → AR → CO2 1.0986 0.58 0.585

(FDI, FR) → CPI 1.0972 0.035 0.595

GDP ←→ CY 1.0961 0.37 0.583

Fig. 2  Scale up of indicators for binary causal rules
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150, 175, 200, 225 and 250. The minimum support threshold is set 70, and it remains the 
same in all the experiments.

As shown in Fig. 2, the extraction time increases squarely with the number of indica-
tors. More important, the curve is parabolic, which means that the performance of our 
algorithm is non-linearly related to the increase of number of indicators in binary causal 
rules. Though the time for generation of the binary causal rule is increasing squarely 
with a number of indicators, time for generation of other rules is not non-linear because 
the generation of other rules uses the result of binary rule generation (in Fig. 3).

The proposed method is able to extract nonlinear relationship from extracted causal 
rules because we are dealing with change of values as the rate of change and this change 
can be linear or nonlinear.

Discussion
Comparison

To assess the efficiency of the proposed method, we compared proposed method with 
both statistical and non statistical methods. Statistical (Granger causality, Bayesian net-
work) methods comparison is performed using R software packages as lmtest (Hothorn 
et  al. 2015) for GC and bnlearn (Scutar 2016) for BN. In BN we calculate the results 
using constraint based local discovery algorithm hiton.pc (Aliferis et al. 2003). For non-
statistical approaches, we implemented the methods (Silverstein et  al. 2000; Jin et  al. 
2012; Li et al. 2013) in Java for causal rule discovery.

First, we compared proposed method with GC and BN. GC is the base method to 
detect lag relationship in stationary time series data set. We run GC for different lag 
values with significance level, α = 0.05. HITON-PC is an effective algorithm of BN to 
extract parent–child relationship. So we considered both statistical methods as a bench-
mark for accuracy comparison. Tables 8 and 9 describe that all the binary rules which 
are generated in all the datasets by other methods are also generated by the proposed 
method. For example in the synthetic-2 dataset, we described the rule related to indica-
tor I7 and I8. In the statistical approach from Table 8, we can observe that the GC can 
discover only binary causal rules while BN can discover transitive as well as binary rules 

Fig. 3  Scale up of indicators for other causal rules
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between indicators. For example, in a BN graph like I1 → I3 → I6 can be generated, but I1 
and I6 are independent, i.e. I1 and I6 may or may not be dependent. In proposed method 
I1 and I6 are conditionally dependent or I1 is an indirect cause of I6.

Second, we compared our method with non-statistical methods. From Table 9 it can 
observe that binary and combined (many to one) causal relationship can be discovered 
by Jin et al. (2012) and Li et al. (2013) in all datasets. Silverstein et al. (2000) can also 
detect many to one rule but independently. For example, if we consider the rule (I2, 
I4) → I5 in the synthetic-1 dataset it would be considered as I2 → I5 ← I4, i.e. I2 and I4 
affect I5 independently, so we have not considered the many to one rule generated in a 
method (Silverstein et al. 2000). A transitive relationship is extracted by Silverstein et al. 
(2000) and proposed method. Relationships extracted by various methods are shown in 
Tables 8 and 9.

Based on the experimental results, it is reasonable to conclude that proposed method is 
capable to extract various causal relationships and causal rules like cyclic and the transi-
tive causal rule cannot be extracted by other methods. Although non-statistical methods 
can generate combined causal rules, but are not generating specific rule and relation-
ship strength. One more advantage of our method is that it also generates more specific 
rule and their strength between indicators. For example, when we run our algorithm 

Table 8  Comparison of proposed method with statistical method

Dataset Indicators rela-
tionships

Extracted rules Statistical methods

Proposed  
method

Granger  
causality

Bayesian 
network

Synthetic-1 (I1–I6) Binary I1 → I3 ✓ ✓ ✓
Many to one (I2, I4) → I5 ✓
Transitive I1 → I3 → I6 ✓ ✓
Cyclic I1 ←→ I3 ✓

Synthetic-2 
(I1–I10)

Binary I1 → I7, I2 → I7, 
I7 → I2, I1 → I3, 
I7 → I8

✓ ✓ ✓

Many to one (I6, I9) → I7 ✓
Transitive I1 → I7 → I8 ✓ ✓
Cyclic I2 ←→ I7 ✓

WTO Binary Chemicals → Tex-
tiles

Chemicals → OTE

✓ ✓ ✓

Many to one (OTE, Tex-
tiles) → EDOE

✓

Transitive IS → OM → ICEC ✓ ✓
Cyclic OM ←→ IS ✓

IMF Binary GGR → VEG ✓ ✓ ✓
Many to one (GGR, GNS) → TI ✓
Transitive GDP → VIG → TI ✓ ✓
Cyclic CAB ←→ VEGS ✓

World Bank data Binary CP → ARME ✓ ✓ ✓
Many to one (FDI, FR) → CPI ✓
Transitive AR → AG → CO2 ✓ ✓
Cyclic GDP ←→ CY ✓
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on the synthetic-1 dataset, rules are extracted with various properties as lag value (time 
period after which one affects another indicator), strength and the rate of change of indi-
cators i.e. positive or negative percent change. Actually, the rule I1 → I3 is extracted as 
(I1, I , 2%, 1) ⇒ (I3, 1%), 113.6, which indicates 2 % change in I1 inversely effect 1 % change 
in I3 after 1 year with 113.6 relationship strength. The results of proposed method are also 
demonstrated with real world data sets, as described in the following.

To investigate various causal rules in the real world cases, we run the proposed algo-
rithm on the three real world data sets shown in Table 5 for performance evaluation. The 
proposed algorithm generates various binary, many to one, transitive and cyclic rules, 
some of the causal rules are reasonable as judged by common sense, shown in Table 8. 
For example, from the IMF data set, it is found that increases in general government rev-
enue would also increase the volume of exports of goods, increase in growth of general 
government revenue and gross national saving effect to increase in total investment, and 
a decrease in government revenue can lead to decreased exports of goods too. Some 
interesting causal relationships are also extracted in the WTO and World Bank dataset. 
For example, if crop production of a country is increased, it effects to increase the export 
of agriculture raw material which helps to improve the economic growth of a country.

Table 9  Comparison of proposed method with non statistical method

Dataset Indicators 
relationships

Extracted rules Non-statistical methods

Proposed 
method

Silverstein 
et al. (2000)

Jin et al. 
(2012)

Li et al. 
(2013)

Synthetic-1 
(I1–I6)

Binary I1 → I3 ✓ ✓ ✓ ✓
Many to one (I2, I4) → I5 ✓ ✓ ✓
Transitive I1 → I3 → I6 ✓ ✓
Cyclic I1 ←→ I3 ✓

Synthetic-2 
(I1–I10)

Binary I1 → I7, I2 → I7, 
I7 → I2, I1 → I3, 
I7 → I8

✓ ✓ ✓ ✓

Many to one (I6, I9) → I7 ✓ ✓ ✓
Transitive I1 → I7 → I8 ✓ ✓
Cyclic I2 ←→ I7 ✓

WTO Binary Chemicals → Tex-
tiles

Chemicals → OTE

✓ ✓ ✓ ✓

Many to one (OTE, Tex-
tiles) → EDOE

✓ ✓ ✓

Transitive IS → OM → ICEC ✓ ✓
Cyclic OM ←→ IS ✓

IMF Binary GGR → VEG ✓ ✓ ✓ ✓
Many to one (GGR, GNS) → TI ✓ ✓ ✓
Transitive GDP → VIG → TI ✓ ✓
Cyclic CAB ←→ VEGS ✓

World Bank 
data

Binary CP → ARME ✓ ✓ ✓ ✓
Many to one (FDI, FR) → CPI ✓ ✓
Transitive AR → AG → CO2 ✓ ✓
Cyclic GDP ←→ CY ✓
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Performance evaluation

This section presents measures for assessing how accurately our proposed method can 
generate causal rules. The used accuracy measures (Han et al. 2011) are Precision, Recall, 
Specificity, F-score, Accuracy (recognition rate) and Misclassification rate. We evalu-
ated all measures for proposed, statistical and non-statistical methods compared previ-
ously. Binary rules are considered to predict accuracy because this can be generated by 
all compared methods. Initially we classify the results in two classes as a causal rule (CR) 
and non-causal rule (NCR). Then, based on the CR and NCR results confusion matrix 
(TP, TN, FP, FN) is created to evaluate measures shown in “Appendix”. Finally accuracy 
measures are calculated using TP, TN, FP and FN values. Performance of various meth-
ods is evaluated in real world, World Bank dataset for five different scales (numbers of 
indicators): 10, 20, 30, 40 and 50. Number of target indicators is set to 5 and remain 
same for all different scales. In Table 10, WBD-10 represents that 10 indicators are con-
sidered for causal rule extraction similarly others can be interpreted. Causal rules (some 
of them) extracted by most of the compared methods are shown in “Appendix”. To indi-
cate extracted causal rules significance appropriate references from previous literatures 
and documents are given. In Table 10, we can see that the proposed method can achieve 
higher accuracy and less error rate than all other statistical and non- statistical method 
for different scales of World Bank dataset.

The accuracy curve for proposed method and the compared methods is shown in 
Fig. 4. The proposed method can extract causal rules more accurately and performs the 
best in all different scales. We can also notice when the dataset size increases; the statis-
tical method performance degrades more than non-statistical methods. We regard our 
proposed method has a stable and good performance accuracy in comparison with the 
other compared methods.

In summary the comparison results show that the proposed method has high perfor-
mance and also performs well in terms of all accuracy measures as compare to other 
compared methods.

Complexity

The steps defined in an algorithm to make minimum passes over the data. In the first 
pass, we calculate the growth rate of parameters and its positive, negative or neutral 
growth rate change value U, D, and Q are assigned to each parameter to perform the 
next steps. In the second pass, we calculate the support value and an odds ratio of all 
the individual parameters together with other parameters for different lag values. Non-
zero lag value associations identified from the tests are considered. Associations with 
insufficient support and odds ratio will be eliminated directly. The cause–effect rules in 
current pairs can be determined from temporal associations and temporal odds ratio 
for nonzero lag value. At the end, causal pairs found previously are combined for the 
next steps to generate transitive, many to one and cyclic rule using basic causal binary 
rule. To achieve efficiency, all the combinations are not considered as a condition dur-
ing the generation of other causality rules. Instead, we only investigate the combinations 
appearing in the data which are related to non-zero lag value. Since such combinations 
are very small as compared to total combinations, the cost of computation is reduced.
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To analyze the performance of the algorithm with respect to time and space complex-
ity, and the number of passes over the data set, we denote the set of parameter S, the 
number of parameters n, the length of the time series t, the number of extracted pairs m 
and the lag value l. The complexity of the method is discussed based on the extraction of 
binary causal rules in the form of P1 → P2 for lag value l.

The single parameters are paired and the support is calculated with O(n) passes 
over the data set. Each pair combination needs to test for l lag values to determine the 

Table 10  Prediction accuracy of  proposed, statistical and  non-statistical methods on  dif-
ferent scales

Accuracy 
parameters

Proposed 
method

Li et al. (2013) Jin et al. 
(2012)

Silverstein 
et al. (2000)

Granger 
causality

Bayesian 
network

WBD-10, Rules: 50, CR:16, NCR: 34

Sensitivity 0.94 0.81 0.75 0.69 0.69 0.75

Specificity 0.91 0.82 0.74 0.65 0.68 0.79

Precision 0.83 0.68 0.57 0.48 0.50 0.63

F-Score 0.88 0.74 0.65 0.56 0.58 0.69

Accuracy 0.92 0.82 0.74 0.66 0.68 0.78

Misclassifica-
tion rate

0.08 0.18 0.26 0.34 0.32 0.22

WBD-20, Rules: 100, CR:38, NCR: 62

Sensitivity 0.92 0.84 0.74 0.68 0.66 0.76

Specificity 0.90 0.82 0.74 0.66 0.68 0.77

Precision 0.85 0.74 0.64 0.55 0.56 0.67

F-Score 0.89 0.79 0.68 0.61 0.60 0.72

Accuracy 0.91 0.83 0.74 0.67 0.67 0.77

Misclassifica-
tion rate

0.09 0.17 0.26 0.33 0.33 0.23

WBD-30, Rules: 150, CR: 65, NCR: 85

Sensitivity 0.91 0.80 0.72 0.63 0.65 0.77

Specificity 0.88 0.81 0.73 0.65 0.66 0.78

Precision 0.86 0.76 0.67 0.58 0.59 0.72

F-Score 0.88 0.78 0.70 0.60 0.62 0.75

Accuracy 0.89 0.81 0.73 0.64 0.65 0.77

Misclassifica-
tion rate

0.11 0.19 0.27 0.36 0.35 0.23

WBD-40, Rules: 200, CR: 88, NCR: 112

Sensitivity 0.91 0.80 0.68 0.60 0.59 0.70

Specificity 0.89 0.81 0.71 0.63 0.61 0.72

Precision 0.87 0.77 0.65 0.56 0.55 0.65

F-Score 0.89 0.78 0.67 0.58 0.57 0.68

Accuracy 0.90 0.81 0.70 0.62 0.60 0.72

Misclassifica-
tion rate

0.10 0.20 0.30 0.39 0.40 0.32

WBD-50, Rules: 250, CR: 112, NCR: 138

Sensitivity 0.90 0.79 0.65 0.60 0.57 0.67

Specificity 0.88 0.79 0.67 0.61 0.59 0.68

Precision 0.90 0.75 0.62 0.55 0.53 0.63

F-Score 0.90 0.77 0.63 0.58 0.55 0.65

Accuracy 0.89 0.79 0.66 0.60 0.58 0.68

Misclassifica-
tion rate

0.09 0.21 0.34 0.40 0.42 0.32
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association and causality, which requires O(n  *  l) passes. In the process of extracting 
binary causal relationships, a causal association will be examined on all combinations.

The total number of possible pair combinations P is:

So the data set needs to scan as many as O (Pnl) times. This way we can conclude 
the passes over the data set is O (Pnl), and the time it takes is O (Pnlt). Complexity will 
be substantially reduced by firstly applying the pruning step1 (binary rule generation) 
before extraction of other relationships.

Conclusion
This paper proposed a novel method to extract various types of causal relationship like 
binary, transitive, many to one and cyclic in large time series database. The proposed 
method is generating more specific rules and their strength which are useful for strate-
gic information. We also defined the concept of temporal odds ratio to categorize tempo-
ral association as a causal rule. Experiments have shown that the proposed algorithm can 
extract single, transitive, combined and cyclic causes from large time series data sets. Addi-
tionally, the extracted rules are validated to prove their accuracy and the algorithms have 
been shown to scale up well with respect to the number of indicators on time series data.

In future, the efficiency of the method can be improved by using fast algorithms of 
mining association rule. The concept of the algorithm can also be extended to other 
types of time series. The proposed method can be applied in various social, economic, 
agriculture domains to generate strategic rules for decision making. The method is also 
useful to detect the exact cause of fault for the large mechanical system which is moni-
tored by various sensors generating time series data.
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Appendix
We can also examine the accuracy of the proposed method through by plotting time 
series graph between indicators. We have shown time series for four causal relationships. 
Table 11 shows the growth rate change of parameters for the time period 1972–2009. 

Table 11  Growth rate change of indicators

Rules Binary
(CP–
(2) → ARME)

Transitivity
(AR–(1) → AG–(3) → CO2)

Many to one
(FDI, FR)–(1) → CPI

Cyclic
GDP ← (2,1) → CY

Year CP ARME ANE OR CO2GF FDI FR CPI GDP CY GDP1

1972 5.93 4.35 0 −17.69 −0.4 −1.33 −0.3 −2.56 0.96 −2.63 −1.49

1973 −3.49 −2.92 3.81 −8.06 −0.52 2.58 −0.3 1.5 4.21 2.67 5.12

1974 2.06 1.15 1.56 0.98 1.36 3.72 −0.3 3.62 −0.91 −1.28 −5.11

1975 −2.83 −2.03 2.79 1.51 2 1.47 −0.3 1.2 −1.49 −3.55 −2.06

1976 1.25 0.78 0.73 0.2 0.38 0.95 −0.4 0.11 5.12 0.24 1.02

1977 −3.79 2.98 1.56 1.27 1.63 −1.98 0 0.54 −5.11 −3.24 0.19

1978 0.74 0.23 11.28 17.52 2.36 −0.73 0 2.59 −2.06 −1.67 2.15

1979 4.25 −3.49 1.29 1.12 −4.38 −2.4 −0.3 1.48 1.02 0.97 2.89

1980 1.96 1.26 1.01 0.57 2.74 1.69 −0.3 0.66 0.19 2.65 1.3

1981 −0.54 −1.15 −4 −0.72 −0.27 1.41 −0.06 2.33 2.15 3.65 2.43

1982 −2.54 −5.78 1.09 0.96 1.54 4.03 −0.31 6.37 2.89 1.32 3.79

1983 3.9 2.25 1.73 −8.63 −4.27 2.3 −0.03 1.88 1.3 −1 2.24

1984 −1.06 0.95 0.4 2.32 0.52 1.25 −0.3 1.65 2.43 −1.35 0.87

1985 1.53 1.87 2.12 −3.6 3.36 0.21 0.3 1.04 3.79 10.24 9.4

1986 1.6 0.44 1.14 1.44 −0.11 0.99 0 −1.02 2.24 −3.75 −1.27

1987 11.21 −1.29 8.62 4.99 2.18 7.39 −0.21 6.55 0.87 −0.82 1.82

1988 4.32 4.55 2.13 2.47 3.52 1.96 0.4 0.43 9.4 1.35 10.62

1989 −0.52 −1.57 1.27 0.38 −0.98 0.9 0.4 −0.79 −1.27 −0.77 −1.07

1990 1.33 0.59 4.58 1.5 1.53 3.95 −0.4 0.36 1.82 1.41 2.03

1991 0.85 1.15 1.34 0.41 1.84 −0.53 0 4.08 10.62 −0.76 −4.01

1992 −11.28 −2.68 −0.36 −2.25 −2.21 0.67 −0.4 0.25 −1.07 −0.42 −1.66

1993 2.18 11.22 −1 0.78 1.25 1.77 −0.4 0.45 2.03 −1.51 3.02

1994 −0.55 10.19 2.83 2.09 2.7 3.79 −0.4 1.36 −4.01 −6.12 5.3

1995 1.57 1.22 1.73 0.31 1.94 7.22 −0.03 3.43 1.66 −9.27 2.14

1996 5.57 4.17 0.61 2.59 1.05 2.17 −0.33 0.98 −0.02 −0.33 −0.3

1997 −0.51 −0.17 2.65 −3.49 3.75 1.16 −0.03 0.77 2.3 1.59 −2.44

1998 −0.2 0.22 −1.08 1.78 −7.02 6.56 −0.23 1.58 2.14 1.27 3.46

1999 1.52 1.15 1.38 −1.17 3.92 −0.6 0.03 1.5 −0.3 −5.29 −1.86

2000 −1.13 −0.3 1.48 1.29 0.75 3.74 −0.03 4.29 −2.44 −7.67 −5.93

2001 7.34 5.24 −1.2 0.96 4.7 7.84 −0.33 4.69 3.46 −2.73 −1.01

2002 5.37 6.18 3.61 3.2 0.88 1.78 −0.04 2.36 −1.86 −2 6.3

2003 1.97 −0.54 1.34 0.84 −1.75 1.76 −0.03 1.21 5.93 3.21 6.01

2004 6.2 5.68 0.96 0.28 0.93 1.18 −0.03 2.96 −1.01 −2.27 26.63

2005 −2.55 0.57 9.9 0.39 2.17 3.17 0.03 0.85 6.3 4.45 10.4

2006 −2.74 1.81 2.84 2.27 4.76 1.16 −0.06 3.61 6.01 −0.86 −2.85

2007 5.28 1.63 6.67 −0.33 0.91 26.63 −2.38 −0.86

2008 0.63 0.5 1.44 0.03 5.82 11.4 −0.39 −2.77

2009 3.58 2.39 −3.71 0.03 0.37
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It represents a value with a lag difference. For example, consider a binary rule CP–
(2) → ARME, indicates CP effect ARME after 2 years. In Table 11 value 5.93, shows the 
growth rate of change of CP in 1972 and 4.35 in the same row shows the growth rate of 
change of ARME in 1974. Italic values represent the pairs which follow the relationship 
for a rule. Similarly, we can interpret all entries of other indicators.

All time series graphs are generated based on the values given in Table 11. Figure 5 
shows the time lagged relations between Cereal Production (CP) and Agriculture raw 
material exports (ARME) with lag 2. A time period where indicators follow the direct 
relationship for given rule are: {1972, 1973, 1974, 1975, 1976, 1978, 1980, 1981, 1982, 
1983, 1986, 1988, 1990, 1991, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2004, 
2006, 2008, 2009}. For each time period (say 1974) rule would be interpreted as if the 
growth of CP has increased in the year 1974 it will increase ARME in 1976. In Fig. 5, 
time series graph we can observe that parameter satisfied the minimum support and 
odds ratio which indicates that indicators (CP and ARME) are causally related. Since 
most of the time, an increase in CP increases ARME, this relationship can be considered 
as a binary causal (U–U) direct relationship (Table 11).

Figure 6 shows the time lagged transitive causal relationship between AR, AG, and CO2 
with lag 1 and 3. Time where indicators follow the relationship for given rule are: {1974, 
1975, 1976, 1977, 1978, 1980, 1981, 1982, 1984, 1987, 1988, 1990, 1991, 1992, 1994, 1995, 
1996, 1998, 2000, 2002, 2004, 2005, 2006}. For each time period (say 1974) rule would 
be interpreted as increase in AR in 1974 will increase AG in 1975 which again increases 
CO2 in 1978. From Fig. 6, we can conclude that the rule satisfied the minimum support 
and indicators (AR, AG, and CO2) are causally related. Most of the time increase in AR 
increases AG after 1 year, which again increases the CO2 after 3 years. This rule can be 
considered as a transitive causal (U–U–U) direct relationship (Table 11). 

Figure 7 shows the time lagged many to one relation between (FDI, FR) and CPI with 
lag 1. Time period follows this relationship can be seen in many to one rule in Table 11 as 
italic values. In this relation, both indicators FDI and FR together affect CPI after 1 year. 
In Fig. 7, we can observe that if FDI increases and FR decreases they tend to increase 
the CPI, i.e. FDI and FR both are the cause of CPI. Indicators follow many to one (com-
bined) causal (U,D)–U relationship. Table 12, shows confusion matrix (TP, TN, FP, FN) 
values to evaluate accuracy measures and Table 13, represents the causal rules extracted 
by most of the compared methods.

Fig. 5  Time series graph for rule CP–(2) → ARME
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Figure 8 shows the time lagged cyclic relations between GDP and CY with lag 2 and 1. 
Time period follows this relationship can be seen in the cyclic rule in Table 11 as italic 
values. In this cyclic relation, one more indicator GDP1 values are given which is noth-
ing but the value of GDP after 3 years. Here GDP effect CY after 2 years, which again 

Fig. 6  Time series graph for rule AR–(1) → AG–(3) → CO2

Table 12  Confusion matrix for proposed, statistical and non-statistical methods on differ-
ent scales

Accuracy 
parameters

Proposed 
method

Li et al. (2013) Jin et al. 
(2012)

Silverstein 
et al. (2000)

Granger 
causality

Bayesian 
network

WBD-10, Rules: 50, CR:16, NCR: 34

TP 15 13 12 11 11 12

TN 31 28 25 22 23 27

FP 3 6 9 12 11 7

FN 1 3 4 5 5 4

WBD-20, Rules: 100, CR:38, NCR: 62

TP 35 32 28 26 25 29

TN 56 51 46 41 42 48

FP 6 11 16 21 20 14

FN 3 6 10 12 13 9

WBD-30, Rules: 150, CR: 65, NCR: 85

TP 59 52 47 41 42 50

TN 75 69 62 55 56 66

FP 10 16 23 30 29 19

FN 6 13 18 24 23 15

WBD-40, Rules: 200, CR: 88, NCR: 112

TP 80 70 60 53 52 62

TN 100 91 80 70 68 81

FP 12 21 32 42 43 33

FN 8 18 28 35 37 31

WBD-50, Rules: 250, CR: 112, NCR: 138

TP 101 88 73 67 64 75

TN 122 109 93 84 82 94

FP 11 29 45 54 56 44

FN 11 24 39 45 48 37
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Table 13  Extracted causal rules

Causal rules References

Transport and travel services → CO2 emission Stewart et al. (2015)

Electricity production from renewable sources → CO2 emission Abolhosseini et al. (2014)

Fossil fuel energy consumption → CO2 emission Mellios et al. (2011)

Household final consumption expenditure → CO2 emission Tian et al. (2016)

Industry → CO2 emission Cai et al. (2016)

Electricity production from nuclear sources → CO2 emission EPA (1970)

Land under cereal production → CO2 emission EPA (1970)

Air transport, passengers carried → CO2 emission Stewart et al. (2015)

Livestock production index → CO2 emission EPA (1970)

Alternative and nuclear energy → CO2 emission EPA (1970)

Electricity production from nuclear sources → CO2 emission EPA (1970)

Combustible renewable and waste → CO2 emission EPA (1970)

Crop production index → CO2 emission EPA (1970)

Food production index → CO2 emission EPA (1970)

Oil rents → CO2 emission EPA (1970)

Forest rents → CO2 emission EPA (1970)

Cereal production → gross domestic product (GDP) StatsCan (1971)

Agricultural raw materials exports → gross domestic product (GDP) StatsCan (1971)

Cereal yield → gross domestic product (GDP) StatsCan (1971)

Food production index → gross domestic product (GDP) StatsCan (1971)

Land under cereal production → foreign direct investment (FDI) StatsCan (1971)

Agricultural land → food production index FAO (1945)

Arable land → food production index FAO (1945)

Cereal production → food production index FAO (1945)

Cereal yield → food production index FAO (1945)

Permanent cropland → food production index FAO (1945)

Crop production → food production index FAO (1945)

Livestock production → food production index FAO (1945)

Household final consumption expenditure → GDP growth BIS (2011)

Net trade in goods and services → gross domestic product (GDP) BIS (2011)

Exports of goods and services → gross domestic product (GDP) Mehmood (2012) and Ogawa et al. (2016)

External debt stocks → gross domestic product (GDP) Mehmood (2012)

Final consumption expenditure → gross domestic product (GDP) Mehmood (2012)

General government final consumption expenditure → gross 
domestic product (GDP)

Mehmood (2012)

Gross national income → gross domestic product (GDP) Mehmood (2012)

Gross national expenditure → gross domestic product (GDP) Mehmood (2012)

Gross domestic savings → gross domestic product (GDP) Rasmidatta (2011)

Foreign direct investment (FDI) → gross domestic product (GDP) Li (2005)

Gross domestic product (GDP) → oil rents Ebeke and Omgba (2011)

Foreign direct investment (FDI) → oil rents Ebeke and Omgba (2011)

Agriculture → rural population Enyedi and Volgyes (2016)
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affect GDP after 1 year, i.e. GDP follows cyclic relation with 3 years delay. In Fig. 8, we 
can observe that increase in GDP again increases it after 3 years. This cyclic relation fol-
lows the cyclic causal U–U relationship.
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