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Background
The resident space object (RSO) identification is a main focus of space situational 
awareness (SSA) (Linares et al. 2014; Nebelecky et al. 2014; Henderson 2014), and also 
an important task for space agencies, where RSO classification plays an important role 
(Ruttenberg et al. 2015). Current RSO classification aims at classifying RSOs such as sat-
ellites, space stations, debris and rocket bodies in earth orbits, based on their features 
extracted from observations. Automatic RSO classification helps to continuously update 
the knowledge of the RSOs’ status such as types, missions, and even detailed charac-
terizations, which is required by SSA (Cox et al. 2016). Accurate, robust and comprehen-
sible classification of RSO in open environments imporves efficiency of the analysts of 
SSA to make decisions.

Modeling RSO for accurate classification with the aid of machine learning has aroused 
interests of more and more researchers (Wang et  al. 2012; Poole and Murray-Krezan 
2015; Howard et al. 2015), as the collected RSO data accumulate. Machine learning has 
been widely used for its advantage in discovering knowledge from high-dimension data, 
which are difficult for human to analyze. With the specific knowledge discovered by 
machine learning from the data closely related to scenario, classification accuracy can 
be greatly enhanced. However, the collected RSO data are often noisy and incomplete, 
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making it difficult for machine learning to acquire some “common sense” of experts just 
by analyzing the noisy and incomplete data (Sakurada et  al. 2015). Moreover, overfit-
ting problems are common for machine learning (Sakurada et  al. 2015). These limita-
tions make machine learning classifiers unable to classify RSOs correctly, especially 
when some features are missing because of the limited and uncertain observations (e.g., 
only poor telescope observations). Besides, due to the limited observations, it remains 
a difficult task to identify the type and function of an RSO (Ruttenberg et al. 2015). In 
addition, the comprehensibility of RSO classification also shall be concerned, for the 
understanding of SSA technologies helps analysts to make decisions (Ianni et al. 2012; 
Haith and Bowman 2014; Poole and Murray-Krezan 2015).

Researchers have embedded background knowledge into machine learning classifiers, 
aiming at improving robustness (Al Momani et al. 2006; Lauer and Bloch 2008; Sinha 
and Zhao 2008; Li et al. 2009; Orchel 2011), or improving classification accuracy (Silva 
and Ribeiro 2009). If background knowledge is used in RSO classification, it can also 
improve the robustness of classification in the existence of missing features. For exam-
ple, hierarchical RSO classification (Ruttenberg et  al. 2015) is able to classify an RSO 
with low specificity but more correctness when some features of the RSO are missing. 
It is better to classify a remote sensing satellite as an earth observation satellite than to 
classify it as a navigation satellite, for earth observation satellite is a type of remote sens-
ing satellite and navigation satellite is not. It is also convenient to utilize different fea-
ture sets for classification on different hierarchies. Therefore, RSO hierarchy can play 
significant roles in RSO classification with imperfect data. Another example is deducing 
missing features from given features according to background knowledge—some miss-
ing features of an RSO can be estimated or calculated from known features according to 
experience or models, then the RSO is classified with high specificity, using the known 
features and the deduced features.

Recently, ontology-based classification (OBC) is applied to more and more classifica-
tions such as documents classification and emotion recognition in web (Song et al. 2006; 
Zhang et al. 2013), classifications of adverse drug reactions and epilepsy types in clinical 
(Zhichkin et al. 2012; Kassahun et al. 2014), harbor surveillance (Gómez-Romero et al. 
2015), building classification in remote sensing (Belgiu et al. 2014), complex object rec-
ognition in cognitive vision (Maillot and Thonnat 2008), chemicals and molecules clas-
sifications (Magka 2012; Hastings et al. 2012), etc. Summarizing the works listed above, 
one can see the common reasons for choosing OBC. Firstly, ontology is a suitable way 
to represent background knowledge such as contextual knowledge (Hong and Nugent 
2013; Gómez-Romero et al. 2015). Secondly, OBC is an optional way to handle classifi-
cation problems for the advantage of integrating heterogeneous data (Wang et al. 2009; 
Gómez-Romero et al. 2015). Thirdly, owing to the integration of rules, an OBC system 
can be formed through integrating background knowledge and machine learning rules 
conveniently using ontology, bringing advantages including enhanced transparency 
(Lüscher et al. 2009) and augmented comprehension, easy representation and enhanced 
flexibility (Lüscher et al. 2009) such as convenient modification (Paul Suganthan et al. 
2015) for robust and comprehensible RSO classification.

In this paper the authors propose a method to construct an OBC system for RSO 
through integrating unordered machine learning rules and background knowledge. 
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Rules are unordered, meaning that the prediction made by each rule is independent of 
the applicability of other rules (Han et  al. 2011). By background knowledge it means 
RSO hierarchies and domain knowledge related to the RSO classification. There are vari-
ous types of domain knowledge for RSO classification. Knowledge describes RSO them-
selves, e.g. physical characteristics of the RSO, is called internal knowledge. Knowledge 
that is about external information which completes, influences or constrains the opera-
tions of the RSO, or knowledge about the expected behavior of RSOs, is called contextual 
knowledge. For example, knowledge about physical characteristics of the environment 
such as atmospheric drag, knowledge about solar radiation pressure and gravity of the 
RSOs in orbit, expectation of a specific satellite’s attitude, belong to contextual knowl-
edge. There is also knowledge used for deducing features based on given features. In the 
following, the term deduction knowledge will be used to identify the knowledge by which 
more information about the RSO can be inferred. For example, given the RSO’s length 
and radius of its bottom circle, the volume’s formula of an RSO with the form of cylinder 
is one kind of deduction knowledge.

The OBC system’s goal is achieved by the following steps. Firstly, an ontology for RSO 
classification named OntoStar is built upon the background knowledge and unordered 
machine learning rules of RSO. Secondly, the system applies deductive and rule-based 
reasoning to extend tracking data, and to classify RSO according to its features collected 
by authorized organizations such as North American Air Defense Command (NORAD) 
and Union of Concerned Scientists (UCS). The source of the knowledge for classification 
in OntoStar is traceable, and the inference of classifying an RSO is recorded, making the 
classification explainable and comprehensible.

To the best of our knowledge, this is the first attempt to classify RSOs using OBC, 
especially OBC that integrates unordered machine learning rules and background 
knowledge. And it is also the first exploration of extra awards of OBC, such as the 
traceable and comprehensible classification. Similar approaches in the literature have 
focused on alternative probabilistic models such as probabilistic programming (Rut-
tenberg et  al. 2015), or the ontologies’ application to classifications (Song et  al. 2006; 
Zhichkin et al. 2012; Magka 2012; Belgiu et al. 2014; Zhang et al. 2013; Kassahun et al. 
2014; Gómez-Romero et al. 2015; Hastings et al. 2012). Ontology facilitates the creation 
of a computable model representing complex situational context (problem entities, enti-
ties relationships, etc.) and human knowledge from experience and theory, since they 
can be formally encoded in a logic-based expressive language. The examples show that 
OBC improves performances with respect to machine learning classifiers, and keeps its 
performance while machine learning classifiers’ performances reduce drastically when 
some features are missing. Furthermore, OBC gives traceable and comprehensible rea-
sons for RSO classification, so every step of the classification can be validated by experts.

The rest of this paper is organized as follows. “Related works” section discusses related 
work in OBC, together with background knowledge for RSO classification and unor-
dered machine learning rules. “OntoStar development” section studies the ontology 
development for RSO classification. “OntoStar development” section presents experi-
ment results of applying OBC in RSO classifications, giving comparison to results of 
machine learning classifications for RSO on WEKA1 platform, and illustrating additional 

1  http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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advantages of OBC. The paper concludes with discussions on the contributions of the 
work and directions for future research in “Conclusions” section.

Related works
Ontology‑based classification

During the last decade, OBC has been quite extensively applied in classification. It is 
considered as a complement for existing classification algorithms, owning at least four 
extra awards (Belgiu et al. 2014), which are: (1) consistency checking with tools support; 
(2) a declarative model which can be scrutinized by peers and extended to other applica-
tion scenarios; (3) inferred implicit knowledge by reasoning; (4) representations which 
can be understood by both machine and human, and as a result, assessment validation 
of the deduction can be made by users. Besides these advantages, OBC is convenient to 
integrate rules, and rule-based classifiers have advantages such as augmented compre-
hension, easy representation and convenient modification (Paul Suganthan et al. 2015).

In most applications of OBC, classifications are mainly realized through instance clas-
sification, which is based on two processes. First, the ontology for OBC is built. Then, 
when a new object is created or its property values are modified in the ontology, a rea-
soning process is applied to the ontology to find matches to the descriptions of the 
object, and determines the class(s) which the new object belongs to. The architecture 
and computational process of OBC are generally similar to the description shown in 
Fig. 1.

In the first step, namely development of ontology for classification, formally repre-
sented knowledge can and shall be reused as the domain knowledge. Knowledge sharing 
and reuse are addressed in developing ontologies (Gruber 1993). Using shared specifica-
tions makes OBC understood by domain experts and the reuse of domain knowledge 
enhances efficiency of developing the ontology for classification. Other criteria to guide 
the development of ontologies are also proposed (Gruber 1995; Haghighi et  al. 2013; 
Suárez-Figueroa et  al. 2015), which standardize the development of ontology. Charac-
teristics of concepts can also be learned by machine learning and then used as defini-
tions of the concepts. Maillot and Thonnat (2008), Belgiu et al. (2014) integrate machine 
learning knowledge into ontologies through this way. By representing machine learning 
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Fig. 1  General architecture and computational process of OBC
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rules through Semantic Web Rule Language (SWRL) (Horrocks et al. 2004), the machine 
learning knowledge can be integrated into ontologies in another way. Zhang et al. (2013) 
chooses this way to code machine learning knowledge into ontology. The latter way for 
integrating machine learning knowledge is convenient to record source of knowledge, 
being able to express more complex relations between objects.

In the last step, namely instance classification, reasoning can be performed by various 
reasoners, such as general reasoners used in Belgiu et al. (2014), Gómez-Romero et al. 
(2015), or the dedicated reasoner in Magka (2012).

Ontology development for classifications are the main concerns in former studies on 
OBC. However, there are more things that OBC can do. Sources of the knowledge for 
ontology development can be easily recorded in OBC. Transparent classification pro-
cesses can be supported by existing tools, as can be seen in ontology explanation (Kaly-
anpur et  al. 2007) implemented in pellet.2 The traceable knowledge and transparent 
classification are able to make the classifying results more comprehensible and convinc-
ing, with every step of the classification can be validated. In addition, experiments show 
that classification accuracy can be further enhanced by combining induction and deduc-
tion, as one can obtain consistent deductive knowledge through consistency checking 
for inductive results (Lécué and Pan 2015).

Background knowledge for RSO classification

Background knowledge can be defined as information about the topics being dealt with, 
or information regarding the domain under study. It provides explicit information about 
domain. In terms of classifications, background knowledge can be concept hierarchy 
(Santoso et  al. 2011), readily available information improving classification accuracy, 
knowledge related to classifications, or even test examples used to aid in classifications 
(Zelikovitz and Hirsh 2001). In the OBC system for RSO classification, there are two 
types of background knowledge—hierarchies and domain knowledge related to the clas-
sification. RSO hierarchies, data and domain knowledge related to classification will be 
the main focuses in the following part.

RSO classification, hierarchies and data

There are two main types of existing models for RSO classification. One is the type of 
models that are built on features extracted from single-source observations. The other 
is the type of models that are based on RSO hierarchies. Under effective observations, 
specific types of RSO can be classified with features extracted from single-source data 
by machine learning classifiers. For example, six features are extracted from photometric 
data of RSO in Howard et al. (2015), and then several machine learning classifiers are 
built on the data of the 6 features to classify RSOs; statistical values, size and attitude 
are extracted from narrow band radar in Wang et al. (2012), and a KNN fuzzy classifier 
is learned from the extracted features. However, it is limited to classify multiple types of 
RSOs based on single-source observations, especially when features for classification are 
missing because of uncertain observations. Therefore, multi-source data have to be col-
lected to get a larger candidate feature set in some cases for robust classification. Then 

2  https://github.com/Complexible/pellet.

https://github.com/Complexible/pellet
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it is possible for classifiers to utilize different feature sets for classifications on different 
RSO hierarchies, with RSO being classified with low specificity even if missing values 
exist.

Concept hierarchies express the structure of concepts from specific to general. They 
allow expressing the discovered knowledge in a higher abstraction level, more concise 
format (Di Beneditto and de Barros 2004), hence facilitate effective reasoning for OBC. 
Concept hierarchies are mostly built by experts. Expert-built hierarchies are always built 
based on a series of key features or attributes. The most well-known and widely accepted 
expert-built concept hierarchy is the classical Linnaeus biological taxonomy (God-
fray 2007). There are also concept hierarchies built by machines. For example, concept 
hierarchies can be built from databases when they may be implicit within the database 
schemas and their instances (Trinkunas and Vasilecas 2007). As a kind of background 
knowledge, concept hierarchies provide information which can be used to guide hierar-
chical classification (Ruttenberg et al. 2015), or used to classify objects when expressing 
the discovered knowledge for classification in concept form (Belgiu et al. 2014).

In the RSO classification domain, there are already some expert-built RSO hierarchies. 
Fruh et al. (2013) characterizes RSO with six key discrete features related to RSO such as 
orbit parameters, materials and shape, and constructs an artificial RSO hierarchy based 
on these features. Similar to the proposal of Fruh et al. (2013), using four features of RSO 
(intrinsic information) such as size, attitude, shape and spin control (Linares et al. 2014), 
builds a four-layer RSO hierarchy. Wilkins et al. (2013) builds an RSO hierarchy using 
several external information of RSO such as orbit class and manufacturer of RSO. Rut-
tenberg et  al. (2015) classifies RSO hierarchically by reasoning on an RSO hierarchy 
using probability programming, and deduces the features needed for further classifica-
tions to drive RSO observation; 50 satellites have been chosen from UCS_Satellite3 to 
validate feasibility of the method, however, the competence of the model and complete-
ness of knowledge in the model need to be further validated. Taxonomies of RSO are 
also contained in domain ontologies, such as in Rovetto (2016), Rovetto and Kelso 
(2016), Cox et al. (2016).

These expert-built RSO hierarchies provide us very good materials for building Onto-
Star. However, descriptions of concepts in these hierarchies are single and relatively sim-
ple, making classification models based on these hierarchies unable to function properly 
when some key features are missing. Descriptions of concepts in these hierarchies can 
be further extended with the learning knowledge from RSO data, in order to classify 
RSO under limited and uncertain observations. There are several dependable data 
sources of RSO, such as the dataset Norad_Catalog of website Satellite_Debris,4 the 
dataset UCS_Satellite of UCS, the RSO data published by calsky.com,5 TLE data pub-
lished by Spacetrack.org.6 Norad_Catalog dataset describes radar cross section (rcs), 
orbit, and area-to-mass ratio (amr) etc. of RSO, and labels RSO as Satellite, Debris and 
Rocket Body (abbr. Rocket in the following). UCS_Satellite dataset describes active satel-
lites with mass, power, purpose and so on. The calsky website publishes radar cross 

3  http://www.ucsusa.org/nuclear_weapons_and_global_security/solutions/space-weapons/ucs-satellite-database.html.
4  http://satellitedebris.net/Database.
5  http://www.calsky.com/cs.cgi/Satellites.
6  https://www.space-track.org/.

http://www.ucsusa.org/nuclear_weapons_and_global_security/solutions/space-weapons/ucs-satellite-database.html
http://satellitedebris.net/Database
http://www.calsky.com/cs.cgi/Satellites
https://www.space-track.org/
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section, shape, magnitude and size of RSO. TLE data published by Spacetrack.org 
describes orbit of RSO. With the data containing implicit concept hierarchies with 
labels, reverse engineering methods can be utilized to obtain explicit RSO hierarchy, and 
machine learning can be used for descriptions of the concepts.

Domain knowledge related to RSO classification

As pointed out above, there are three types of domain knowledge useful to the RSO clas-
sification: internal knowledge, contextual knowledge and knowledge used for deducing 
features based on given features (called deduction knowledge).

Models describing characteristics of RSO have been studied quite extensively. There 
are many models that specify the characteristics of different types of RSO from different 
perspectives, such as models of space object (Han et al. 2014; Henderson 2014; Howard 
et  al. 2015; Poole and Murray-Krezan 2015) and debris (Rovetto 2016), material den-
sity distribution model of space debris (Opiela 2009). The distinct characteristics of a 
specific type of RSO can be used as internal knowledge of RSO to distinguish the type 
of RSO from others, for example, photometric signatures can be used to classify rocket 
body and communication satellite (Howard et al. 2015). There are also domain ontolo-
gies of RSO, which studies specification of RSO and relations between RSO and their 
relative entities, such as Rovetto (2016), Rovetto and Kelso (2016), Cox et al. (2016).

There is much contextual knowledge of RSO scattered in models, such as relations between 
satellite and related concepts described in the Space Surveillance Ontology (Pulvermacher 
et al. 2000), expected attitudes or orbit control of specific types of satellites (Wilkins et al. 
2013). Contextual knowledge can also be used for RSO classification, for example, satellites 
of particular contractors are expected to be for particular missions (Wilkins et al. 2013).

Deduction knowledge is deployed to deduce new feature/attribute data which may be 
required in the RSO classification, from some known features/attributes. When some 
attributes of RSO are unknown under limited or uncertain observations, the estimated 
values of the attributes deduced by deduction knowledge are always more accurate than 
estimated values achieved merely via statistics, because deduction knowledge has to be 
validated and tested through practice. Deduction knowledge related to RSO classifica-
tion is mainly from experience and literature. For example, the formula of computing 
the volume given a cylindrical RSO’s length and radius of its bottom circle comes from 
experience, and the formula for estimating area-to-mass ratio of an RSO given its orbital 
parameters comes from literature (Espitia and Schulz 2013). Moreover, one can also 
mine implicit deduction knowledge from data such as mining relations between objects 
(Gal et al. 2013) and deriving data of satellites on a database (Mansinghka et al. 2015).

Unordered machine learning rules for OBC

Ontologies for classifications, when constructed manually, are always far from complete, 
hence restrict the competences of OBC systems. Competences of OBC systems for RSO 
can be enhanced through the integration of rules learned from the collected RSO feature 
data. As stated in “Ontology-based classification” section, SWRL are more expressive 
and can record sources of knowledge, machine learning knowledge are integrated into 
the OBC system for RSO, in the way of adding SWRL rules transformed from machine 
learning rules to ontology.
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Two types of rules have traditionally been considered in rule learning (Han et  al. 
2011): decision lists (or ordered rule sets), and rule sets (unordered rules). The ordered 
rule sets are more compact and generally can generate higher ROC curve. However, the 
unordered rules are more suitable for classification scenario for three reasons. Firstly, 
it is rather easy to modify a model based on unordered rules, for adding or removing a 
rule from the model will not influence other parts of the model, making it easy to add 
background knowledge as unordered rules to the model. Secondly, SWRL rules for clas-
sifications can be added to the ontology directly with no influence on other parts of 
the model, which consequently improves the competence of the OBC system. Thirdly, 
SWRL rules supported by existing ontology reasoners are unordered.

Unordered rules can be obtained directly from rule generators such as MCNN (Alpay-
din 1997), TFPC (Coenen et al. 2005), and can also be obtained by extracting rules from 
other classification models such as decision trees learned by C4.5 (Han et al. 2011). These 
rules can be easily transformed to SWRL rules. However, redundancy and inconsistency 
between them have to be handled properly, before they are integrated to ontologies. 
There are ways to remove redundant rules, such as semantic pruning to get representa-
tive association rules (Ferraz and Garcia 2013), or association rule extraction (Xu et al. 
2015). Ways can be tried to handle inconsistency. For example, a classification can be 
decided by voting, when multiple classes are deduced (Han et al. 2011). Also, sometimes 
it is nice to accept only classification results which are consistent with domain ontolo-
gies (Lécué and Pan 2015).

OntoStar development
OntoStar is the basis of an OBC system for RSO. This section firstly presents a scheme to 
code background knowledge and unordered machine learning rules into OntoStar with 
the Ontology Web Language (OWL) (Group 2007) and SWRL. Then it will be described 
how rules can be learned for OntoStar.

Integrating ontology and unordered rules for classification

As introduced in “Background” section, OntoStar consists of background knowledge and 
machine learning rules. The background knowledge such as concept hierarchy, internal 
knowledge and contextual knowledge of concepts in OntoStar, is coded with OWL.

According to the ontology definition in Gruber (1993), there maybe multiple ontolo-
gies for the same concept depending on the purposes for modelling ontologies. The pur-
pose of the authors is to model a task ontology for the classifications of RSO named 
OntoStar. There are domain ontologies about RSO (Rovetto 2016; Rovetto and Kelso 
2016; Cox et al. 2016) and databases of RSO such as Norad_Catalog and UCS_Satellite, 
which can be reused and extended by OntoStar. Relevant concepts are extracted from the 
domain ontologies. The hierarchy of OntoStar are derived from the domain ontologies 
and databases. By way of example, the direct subclasses of RSO (SpaceObject)—Rocket 
(Rocket Body), Debris and Satellite, are referred to Norad_Catalog, and the taxonomy 
of Satellite is derived from UCS_Satellite based on the purposes of satellites. In Rovetto 
and Kelso (2016), specifications of RSO of different disciplines are clearly stated. There 
are also other concepts which are related to RSO classification, such as orbit, payload 
and concepts of features. Relations of RSO are specified in Cox et al. (2016).
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The instances of RSO can be described by object properties and instances of the 
related concepts. For example, given an instance of SpaceObject: International Space Sta-
tion iss, which has a payload CATS. Then iss can be described by the instance of Pay-
load—CATS, as the form “hasPayload(iss, CATS) ∧ Payload(CATS)”.

The top two concepts of RSO (named SpaceObject in Fig. 2) and Orbit, and the other 
top concepts related to RSO classification of OntoStar are shown in Fig. 2.

The internal knowledge, together with contextual knowledge of concepts in OntoStar, 
is used to describe concepts in OntoStar, and may also be used to classify instances of 
RSO. For example, the concept Debris are divided according the feature size. So size is 
the intrinsic of Debris, and the knowledge describing a subclass of Debris is internal 
knowledge of the subclass. Table 1 shows examples of the above knowledge coded with 
OWL in OntoStar.

A 3-layer concept hierarchy is shown in Table 1, listed as RSO-Debris-LargeDebris from 
general to specific. The subclasses of concept SpaceObject (Debris |Satellite |Rocket) are 
disjoint with each other. The concept LargeDebris is defined by its characteristic of size, 

Fig. 2  Part of the hierarchy in OntoStar

Table 1  examples of knowledge coded with OWL in OntoStar

Knowledge type Example

Concept hierarchy LargeDebris SubClassOf Debris

Debris SubClassOf SpaceObject

Rocket SubClassOf SpaceObject

Satellite SubClassOf SpaceObject

Disjoint Class (Debris Rocket Satellite)

Internal knowledge LargeDebris≡Debris and (size only xsd:float[>0.1f ])

Contextual knowledge of concepts SpaceObject SubClassOf (inOrbit exactly 1 Orbit)

HEO≡Orbit and altitude only xsd:float[>=36000.0f ]

Orbit SubClassOf (inclination exactly 1 xsd:float[>=0f,<180])
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for example, Debris with a size larger than 0.1 (m) is LargeDebris. The first constraint of 
the RSO’s operations is that every RSO is in an Orbit. The concept Orbit can be classified 
by its altitude, and is a HEO when its altitude is not less than 36,000 (km). Orbit has the 
description of inclination whose value is in the range of [0,180).

The background knowledge in OntoStar, such as deduction knowledge and other con-
textual knowledge, is expressed in unordered rules called background rules. Machine 
learning rules in OntoStar are also unordered. Every background rule or machine learn-
ing rule is coded with SWRL, containing annotations of additional information such as 
the rule’s source and evaluations (if exist). Machine learning knowledge is coded with 
SWRL, other than defining concepts with the learning features like the way in Maillot 
and Thonnat (2008), Belgiu et al. (2014), for the reasons mentioned in “Ontology-based 
classification” section, and also for the reason that rules extracted from decision trees 
are more comprehensible than decision trees, particularly when the decision trees are 
very large (Han et al. 2011).

Only rules extracted from C4.5 are chosen to be integrated into OntoStar for the fol-
lowing reasons. Firstly, an implementation of C4.5 named J48 is provided by WEKA, and 
rules extracted from C4.5 are unordered rules. Secondly, redundancy and inconsistency 
may occur between multi-source unordered rules, and there are no redundancy and 
inconsistency between rules extracted only from C4.5. To emphasize the main idea of 
this paper, redundancy and inconsistency are not addressed by this paper. Table 2 gives 
examples of SWRL rules expressed in Manchester Syntax (Horridge and Patel-Schneider 
2008) in developing OntoStar.

Background rules and unordered machine learning rules are shown in Table 2. There 
are three background rules.

The first rule is knowledge about computing volume of RSO with cylindric form. The 
rule can be read as following:

the variable ?S is a space object of cylindric form, its height is ?H and its bottom area is 
?A, it can be concluded that the volume of ?S equals to ?H multiplying ?A.

The second rule is knowledge from experience that describes how to derive size using 
radar cross section (rcs).

The third rule is contextual knowledge stating that an RSO with power greater than 1 
(watts) is expected to be a satellite (not vice versa, i.e., not every satellite is with power 
greater than 1, thus, power is not the intrinsic of Satellite and this rule is only a back-
ground rule for classification rather than internal knowledge).

There are two unordered machine learning rules, which are extracted from two C4.5 
decision trees respectively. The first rule is extracted from a C4.5 decision tree which is 
learned from the dataset UCS_Satellite. It has covered 26 samples. The second rule is 
extracted from a C4.5 decision tree derived from Norad_Catalog. It has covered 37 sam-
ples. The two rules are used for classifications of satellite and RSO respectively.

Learning classification rules for OntoStar

As pointed out in “Unordered machine learning rules for OBC” section, it is necessary 
to obtain rules by learning, in order to improve performances of OBC system, with the 
additional advantage to enrich the descriptions of concepts in ontology for robust clas-
sification when some features are missing. Describing RSO with different feature sets 
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makes the classification more flexible, and not dependent on only one feature set. Clas-
sification rules learned from features RSO data are just about descriptions of RSO with 
feature sets. When learned classification rules are integrated into OntoStar, the com-
pleteness of OntoStar increases.

In the presence of limited or uncertain observations, there are usually some features 
of RSO missing. Under this condition, it is better to classify an RSO with low specificity 
than not to classify it, and it is better not to classify an RSO than to classify it incorrectly. 
In order to get better results, RSOs classified with low specificity and unclassified RSOs 
are left by the OBC system to experts for further treatment. Therefore, when learning 
rules for OntoStar, every learning process corresponds to one hierarchy of OntoStar. 
That is to say, classification rules of RSO are learned hierarchically. This kind of learning 
is called hierarchy guided learning. For example, it first obtains the machine learning rule 
about the concept SpaceObject of the form (SWRL rules in Manchester Syntax)

then it obtains the machine learning rule about the concept Satellite of the form

SpaceObject(?S), . . . → Satellite(?S),

Satellite(?S), . . . → Communication_Satellite(?S).

Table 2  Examples of SWRL rules in the developing OntoStar

Background rules Feature computational rules so:SpaceObject(?S), so:shape(?S,?Shape), 
Cynlinder(?Shape), so:height(?S,?H), 
so:bottom_area(?S,?A), swrlb:multiply(?V,?A,
?H) → so:volume(?S,?V)

annotations:
 Source = Mathematics

so:rcs(?X,?RCS), so:power(?P,?D,0.5f ), 
so:SpaceObject(?X), 
swrlb:divide(?D,?RCS,0.79f ), 
swrlb:subtract(?S,?P,2.57E-13f ) → so:size(?X, 
?S)

annotations:
 Source = Experience

Semantic classification rule so:SpaceObject(?S), so:power(?S,?pv), swrlb:gr
eaterThan(?pv,1.0f ) → so:Satellite(?S)

annotations:
 Source = Domain

Unordered machine  
learning rules

Rule from C4.5 so:Satellite(?S), so:MEO(?O), so:inOrbit(?S,?O), 
so:launchSite(?S,’Cape_Canav-
eral’) → so:Navigation_Satellite(?S)

annotations:
 Source = mining from UCS_Satellite using 

J48
 Confidence = 0.9873
 Coverage = 26

so:SpaceObject(?S), so:size(?S,?Sz), swrlb:l
essThanOrEqual(?Sz,0.39), so:amr(?S,?A), 
swrlb: lessThanOrEqual(?A,0.01), 
so:inOrbit(?S,?O), so:eccentricity(?O,?E), 
swrlb:greaterThan(?E,0.001426), 
so:apogee(?O,?AP), 
swrlb:greaterThan(?AP,784), period(?O,?P), 
swrlb:greaterThan(?P,108) → so:Debris(?S)

annotations:
 Source = mining from Norad_Catalog using 

J48
 Confidence = 1
 Coverage = 37
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Besides, guided by the hierarchy, every learning process concentrates on a smaller 
range, and gains smaller decision trees. When deciding the more specific type of an 
RSO, only rules expressed in the form SpaceObject(?S), … → X(?S) (X∈{C |C is a sub-
class of SpaceObject}) are explored. So the searching space is expected to be smaller.

Once the classification rules are learned, they should be transformed to SWRL rep-
resentation, so that they can be integrated into OntoStar, combining with background 
knowledge expressed by OWL and SWRL. Classification rules learning for OntoStar is 
summarized in Algorithm 1.

Algorithm 1 learns classification rules of the class c and its subclasses from dataset ds 
with the guidance of hierarchy h. In steps 3–11, only instances of c are saved to tmpDS 
for learning. If there are no steps 3–11 and steps 20–23 in Algorithm 1, information of 
the ontology is not used in learning rules and rules are not learned hierarchically. This 
kind of rule learning for classification ontology is called simple learning. Continuing 
the example above Algorithm 1, rules of the following form will be obtained by simple 
learning

SpaceObject(?S), . . . → Satellite(?S)

SpaceObject(?S), . . . → Communication_Satellite(?S).
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Simple learning means domain knowledge and machine learning knowledge are sim-
ply combined for classification. Simple learning is useful, for machine learning can still 
be deployed when the hierarchy isn’t available or exact.

In step 12, rules of deriving direct subclasses of c from c are learned. In steps 13–18, 
machine learning rules are transformed to SWRL rules. It should be pointed out particu-
larly that, the atom c(?X) should be added to the body of the transformed SWRL rules, 
because only instances of c are used when Algorithm 1 is employed. In steps 20–23, clas-
sification rules of the class c and its subclasses are learned by employing Algorithm 1 
recursively.

Experiments and result analysis
In this section, it will firstly be shown how multi-source data of RSO are represented 
by OntoStar. Then classification of RSO, transparent classification process and traceable 
knowledge are shown on Protégé. Afterwards, the OBC system is integrated into WEKA 
to test its performances, where the classification result is compared to that of classical 
machine learning classifiers. To be clarified, the OBC system specially designed for RSO 
is named R-OBC in the following.

Representation of RSO by OntoStar

NORAD_Catalog and UCS_Satellite are collected for the experiments. NORAD_Cata-
log describes RSOs with the following attributes/features: cospar_id, nord_id, period, 
perigee, apogee, eccentricity, rcs, amr and labels. There are 8071 samples in this data-
set with 3 labels: Debris, Rocket Body and Satellite. UCS_Satellite describes active satel-
lites with the following attributes/features: cospar_id, nord_id, period, perigee, apogee, 
eccentricity, orbit type, orbit class, longitude, power, dry mass, launch mass, launch vehi-
cle, launch site, owner, contractor, users and purposes. The attribute purposes is used as 
the dataset’s labelling attribute. The dataset contains 1346 samples with 19 labels. The 
dataset is incomplete, for it contains 1267 samples with at least one attribute of miss-
ing value. Data in NORAD_Catalog are used to analyze orbital distributions of different 
types of RSOs in Savioli (2015), and also used to derive new features’ data of satellites in 
Mansinghka et al. (2015). Data in UCS_Satellite are used by Ruttenberg et al. (2015) to 
describe some types of satellite.

The above two datasets contain 318 identical RSOs and have 9099 RSOs in total. 
To make all the RSOs able to be classified by classical classifiers, the two datasets are 
merged into one, through left join on the attribute cospar_id. The 318 identical RSOs are 
labelled the same as their labels in UCS_Satellite. Finally the dataset RSODS is obtained.

RSODS is an incomplete dataset, for it contains only 79 records without missing 
values. The dataset composes of records of Debris (61.6  %), Rocket (7.6  %), unknown-
type Satellite (15.9 %) and Satellite of specific purposes (14.8 %) such as Communica-
tion Satellite, Global Position Satellite, Earth Observation Satellite and etc., adding up 
to 21 types of RSOs. All the 79 records without missing values are satellites of specific 
purposes.

Taking the RSO whose cospar_id is “2009-041D” as example, it will be shown how 
to describe RSO and record sources of the data by OntoStar. Firstly, an instance of 
SpaceObject is created in OntoStar named “2009-041D” (identified as 2009-041D in the 
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following), data in NORAD_Catalog and UCS_Satellite about 2009-041D are used to 
describe the instance 2009-041D in OntoStar correspondingly. Then brightness datum 
about 2009-041D collected from calsy.com is used to fill the data property brightness of 
the instance 2009-041D. The description of the instance 2009-041D using the data from 
the three sources above is shown in Fig. 3.

In Fig. 3, the description of 2009-041D is shown in Protégé,7 which is an integrated 
environment for ontology development. It can be seen that the imported data which 
describe 2009-041D are used directly as values of data properties, such as the values of 
the properties size, rcs and brightness etc. The relations of 2009-041D and its related 
entities are described by object properties, such as the description “inOrbit 
orbitOf-1097454467”. Contextual data about external information describing 2009-041D 
are represented through data properties describing relative objects, e.g., orbital data 
which describe 2009-041D are used as values of data properties of orbitOf-1097454467. 
All sources of the data which describe 2009-041D are annotated. In the lower right cor-
ner of Fig.  3, it can be seen that the source of the brightness datum of 2009-041D is 
annotated as “data source: calsky.com”.

Demo on Protégé of R‑OBC

As pointed out in “Ontology-based classification” section, there are extra awards of 
R-OBC due to its conveniences in recording source of the knowledge and finding justi-
fications for classifications (abbr. classification justification). A justification is a minimal 
set of knowledge deriving the conclusion for a classification. Classification justifica-
tion can be done by the service explanation in Protégé. From Fig. 3, it can be seen that 
sources of the data which describe the RSO are recorded with annotation. Sources of the 
background knowledge and machine learning rules are also recorded in this way, so all 
the machine learning rules in these sets can be tracked.

Given an unlabelled RSO with data description, it can be classified via R-OBC and 
find a classification justification, by the following steps. Firstly, the RSO is represented in 
OntoStar as described in “Demo on Protégé of R-OBC” section. Then the ontology rea-
soning service realization, provided by the ontology reasoner pellet, is employed to com-
pute the most specific class for the RSO. Finally, the service of explanation is employed 
to find a classification justification. An example of classifying an RSO named “inst2cls” 
(identified as inst2cls in the following) through R-OBC and finding a classification justifi-
cation is shown in Fig. 4. The reasoning service realization is completed within 1840 ms.

In Fig. 4, the imported data which describe inst2cls are shown in the middle box and 
lower box of the left part. The given knowledge about inst2cls contains information of 
owner, orbit, rcs, height and power of inst2cls, and the statement that inst2cls is an RSO. 
The statement that inst2cls is a Reconnaissance_Satellite, shown in the dot-line box of 
the lower left part, is derived from the given knowledge through ontology reasoning. 
A classification justification is found by the service explanation, and the classifica-
tion justification is shown in the right part. With the classification justification being 

7  http://www.standford.edu/protege.

http://www.standford.edu/protege
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comprehensible, the deriving process from pre-condition to conclusion can be parsed 
into a intelligible tree-like structure, as shown in Fig. 5.

The tree-like structure in Fig.  5 records inference process for the classification, and 
helps users to understand how inst2cls is classified as Reconnaissance_Satellite. The 
traceable knowledge and intelligible justification in the transparent classification make 
every step of the classification by R-OBC able to be validated by experts, in order to 
make the classification assured. In Fig. 5 it can be seen that the tree-like structure infer-
ence process corresponds to RSO hierarchy in OntoStar. The inference process in the 
dot-line box shows inst2cls is classified as Satellite only with knowing power of inst2cls. 
This shows R-OBC is still able to classify an RSO with low specificity when other fea-
tures/attributes are missing.

The main drawback of OBC is its classification time. As mentioned above, it com-
sumes 1840 ms to obtain the type of inst2cls. Even the loading time of the ontology can 

Fig. 3  Description of 2009-041D in OntoStar

Fig. 4  Finding justifications for a classification
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be ignored when the ontology is preloaded in memory, OBC still consumes 520 ms in 
average to classify an RSO using the general reasoner. A dedicated reasoner is required 
to enhance OBC’s computational efficiency for the classification when fast classification 
is a rigid demand.

Weka‑based test of R‑OBC

The R-OBC system formed in “Demo on Protégé of R-OBC” section is integrated into 
WEKA, to take advantage of WEKA to compute indexes of testing results. R-OBC’s abil-
ity to perform space object classifications is measured by accuracy, FP rate, precision 
and recall.

Accuracy measures the actual performance of the system with regard to both cor-
rectly classifying and correctly rejecting objects. It is one of the most common metrics 
for a classifier. The higher accuracy a classifier get, the better the classifier. Accuracy is 
defined as following:

False alarm rate is an important evaluation index in SSA (Laas-Bourez et  al. 2011; 
Haith and Bowman 2014). The lower false alarm rate a classifier get, the better the 
method for object identification. False alarm rate is defined as the following (González 
and Dasgupta 2003; Stibor et al. 2005), which is the same as the FP rate calculated by 
WEKA:

Precision is the fraction of detected items that are correct. Recall is the fraction of 
items that were correctly classified among all the items that should have been classified. 

accuracy =
true positives+ true negatives

true positives+ false negatives+ true negatives+ false positives

false alarm rate =
false positives

true negatives+ false positives

inst2cls
owner
NRO

inst2cls Type
Satellite

inst2cls
volume

120f

inst2cls 
Type

Reconnaissance_Satellite

Inst2cls 
Type

SpaceObject

inst2cls 
power
300f

inst2cls 
height

10f

inst2cls 
rcs
12f

inst2cls
inOrbit

orbitOfinst2cls

LEO(?Orbit), Orbit(?Orbit),inOrbit(?SO, ?Orbit), 
greaterThan(?Y1, 92.49f),lessThan(?Y1, 392.0f), 

owner(?SO, 'National_Reconnaissance_Office_(NRO)'), 
Satellite(?SO), volume(?SO, ?Y1) 
-> Reconnaissance_Satellite(?SO)

SpaceObject(?SO), 
power(?SO, ?pv), 

greaterThan(?pv,0.0f)
-> Satellite(?SO)

rcs(?X, ?RCS),
multiply(?V, ?RCS, ?W), 

SpaceObject(?X), 
height(?X, ?W) 

-> volume(?X, ?V)

orbitOfinst2cls
Type
LEO

orbitOfinst2cls
Type
Orbit

orbitOfinst2cls
apogee
800f

orbitOfinst2cls
perigee

700f
Perigee 
Domain 

Orbit

Orbit(?O),
perigee(?O, ?P), 
apogee(?O, ?A),

greaterThan(?P, 120), 
lessThan(?A, 1500)

-> LEO(?O)

Fig. 5  Justification parsed to tree-like structure
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Other metrics such as F-Measure and Precision Recall Curve are determined by preci-
sion and recall.

“Ten-fold Cross Validations” (TCV) are performed on RSODS without the attributes 
cospar_id and nord_id by R-OBC and 7 classical machine learning classifiers, including 
C4.5 (Quinlan 2014), Bayesian Network (Friedman et  al. 1997), Ripper (Cohen 1995), 
SVM (Keerthi et  al. 2006), Random Forests (Breiman 2001), Backpropagation Neu-
ral Network (Erb 1995) and Logistic Model Trees (Landwehr et al. 2005). The baseline 
methods are implemented in WEKA as the following (a method in brackets correspond 
to one of its implementation in WEKA before the brackets respectively): J48 [C4.5], 
BayesNet [Bayesian Network], Jrip [Ripper], SMO [SVM], RandomForest [Random 
Forests], MultilayerPerceptron [Backpropagation Neural Network], and SimpleLogistic 
[Logistic Model Trees].

In the experiments, 50 trees are setup for RandomForest and 4 hidden layers are setup 
for MultilayerPerceptron (they will cost more than 250 s in learning for more trees or 
layers and more trees or layers enhance a little, so the number of trees and layers are not 
set too large). The resting baseline methods choose the default parameters in WEKA. In 
TCV, data are split into training data (90 %) and test data (10 %). To mimic the situation 
that some features of RSOs are missing because of the limited and uncertain observa-
tions, we remove an attribute in the test data. The results are shown in Table 3. 

In Table  3, indexes with prefix “(W)” are weighted average indexes computed by 
WEKA based on indexes of all classes. The rows O in Table 3 show results of evaluat-
ing the classifiers using original test data. R, S and A in Table 3 mean that the classifiers 
are evaluated by the test data missing rcs, size and amr respectively. R-OBC O[1] and 
R-OBC O[2] show hierarchy guided learning (corresponding to Algorithm 1) and simple 
learning (corresponding to Algorithm 1 without steps 3–11 and 20–23) of OBC evaluat-
ing by original test data respectively.

(a)	 Hierarchy guided learning in improving accuracy and efficiency

As can be seen in Table 3, hierarchy guided learning outperforms simple learning in 
all aspects. The OBC system gaining rules by J48 (R-OBC O[1] or R-OBC O[2]) outper-
forms J48 (J48 O) in most aspects. The above phenomena can be explained, that back-
ground knowledge plays roles in the process of learning and classification. Hierarchy 
guided learning makes the learned rules more accurate, and background rules take effect 
when learned rules fail to classify an RSO. Hierarchy guided learning (R-OBC O[1]) 
gains smaller decision trees in the above experiment (because only 406.8 rules in average 
are extracted from the trees in one validation, and 1061 rules in average are extracted 
from the tree of J48 in one validation). Smaller decision trees learned also are reflected 
by the less learning time of R-OBC than that of J48 (0.87 vs. 3.74 s).

(b)	 Robustness

Experiments are also conducted to test the robustness of R-OBC when one of the 
important attributes rcs, size and amr is missing in the test data. Comparisons in the 
following are all between evaluations using the data with one attribute missing and 
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evaluations using the original test data. When the attribute rcs is missing in the test data, 
SMO, RandomForest and SimpleLogistic keep their performances in most aspects, with 
respect to original test data. Performances of J48, BayesNet and JRip drop a little in most 
aspects (in the range of 1.5–6 %) except a big increase (>10 %) in FP rate for BayesNet. 
The performances of MultilayerPerceptron reduce drastically. When the attribute size is 
missing in the test data, all classifiers’ performances reduce significantly, except for OBC 
and RandomForest. When the attribute amr is missing in the test data, performances 
of BayesNet, JRip, MultilayerPerceptron and SimpleLogistic reduce significantly, while 
other classifiers keep their performances.

R-OBC is robust when one of the attributes rcs, size and amr is missing. This can be 
explained that background knowledge plays roles. Firstly, deduction knowledge deduces 
the missing attributes from the known attributes precisely. Secondly, background rules 
take effect when learned rules fail to classify an RSO. The comparisons between R-OBC 
and classical classifiers on robustness are most obvious when the attribute size is miss-
ing. In fact, it is more difficult to obtain size than to obtain rcs of an RSO for us. It is 

Table 3  Results of Ten-cross-fold validation on RSODS by WEKA

Italic values indicate moderate negative significance

Underlined values indicate significant negative impact

Normal values indicate trivial significance

M&D: methods and data; (W)EI: (weighted average) evaluation index; O: original test data; R: unknown rcs in test data; S: 
unknown size in test data; A: unknown amr in test data; T: learning time for building model

EI M&D

R-OBC J48 BayesNet

O[1] O[2] R S A O R S A O R S A

Accuracy 0.872 0.85 0.893 0.892 0.884 0.854 0.837 0.707 0.848 0.899 0.862 0.862 0.878

(W)FP rate 0.03 0.041 0.033 0.032 0.031 0.124 0.157 0.437 0.119 0.027 0.14 0.137 0.085

(W)precision 0.891 0.87 0.892 0.892 0.891 0.809 0.79 0.609 0.807 0.904 0.862 0.864 0.876

(W)recall 0.891 0.87 0.894 0.893 0.892 0.854 0.837 0.707 0.848 0.899 0.862 0.862 0.878

T (s) 0.87 4.1 0.36 0.29 0.46 3.74 3.58 3.64 3.95 0.27 0.11 0.11 0.13

EI M&D

JRip SMO RandomForest (50-trees)

O R S A O R S A O R S A

Accuracy 0.92 0.864 0.817 0.838 0.903 0.888 0.395 0.903 0.9 0.889 0.881 0.893

(W)FP rate 0.035 0.084 0.228 0.191 0.04 0.044 0.251 0.041 0.082 0.103 0.136 0.082

(W)precision 0.918 0.847 0.816 0.843 0.902 0.886 0.527 0.902 0.897 0.888 0.879 0.892

(W)recall 0.92 0.864 0.817 0.838 0.903 0.888 0.395 0.903 0.9 0.889 0.881 0.893

T (s) 3.7 3.23 3.31 3.64 3.67 3.47 3.65 3.70 313.52 271.91 277.67 297.64

EI M&D

MultilayerPerceptron (4-hidden-layer) SimpleLogistic

O R S A O R S A

Accuracy 0.847 0.46 0.155 0.740 0.9 0.897 0.746 0.742

(W)FP rate 0.044 0.084 0.085 0.223 0.039 0.048 0.267 0.373

(W)precision 0.813 0.691 0.667 0.668 0.899 0.901 0.683 0.635

(W)recall 0.847 0.46 0.155 0.740 0.9 0.897 0.746 0.742

T (s) 294.83 342.32 308.75 315.10 3532.5 3440.7 3479 3643.57
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common that there are some missing features when classify an RSO, so the classifiers 
have to be robust enough to tolerate such imperfect data.

(c)	 Enhanced flexibility

In terms of the learning part of building classifiers, as shown in Table 3, R-OBC and 
BayesNet take the least time (hundreds of milliseconds), JRip, J48 and SMO take the 
second least time (several seconds), while RandomForest, SimpleLogistic and Multilay-
erPerceptron take the most time (hundreds of seconds). It’s obvious R-OBC and Bayes-
Net will be able to training classifiers faster than other machine learning methods, when 
the training data change. Therefore, once OntoStar has been built (although it demands 
much mannual work and is time-consuming), R-OBC is competitive in terms of learn-
ing the model. Especially, R-OBC benefits its unordered rule when part of the training 
data change, for adding or removing a classification rule will not influence other rules. 
For example, when new RSO data of a specific label are added to the training data, it is 
only necessary to learn classification rules of the label. For the datasets Norad_Catalog 
and UCS_Satellite, when new satellite data are added to UCS_Satellite, only classifica-
tion rules of satellite need to be updated with the learning of UCS_Satellite.

(d)	 Other analyses

From Table 3 it can be seen that performances of R-OBC in most aspects are even bet-
ter when the attribute rcs/size/amr is missing. When the attributes rcs, size and amr of an 
RSO are not missing, the deduced values (rcs, size and amr) will differ from that in test 
data, if the test data are biased or the deduction knowledge is not precise. At the same time, 
both the deduced value and the value in test data are used as the true value in the classifi-
cation. Therefore, inconsistency occurs more frequently in classifications when there is no 
missing value. Because an RSO will not be classified by R-OBC when inconsistency occurs, 
R-OBC is able to classify more RSO when one of rcs, size and amr is missing.

Conclusions
This paper presents a methodological framework for improving performances of clas-
sifying RSOs by harnessing ontology and machine learning techniques. An RSO is clas-
sified by reasoning of OntoStar and the classification process can be recorded. OntoStar 
is a hybrid knowledge base which contains both the latest domain knowledge in RSO 
classification advances and unordered machine learning rules. The learning processes 
are guided by the hierarchy of OntoStar when learning rules for OntoStar, in order to 
learn more accurate and comprehensible rules. The traceable knowledge is another extra 
award of OBC, which is explored through coding knowledge into ontology with annota-
tions. The recorded classification process and traceable knowledge are comprehensible, 
making it possible to check every step of the classification, thus making the classification 
able to be validated by experts. All these efforts lead to the facilitation of SSA by accu-
rate, robust and comprehensible RSO classification.

Three experiments are performed on collected RSO data. Multi-source RSO data are 
represented by OntoStar with sources of data recorded. Demo shows how an unclassified 
RSO is classified based on OntoStar, with the classification process specifically recorded. 
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OBC and seven classical machine learning classifiers are employed for TCV on WEKA. 
Experiments show that, (1) OBC owns traceable knowledge and transparent classifica-
tion processes, thus augments comprehensibility of classification; and (2) OBC is robust 
when some features are missing, and its learning part is fast. The main drawback of OBC 
is that, OBC consumes more time in classifying RSO than other machine learning classi-
fiers. OBC consumes hundreds of milliseconds to classify an RSO in average, while other 
machine learning classifiers consumes less than a millisecond. Considering its contribu-
tion in dealing with the imperfect data, the disadvantage is still tolerant.

In future work, the authors will improve the efficiency of the reasoning procedure by 
developing a dedicated reasoner for OntoStar, making the most of the characteristics 
of OntoStar. In addition, ontology evaluation for ontology development, and introduc-
tion of multi-source unordered machine learning rules, are also expected to enhance the 
classification accuracy. As a further step, the authors will apply ontology evaluation and 
multi-source unordered machine learning rules to R-OBC. It will also be taken into con-
sideration that background knowledge is learned for a fine-grain OntoStar. Despite the 
limitations mentioned above, the presented methodology can be extended and applied 
to the classification of various objects in other areas where robustness is required, as 
long as the training time and classifying time are not critical.

 Data and results of the experiments can be accessed from the following link: https://
drive.google.com/folderview?id=0B6t3WjaQZyjWNXhnWFBUd0xjdmM&usp=sharing.
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