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Background
Abstract convexity theory is an important branch of mathematics (Van De Vel 1993). The 
notion of convexity considered here is considerably broader the classical one; specially, 
it is not restricted to the context of vector spaces. Now, a convexity on a set is a family 
of subsets closed for intersection and directed union. Convexities exist in many differ-
ent mathematical research areas, such as convexities in lattices (Van De Vel 1984; Varlet 
1975), convexities in metric spaces and graphs (Lassak 1977; Menger 1928; Soltan 1983) 
and convexities in topology (Chepoi 1994; Eckhoff 1968; Sierkama 1975; Van Mill 1977).

With the development of fuzzy mathematics, convexity has been interrelated to fuzzy 
set theory. Many authors have investigated fuzzy convexity by taking the interval [0, 1] 
as the truth table (Philip 2010; Rosa 1994a, b). However, as (Goguen 1967) pointed out, 
in some situations it may be impossible to represent degrees of membership by the line-
arly ordered set [0, 1]. Thus some lattice structures were proposed to replace the interval 
[0, 1] as the truth value table for membership degrees.

It is easily seen that there is some similarity between convexity and topology (a fam-
ily of subsets of a set closed for union and finite intersection). Thus, similar to lattice-
valued topologies (Höhle and Rodabaugh 1999; Li and Li 2015; Liu and Luo 1997; Sostak 
1985; Wang 1988; Ying 1991), there are at least three kinds of lattice-valued convexi-
ties, namely, L-convexity (Maruyama 2009; Pang and Shi 2016), M-fuzzifying convexity 
(Shi and Xiu 2014; Shi and Li 2016) and (L, M)-convexity (Xiu 2015), where L and M 
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are some complete lattices. When L = 2, an (L, M)-convexity is precisely an M-fuzzify-
ing convexity; when M = 2, an (L, M)-convexity is precisely an L-convexity; and when 
L = M = 2, an (L, M)-convexity is precisely a convexity. Similar to (lattice-valued) topol-
ogy, the categorical relationships between convexity and latticed-valued convexity is an 
important direction of research. When L being a completely distributive complete lat-
tices with some additional conditions, Pang and Shi (2016) proved that the category of 
convex spaces can be embedded in the category of stratified L-convex spaces as a core-
flective subcategory.

In this paper, we shall continue to study the categorical relationships between con-
vex spaces and stratified L-convex spaces. We shall investigate two embedding functors 
from the category of convex spaces (denoted by CS) to the category of stratified L-con-
vex spaces (denoted by SL-CS). The first functor enables us to prove that the category 
CS can be embedded in the category SL-CS as a reflective subcategory when L being a 
continuous lattice. The second functor enables us to prove that the category CS can be 
embedded in the category SL-CS as a coreflective subcategory when the continuous lat-
tice L satisfying a multiplicative condition. The second functor is an extension of Pang 
and Shi’s functor (2016) from the lattice-context. Precisely, from completely distributive 
complete lattice to continuous lattice. And the second functor can be regarded as an 
analogizing of the well known (extended) Lowen functor between the category of topo-
logical spaces and the category of stratified L-topological spaces (Höle and Kubiak 2007; 
Lai and Zhang 2005; Li and Jin 2011; Lowen 1976; Warner 1990; Yue and Fang 2005). 
By comparing the two functors and Lowen functor, we exhibit the difference between 
(stratified L-)topological spaces and (stratified L-)convex spaces from the categorical 
sense.

The contents are arranged as follows. In “Preliminaries” section, we recall some basic 
notions as preliminary. In “CS reflectively embedding in SL-CS” section, we present the 
reflective embedding of the category CS in the category SL-CS. In “CS coreflectively 
embedding in SL-CS” section, we focus on the coreflective embedding of the category 
CS in the category SL-CS. Finally, we end this paper with a summary of conclusion.

Preliminaries
Let L = (L,≤,∨,∧, 0, 1) be a complete lattice with 0 is the smallest element, 1 is the 
largest element. For a, b ∈ L, we say that a is way below b (in symbol, a ≪ b) if for all 
directed subsets D ⊆ L, b ≤ ∨D always implies that a ≤ d for some d ∈ D. A complete 
lattice L is said to be continuous if ∀x ∈ L, x = ∨ ⇓ x, where ⇓ x = {y ∈ L| y ≪ x} (Gierz 
et al. 2003). For a directed subset D ⊆ L, we use ∨↑D to denote its union.

Throughout this paper, L denote a continuous lattice, unless otherwise stated. The con-
tinuous lattice has a strong flavor of theoretical computer science (Gierz et al. 2003). The 
following lemmas collect some properties of way below relation on a continuous lattice.

Lemma 1  (Gierz et  al. 2003) (1) a ≪ b ⇒ a ≤ b, (2) a ≤ b ≪ c ≤ d ⇒ a ≪ d, (3) 
a ≪ b ⇒ ∃c such that a ≪ c ≪ b, (4) a ≪ ∨↑D ⇒ a ≪ d for some d ∈ D.
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Lemma 2  (Gierz et al. 2003) Let L be a continuous lattice and let {aj,k | j ∈ J , k ∈ K (j)} 
be a nonempty family of element in L such that {aj,k | k ∈ K (j)} is directed for all j ∈ J . 
Then the following identity holds.

where N is the set of all choice functions h : J −→
⋃

j∈J K (j) with h(j) ∈ K (j) for all j ∈ J .
Let X be a nonempty set, the functions X −→ L, denoted as LX, are called the L-sub-

sets on X. The operators on L can be translated onto LX in a pointwise way. We make no 
difference between a constant function and its value since no confusion will arise. For a 
crisp subset A ⊆ X, we also make no difference between A and its characteristic func-
tion χA. Clearly, χA can be regarded as an L-subset on X. Let f : X −→ Y  be a function. 
Then define f←L : LY −→ LX by f←L (�) = � ◦ f  for � ∈ LY . For a nonempty set X, let 2X 
denotes the powerset of X.

Definition 1  (Van De Vel 1993) A subset C of 2X is called a convex structure on X if it 
satisfies:

(C1)	 ∅,X ∈ C;
(C2)	 if {Aj}j∈J ⊆ C, then 

⋂

j∈J Aj ∈ C, where J �= ∅;
(C3)	 if {Aj}j∈J ⊆ C is directed, then its union, denoted as 

⋃↑
j∈J Aj, belongs to C.

The pair (X , C) is called a convex space. A mapping f : (X , CX ) −→ (Y , CY ) is called 
convexity-preserving (CP, in short) provided that B ∈ CY  implies f −1(B) ∈ CX. The cat-
egory whose objects are convex spaces and whose morphisms are CP mappings will be 
denoted by CS.

Definition 2  (Maruyama 2009; Pang and Shi 2016) A subset C of LX is called an L-con-
vex structure on X if it satisfies:

(LC1)	 0, 1 ∈ C;
(LC2)	 if {�j}j∈J ⊆ C, then 

∧

j∈J �j ∈ C, where J �= ∅;
(LC3)	 if {�j}j∈J ⊆ C is directed, then its union, denoted as 

∨↑
j∈J �j, belongs to C.

The pair (X ,C) is called an L-convex space and it is called stratified if it satisfies moreo-
ver (LCS): ∀α ∈ L,α ∈ C.

A mapping f : (X ,CX ) −→ (Y ,CY ) between stratified L-convex spaces is called 
L-convexity-preserving (L-CP, in short) provided that µ ∈ CY  implies f←(µ) ∈ CX. The 
category whose objects are stratified L-convex spaces and whose morphisms are L-CP 
mappings will be denoted by SL-CS.

Finally, we recall some categorical notions from Adámek et al. (1990).

(DD)
∧

j∈J

∨

k∈K (j)

↑
aj,k =

∨

h∈N

↑∧

j∈J

aj,h(j),
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Definition 3  (Adámek et  al. 1990) Suppose that A and B are concrete categories; 
F : A −→ B and G : B −→ A are concrete functors. The pair (F,  G) is called a Galois 
correspondence if F ◦ G ≤ id in the sense that for each Y ∈ B, idY : F ◦ G(Y ) −→ Y  is a 
B-morphism; and id ≤ G ◦ F  in the sense that for each X ∈ A, idX : X −→ G ◦ F(X) is 
an A-morphism.

If (F, G) is a Galois correspondence, then F is a left adjoint of G (equivalently, G is a 
right adjoint of F), hence F and G form an adjunction F ⊢ G : A ⇀ B.

CS reflectively embedding in SL‑CS
In this section, we shall present a functor from the category CS to the category SL-CS, 
and then by using it to prove that the category CS can be embedded in the category SL-
CS as a reflective subcategory.

At first, we fix some notations. For a ∈ L, x ∈ X, we denote xa as the L-subset values a 
at x and values 0 otherwise. For � ∈ LX, let pt(�) = {xa| a ≪ �(x)} and let Fin(�) denote 
the set of finite subset of pt(�). Obviously, � = ∨pt(�) = ∨{∨F | F ∈ Fin(�)}.

Definition 4  Let (X , C) be a convex space and let B = {a ∧ U | a ∈ L,U ∈ C}. Then the 
set ω1

L(C) defined below is a stratified L-convex structure on X,

Proof  (LCS). It is obvious.

(LC2). It is easily seen that B is closed for the operator ∧.
For any {�j}j∈J ⊆ ω1

L(C), let �j =
∨

k∈K (j)
↑
µj,k. Then

where N is the set of all choice functions h : J −→
⋃

j∈J K (j) with h(j) ∈ K (j) for all j ∈ J .
(LC3) Let {�j}j∈J ⊆ ω1

L(C) be directed and �j =
∨↑

k∈K (j)µj,k. We denote

Let σ : Fin(�) −→ B be a function defined by

1.	 σ is definable.

Let F ∈ Fin(�). Then For each xa ∈ F , we have a ≪ �(x) =
∨

j∈J
↑
�j(x). It follows by 

Lemma 1 (4) that a ≪ �jxa (x) for some jxα ∈ J . Since {�j}j∈J is directed then there exists a 
j ∈ J , denote as jF, such that �jxa ≤ �jF for all jxa. By Lemma 1 (2) we get a ≪ �jF (x). This 
shows that F ∈ Fin(�jF ). By a similar discussion on �jF we have that F ∈ Fin(µjF ,kF ) for 
some kF ∈ K (jF ). It follows that ∨F ≤ µjF ,kF.

ω1
L(C) =







�

j∈J

↑
µj| {µj}j∈J ⊆ B is directed







.

∧

j∈J

�j =
∧

j∈J

∨

k∈K (j)

↑
µj,k

(DD)
=

∨

h∈N

↑∧

j∈J

µj,h(j) ∈ ω1
L(C),

� :=
∨

j∈J

↑
�j =

∨

j∈J

↑ ∨

k∈K (j)

↑
µj,k .

σ(F) = ∧{µj,k | ∨ F ≤ µj,k}.
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We have proved that for any F ∈ Fin(�), there exists a µj,k such that ∨F ≤ µj,k. Because 
B is closed for ∧, we get that σ is definable.

2.	 The set {σ(F)| F ∈ Fin(�)} is directed.

It is easily seen that σ is order-preserving. That is, if F1, F2 ∈ Fin(�) and F1 ⊆ F2 then 
σ(F1) ≤ σ(F2). Thus for any F1, F2 ∈ Fin(�), it follows that F1 ∪ F2 ∈ Fin(�) and 
σ(F1), σ(F2) ≤ σ(F1 ∪ F2). This shows that {σ(F)| F ∈ Fin(�)} is directed.

3.	 � =
∨

{σ(F)| F ∈ Fin(�)}.

For any F ∈ Fin(�), it is easily observed that ∨F ≤ σ(F) ≤ �. Then it follows that

This means that � =
∨

{σ(F)| F ∈ Fin(�)}.
By a combination of (1)–(3), we have proved that � ∈ ω1

L(C). � �

Lemma 3  Let (X , C) be a convex space. Then χU ∈ ω1
L(C) iff U ∈ C.

Proof  The sufficiency is obvious. We check the necessity. Let χU ∈ ω1
L(C). Then

with ∀j ∈ J , aj ∈ L,Uj ∈ C and {aj ∧ Uj}j∈J is directed. Without loss of generality, we 
assume that aj �= 0 for all j ∈ J . It is easily seen that {Uj}j∈J is directed. In the following 
we check that

On one hand, it is obvious that U ⊇ Uj for any j ∈ J  and so U ⊇
⋃↑

j∈JUj. On the other 
hand, for any x ∈ U  we have

which means x ∈ Uj for some j ∈ J . Thus U ⊆
⋃↑

j∈JUj as desired.

Proposition 1  f : (X , CX ) −→ (Y , CY ) is CP iff f : (X ,ω1
L(CX )) −→ (Y ,ω1

L(CY )) is 
L-CP.

Proof  Let f : (X , CX ) −→ (Y , CY ) be CP. Then for any � =
∨↑

j∈J (aj ∧ Uj) ∈ ω1
L(CY ), we 

have

It follows that f : (X ,ω1
L(CX )) −→ (Y ,ω1

L(CY )) is L-CP. � �

� = ∨{∨F | F ∈ Fin(�)} ≤ ∨{σ(F)| F ∈ Fin(�)} ≤ �.

χU =
∨

j∈J

↑
(aj ∧ Uj)

U =
⋃

j∈J

↑
Uj ∈ C.

∨

j∈J

↑
(aj ∧ Uj)(x) = 1,

f←(�) = f←
(

∨↑

j∈J
(aj ∧Uj)

)

=
∨↑

j∈J

(

aj ∧ f −1(Uj)

)

∈ ω1
L(CX ).
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Conversely, let f : (X ,ω1
L(CX )) −→ (Y ,ω1

L(CY )) be L-CP. Then for any U ∈ CY , we 
have χU ∈ ω1

L(CY ) and so f −1(U) = f←(χU ) ∈ ω1
L(CX ). It follows by Lemma 3 that 

f −1(U) ∈ CX. Thus f : (X , CX ) −→ (Y , CY ) is CP.
It is easily seen that the correspondence (X , C) �→ (X ,ω1

L(C)) defines an embedding 
functor

Proposition 2  (Pang and Shi 2016) Let (X ,C) be a stratified L-convex space. Then the 
set ρL(C) = {U ∈ 2X | U ∈ C} forms a convex structure on X and the correspondence 
(X ,C) �→ (X , ρL(C)) defines a concrete functor

Theorem 1  The pair (ρL,ω1
L) is a Galois correspondence and ρL is a left inverse of ω1

L.

Proof  It is sufficient to show that ρL ◦ ω1
L(C) = C for any (X , C) ∈ CS and ω1

L ◦ ρL(C) ⊆ C 
for any (X ,C) ∈ L-CS.

1.	 ρL ◦ ω1
L(C) = C. It follows immediately by Lemma 3.

2.	 ω1
L ◦ ρL(C) ⊆ C. Let � ∈ ω1

L ◦ ρL(C). Then � =
∨↑

j∈J (aj ∧ Uj) with 
∀j ∈ J , aj ∈ L,Uj ∈ C and {aj ∧ Uj}j∈J is directed. It follows by the definition of strati-
fied L-convex space that � ∈ C.

� �

Corollary 1  The category CS can be embedded in the category  SL-CS as a reflective 
subcategory.

CS coreflectively embedding in SL‑CS
In this section, we shall give a functor from the category CS to the category SL-CS, and 
then by using it to prove that the category CS can be embedded in the category SL-CS 
as a coreflective subcategory. This functor extends Pang and Shi’s functor (2016) from 
the lattice-context. Precisely, from completely distributive complete lattice to continu-
ous lattice.

Firstly, we fix some notations used in this section.
Let � ∈ LX and a ∈ L. Then the set �[a] := {x ∈ X | a ≤ �(x)} and the set 

�(a) := {x ∈ X | a ≪ �(x)} are called the a-cut and strong a-cut of �, respectively.
Let a, b ∈ L, we say that a is wedge below b (in symbol, a ⊳ b) if for all subsets 

D ⊆ L, y ≤ ∨D always implies that x ≤ d for some d ∈ D. For each a ∈ L, denote 
β(a) = {b ∈ L| b ⊳ a}.

The following lemma generalizes Huang and Shi’s result from lattice-context. Huang 
and Shi (2008) defined �(a) := {x ∈ X | a ⊳ �(x)} and assumed that L being completely 
distributive complete lattice.

ω1
L : CS −→ L-CS.

ρL : L-CS −→ CS.
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Lemma 4  Let � ∈ LX and a ∈ L. Then (1) �[a] =
⋂

b≪a �(b); (2) �(a) =
⋃

a≪b �[b].

Proof  1.   For any b ≪ a, it follows by Lemma 1 (2) that �[a] ⊆ �(b). Thus �[a] ⊆
⋂

b≪a
 

�(b). Conversely, let x ∈
⋂

b≪a �(b). Then by Lemma 1 (1) we get ∀b ≪ a, �(x) ≥ b, it fol-
lows that �(x) ≥ ∨ ⇓ a = a, i.e., x ∈ �[a]. Thus �[a] ⊇

⋂

b≪a �(b).

2.	 For any a ≪ b, it follows by Lemma 1 (2) that �[b] ⊆ �(a). Thus �(a) ⊇
⋃

a≪b �[b]. 
Conversely, let x ∈ �(a). Then by Lemma 1 (3) we have b ∈ L such that a ≪ b ≪ �(x), 
it follows by Lemma 1 (1) that �(x) ≥ b, i.e., x ∈ �[b]. Thus �(a) ⊆

⋃

a≪b �[b].

Lemma 5  Let {�j}j∈J ⊆ LX be directed. Then (
∨↑

j∈J �j)(a) =
⋃↑

j∈J (�j)(a) for any a ∈ L.

Proof  Let x ∈ (
∨↑

j∈J �j)(a), i.e., a ≪
∨↑

j∈J �j(x). Then it follows immediately from Lemma 
1 (4) that a ≪ �j(x), i.e., x ∈ (�j)(a) for some j ∈ J . This means (

∨↑
j∈J �j)(a) ⊆

⋃↑
j∈J (�j)(a). 

The reverse inclusion holds obviously.

The way below relation ≪ on L is called multiplicative (Gierz et al. 2003) if a ≪ b, c 
implies a ≪ b ∧ c.

Lemma 6  Assume that the way below relation ≪ on L is multiplicative. Then for any 
� ∈ LX and any a ∈ L, the set {�(b)| a ≪ b, b ∈ L} is directed if it is nonempty.

Proof  For any �(b), �(c) with a ≪ b, c, it follows by Lemma 1 (2) that �(b), �(c) ⊆ �(b∧c) . 
In addition, by the multiplicative condition we have a ≪ b ∧ c. This proves that 
{�(b)| a ≪ b, b ∈ L} is directed.

Pang and Shi (2016) proved a similar result when L being a completely distributive 
complete lattice with the condition β(a ∧ b) = β(a) ∩ β(b) for any a, b ∈ L. It is easily 
seen that this condition is equivalent to that the wedge below relation on L is multiplica-
tive.�  �
Definition 5  Let (X , C) be a convex space and the way below relation ≪ on L be multi-
plicative. Then the set ω2

L(C) defined below is a stratified L-convex structure on X,

Proof  The proofs of (LCS) and (LC2) are obvious. We only check (LC3) below.

Let {�j}j∈J ⊆ ω2
L(C) be directed and a ∈ L. Then

It follows immediately that 
∨

j∈J
↑
�j ∈ ω2

L(C) by (�j)[c] ∈ C for any j ∈ J , c ∈ L and C being 
closed for intersection and directed union. � �

ω2
L(C) =

{

� ∈ LX | ∀a ∈ L, �[a] ∈ C
}

.





�

j∈J

↑
�j





[a]

Lemma 4(1)
=

�

b∈⇓a





�

j∈J

↑
�j





(b)

Lemma 5
=

�

b∈⇓a

�

j∈J

↑
(�j)(b)

Lemma 6,Lemma 4(2)
=

�

b∈⇓a

�

j∈J

↑ �

b∈⇓c

↑
(�j)[c].
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Similar to Pang and Shi (2016), we can prove that the correspondence 
(X , C) �→ (X ,ω2

L(C)) defines an embedding functor

Let (X ,C) be a stratified L-convex space. Then Pang and Shi (2016) defined ιL(C) as the 
finest convex structure on X which contains all �[a] for all � ∈ C, a ∈ L. They proved that 
the correspondence (X ,C) �→ (X , ιL(C)) defined a concrete functor

Similar to Pang and Shi (2016), when the way below relation ≪ on L being multiplicative, 
we get the following results.�  �

Theorem 2  The pair (ω2
L, ιL) is a Galois correspondence and ιL is a left inverse of ω2

L.

Corollary 2  The category CS can be embedded in the category SL-CS as a coreflective 
subcategory.

Remark 1  Let us replace the convex space (X , C) in Definition 4 and Definition 5 with 
a topological space (X , T ). Then ω2

L defines an embedding functor from the category of 
topological spaces to the category of stratified L-topological spaces. This functor was first 
proposed by Lowen (1976) for L = [0, 1] and then extended by many researchers (Höle 
and Kubiak 2007; Lai and Zhang 2005; Liu and Luo 1997; Wang 1988; Warner 1990). If we 
further remove the directed condition in ω1

L then we also get an embedding functor from 
the category of topological spaces to the category of stratified L-topological spaces. By 
the definition of stratified L-topology, it is easily seen that ω1

L(T ) ⊆ ω2
L(T ). Conversely, if 

� ∈ ω2
L(T ) then � =

∨

a∈L(a ∧ �[a]) ∈ ω1
L(T ). Thus ω1

L = ω2
L and it follows the following 

well known result. That is, the category of topological spaces can be embedded in the cat-
egory of stratified L-topological spaces as a both reflective and coreflective subcategory.

Remark 2  Does CS can be embedded in L-CS as a both reflective and coreflec-
tive subcategory? Now, we can not answer it. For a convex space (X , C), the inclusion 
ω1
L(C) ⊆ ω2

L(C) holds obviously. But the reverse inclusion seems do not hold. The reason 
is that for an L-subset � ∈ LX, the set {a ∧ �[a]| a ∈ L} is generally not directed.

At last, we give two interesting examples to distinguish (L-)convex space from (L-) 
topological spaces.
Example 1  An upper set U on L is called Scott open if for each directed set D ⊆ L, 
∨↑D ∈ U  implies that d ∈ U  for some d ∈ D. It is known that the Scott open sets on L 
form a topology L, called the Scott topology (Gierz et al. 2003). It is not difficult to check 
that the Scott open sets on L do not form a convex structure on L since they are not 
closed for intersection.

Example 2  An L-filter (Höhle and Rodabaugh 1999) on a set X is a func-
tion F : LX −→ L such that for all �,µ ∈ LX, (F1) F(0) = 0, F(1) = 1; (F2) 
� ≤ µ ⇒ F(�) ≤ F(µ); (F3) F(�) ∧ F(µ) ≤ F(� ∧ µ).

ω2
L : CS −→ L-CS.

ιL : L-CS −→ CS.
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The set of L-filters on X is denoted by FL(X). Since FL(X) is a subset of L(LX ), hence, 
there is a natural partial order on FL(X) inherited from L(LX ). Precisely, for F ,G ∈ FL(X) , 
F ≤ G ⇔ ∀� ∈ LX ,F(�) ≤ G(�).

It is known that FL(X) is closed for intersection, but is not closed for union (Fang 
2010; Jäger 2001). In the following, we check that FL(X) is closed for directed union.

Let {Fj}j∈J ⊆ FL(X) be directed. Then it is readily seen that 
∨↑

j∈J Fj satisfies the condi-
tions (F1) and (F2). Taking �,µ ∈ LX, then

Thus 
∨↑

j∈J Fj satisfies the condition (F3). We have proved that FL(X) is closed for 
directed union.

1.	 Let Y = LX and C = {0, 1} ∪ FL(X). Then it is easily seen that C is an L-convex struc-
ture on Y but not an L-topology on Y.

2.	 If we call a function F : LX −→ L satisfying (F2) and (F3) as a nearly L-filter on X. 
Let FN

L (X) denote the set of nearly L-filters on X. Then it is easily seen that FN
L (X) is 

a stratified L-convex structure on Y but not a stratified L-topology on Y.

Note that LX forms a continuous lattice. If replacing LX with a continuous lattice M, sim-
ilar to (1)–(2), we can define (stratified) L-convex structure on M.

Conclusions
When L being a continuous lattice, an embedding functor from the category CS to SL-
CS is introduced, then it is used to prove that the category CS can be embedded in the 
category SL-CS as a reflective subcategory. When L being a continuous lattice with a 
multiplicative condition, Pang and Shi’s functor (2016) is generalized from the lattice 
context, then it is used to prove that the category CS can be embedded in the category 
SL-CS as a coreflective subcategory. It is well known that the category of topological 
spaces can be embedded in the category of stratified L-topological spaces as a both 
reflective and coreflective subcategory. But, we find that the category of convex spaces 
seem not be embedded in the category of stratified L-convex spaces as a both reflective 
and coreflective subcategory. This shows the difference between (stratified L-)topologi-
cal spaces and (stratified L-) convex spaces from categorical sense.
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



�

j∈J

↑
Fj



(�) ∧





�

j∈J

↑
Fj



(µ)
(DD)
=

�

j,k∈J

↑
(Fj(�) ∧ Fk(µ)), {Fj}j∈J is directed

≤
�

j,k∈J

↑
(Fjk(�) ∧ Fjk(µ)),Fj ,Fk ≤ Fjk , (F3)

≤
�

j,k∈J

↑
Fjk(� ∧ µ) ≤





�

j∈J

↑
Fj



(� ∧ µ).
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