
Realizing IoT service’s policy privacy
over publish/subscribe‑based middleware
Li Duan1,2*  , Yang Zhang1, Shiping Chen1,2, Shiyao Wang1, Bo Cheng1 and Junliang Chen1

Background
A distributed event-based publish/subscribe system is an asynchronous message com-
munication paradigm, in which the space, the time and the control are decoupled
between event producers (publishers) and event consumers (subscribers) (Eugster et al.
2003; Robinson and Clark 2010). For this reason, the paradigm can be used to establish
an appropriate communication infrastructure for Internet of Things (IoT) services to
collaborate with each other over the internet (Li et al. 2010; Al-Fuqaha et al. 2015). For
example, Supervisory Control and Data Acquisition (SCADA) systems are designed to
act as the core of the power grid, and can interact with other services without side
effects. Considerable efforts have been made to standardise the publish/subscribe

Abstract 

The publish/subscribe paradigm makes IoT service collaborations more scalable
and flexible, due to the space, time and control decoupling of event producers and
consumers. Thus, the paradigm can be used to establish large-scale IoT service com-
munication infrastructures such as Supervisory Control and Data Acquisition systems.
However, preserving IoT service’s policy privacy is difficult in this paradigm, because a
classical publisher has little control of its own event after being published; and a sub-
scriber has to accept all the events from the subscribed event type with no choice. Few
existing publish/subscribe middleware have built-in mechanisms to address the above
issues. In this paper, we present a novel access control framework, which is capable of
preserving IoT service’s policy privacy. In particular, we adopt the publish/subscribe
paradigm as the IoT service communication infrastructure to facilitate the protection
of IoT services policy privacy. The key idea in our policy-privacy solution is using a two-
layer cooperating method to match bi-directional privacy control requirements: (a)
data layer for protecting IoT events; and (b) application layer for preserving the privacy
of service policy. Furthermore, the anonymous-set-based principle is adopted to realize
the functionalities of the framework, including policy embedding and policy encoding
as well as policy matching. Our security analysis shows that the policy privacy frame-
work is Chosen-Plaintext Attack secure. We extend the open source Apache ActiveMQ
broker by building into a policy-based authorization mechanism to enforce the privacy
policy. The performance evaluation results indicate that our approach is scalable with
reasonable overheads.

Keywords:  IoT service, Publish/subscribe paradigm, Middleware, Policy privacy
framework, Access control

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Duan et al. SpringerPlus (2016) 5:1615
DOI 10.1186/s40064-016-3250-x

*Correspondence:
duanli@bupt.edu.cn
1 State Key Laboratory
of Networking and Switching
Technology, Beijing
University of Posts
and Telecommunications,
Beijing 100876, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-3610-857X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3250-x&domain=pdf

Page 2 of 31Duan et al. SpringerPlus (2016) 5:1615

service functionalities and APIs, such as Data Distribution Service (DDS) issued by
OMG1 and Java Message Service (JMS).2

The GridStat (Washington State University) project (Bakken et al. 2011) adopted the
publish/subscribe paradigm to build their communication infrastructure, where the data
consumers can express their interests through subscription without knowing who pro-
duces the data. On the other hand, the data producer publishes their data without know-
ing who subscribes to the data, which means that the data interactions within the
publish/subscribe paradigm are anonymous. Such communication infrastructure no
longer cares for “where” the information is located, but “what” information is needed. A
customer is able to describe his/her requirements by “event type”, and the infrastructure
will deliver data with the “type” to him/her, even if the data producer does not intend to
send the data to the customer (Eugster 2007). Multiple customers are allowed to sub-
scribe to the “same type” data, which implies that multicast is an intrinsic method of
communication in the infrastructure (Hosseini et al. 2007). The publish/subscribe para-
digm also removes the conversation restriction (Paci et al. 2011): no communication
source and destination are needed, and the event types are able to be hierarchically
structured. In addition, automatic caching is enabled by event type. Since each data
packet is meaningful and independent of its provenance or where it may be forwarded
to, it can be cached in a real-time database to satisfy future requirements. Although the
GridStat3 communication architecture provided basic publish/subscribe messaging
capability for the smart grid, it did not thoroughly address the security issues in its infra-
structure. Moreover, the GridStat project did not discuss its impact on services and
events.

However, with IoT systems becoming open and wide-area, various IoT services in dif-
ferent domains collaborate with each other for their mutual interests. In contrast to ser-
vice orchestration in SOA middleware (Loyall et al. 2011), IoT service interactions rely
on publish/subscribe-based middleware, which is used to carry out event data routing
and matching. In this scenario, some sensitive information may be eavesdropped on per-
vasive service interactions. Thus, it is desirable to protect sensitive information between
subscribers (or users)and publishers (or enterprises) from unauthorized access (Wang
et al. 2014; Srivatsa and Liu 2005).

In particular, the privacy requirements related to service interactions can be divided
into two major aspects (Wang et al. 2002; Fiege et al. 2004; Esposito and Ciampi 2015):
(1) data policy privacy–data publishers do not like other unauthorized subscribers
to access their published data, that is to say, only authorized subscribers can read the
events; (2) service policy privacy–a subscriber may intend to maintain privacy. Our
work here is concerned with how to preserve the policy privacy so as to manage events
and services security within publish/subscribe-based IoT service interactions.

To preserve IoT service’s policy privacy is difficult in the publish/subscribe para-
digm, due to the anonymity, multicast and indirection properties of service interac-
tions. Attribute-based access control is one of the most popular access control models

1  www.omg.org.
2  http://docs.sun.com/app/docs/doc/816-5904-10.
3  http://www.gridstat.net/trac/.

http://www.omg.org
http://docs.sun.com/app/docs/doc/816-5904-10
http://www.gridstat.net/trac/

Page 3 of 31Duan et al. SpringerPlus (2016) 5:1615

(Hu et al. 2015), which can be used to preserve the anonymity property. Embedding the
policies and attributes into data and services makes services interact using a data-centric
methodology, which can be used to preserve the multicast property. The main challenge
is how to comprehensively preserve the policy privacy of data and services using policy
matching. Bi-directional privacy policy matching means that any published data can
only be sent to authorized users who are interested in it. In other words, a broker needs
to check whether the published data’s attributes satisfy the subscription policy provided
by the subscribers, i.e., whether subscribers are interested in the data. In the meantime,
the broker needs to check whether the attributes of the subscriber satisfy the access pol-
icy related to the published data, i.e., whether the data can be received by the subscriber.
The direct matching will result in privacy information leakage, an attribute blinding
approach can be used to address this problem. In previous work, there have been some
policy privacy approaches that allow the brokers to check whether the attributes of the
consumers satisfy the access policy. However, to the best of our knowledge, few existing
approaches can support a comprehensive protection of data policy privacy and services
policy privacy.

In this paper, we adopt the publish/subscribe paradigm as an IoT service communica-
tion infrastructure, whose underlying network capabilities can be integrated to facilitate
policy-aware messaging between IoT services. To preserve policy privacy, we present a
novel policy privacy model, namely a two-layer access control framework. The key point
in our policy-privacy solution is using a two-layer cooperating method to meet the bi-
directional privacy control requirements, which can support two-layer policy privacy:
(1) the bottom one is the data layer for protecting data or events; (2) the upper one is
the application layer for protecting services. The framework addresses the issues of pre-
serving IoT service’s policy privacy using a data-centric methodology. Furthermore, the
policy bedding function, encoding and blinding functions are realized by applying the
anonymous-set-based principle to preserve policy privacy. Such encoding and blinding
attributes are Chosen-Plaintext Attack (CPA) secure, in which the same attribute under
two different encodings and blinding will generate two different encoded and blinded
attributes. Later, we choose one of the publish/subscribe service standards JMS to
implement our access control framework. Apache ActiveMQ is used as the JMS broker
and extended to perform policy evaluation. The main contributions of this paper are as
follows:

1.	 A publish/subscribe-based IoT service communication infrastructure is modelled.
2.	 A two-layer access control framework for IoT services is proposed to allow publish-

ers and subscribers to control the messaging data by matching between protection
requirements and entities’ capabilities.

3.	 Two key components are designed to act as the corner stones of the framework: (1)
the policy embedding component where the policy and attributes can be dynami-
cally generated and embedded; and (2) the blind encoding component for polices
and attributes of IoT events, which realizes policy privacy. The anonymous-set-based
principle is adopted to assist realizing their functions.

Page 4 of 31Duan et al. SpringerPlus (2016) 5:1615

The remainder of the paper is organized as follows. In Sect. “Related work”, we review
the existing work related to our work. Section “Preliminarie” introduces the basic Pub-
lish/Subscribe-based IoT’s service (i.e., SCADA) communication infrastructure and the
generic concepts used in our approach. Section “Access control framework for SCADA
systems” presents our access control framework for SCADA systems. Section “Policy
embedding scheme” provides an embedding scheme for realizing the matching func-
tion in our access control framework. Section “Policy encoding and matching” goes into
detail about policy encoding and matching to enforce access control policy. Section “Pol-
icy privacy” presents the security analysis and proof so as to ensure the correctness of
our approaches. Section “Storage cost and performance evaluation” presents the storage
cost and performance evaluation on Latency. Section “Conclusions and future research”
provides conclusions and outlines future research.

Related work
There has been considerable work on policy privacy of secure service interactions over
publish/subscribe-based systems. In this section, we will discuss related work in the fol-
lowing aspects:

Privacy preserving technique

The cryptographic encryption solution is a common privacy-preserving technique used
in the distributed system (Goyal et al. 2006; Waters 2011; Masaud-Wahaishi and Gaouda
2011; Nishide and Yoneyama 2009; Cheung and Newport 2007; Wang et al. 2014). Goyal
et al. (2006) provided a Key-Policy ABE scheme, which allowed the policies (attached
to keys) to be expressed by any monotonic formula over encrypted attributes (cipher-
text). Waters (2011) proposed the Ciphertext-Policy Attribute Encryption (CP-ABE)
scheme, where any encryptor was allowed to specify access control in terms of any
access formula over the attributes in the system. However, in these approaches, the CP-
ABE scheme embeds authorization policies into ciphertexts. Such schemes in publish/
subscribe systems require that a participant have many keys, where each publisher gives
the participant a key. It does not allow for using notification brokers to reduce the key
management burden of the participant, and does not preserve the decoupling feature
between service providers and consumers, which cannot assure the expression power
of broker-integrable policies. Other studies have Yu et al. (2008), Li et al. (2012), Doshi
and Jinwala (2011), Müller and Katzenbeisser (2011) also proposed a policy-privacy
attribute-based encryption scheme, where authorization policies were hidden within the
ciphertexts as well as reducing the size of the ciphertexts. These works focused on hid-
ing policies into ciphertexts similar to policy encryption, but did not focus on the policy
anonymity approach based on anonymous sets and support to manage policies flexibly.
In SCADA scenarios, the authorization policies for long existing event types may be
possibly modified. Updating authorization policies without re-encrypting the data again
is a desirable feature of access control service. Homomorphic encryption (Gentry et al.
2009) is a novel approach for privacy preserving in publish/subscribe systems, it sup-
ports complex computation conducted on the broker, but is not practical. Compared to
the above works, in this paper, the policy anonymity approach based on anonymous sets
is applied to realize policy privacy. Blinding and encoding operations on event type and

Page 5 of 31Duan et al. SpringerPlus (2016) 5:1615

policy are carried out to optimize the performance of matching and storage. Our solu-
tion considers that the delegation capabilities and flexible authorization management
are both requisite for access control.

Privacy preserving degree

Privacy issues in publish/subscribe system have been studied for a long time (Shikfa
et al. 2009; Pal et al. 2012). However, most prior research on data confidentiality in pub-
lish/subscribe systems mainly focuses on the privacy of either subscription or publisher,
there has been little work to support a comprehensive privacy protection of the pub-
lished event (metadata) and the subscribed event types (Onica et al. 2016). Choi et al
(2010) adopted the encrypted matching approach and Wun and Jacobsen (2007) adopted
the policy management approach to protect the privacy of the published data and the
subscribed data. Rao Bacon (2008) and Rao et al. (2013) investigate preserving subscrip-
tion privacy in publish/subscribe systems, which are limited to supporting fine-grained
access control for the published data. Opyrchal et al. (2007) focused on addressing issues
of publication privacy in publish/subscribe systems by providing access control on pub-
lication. Ion et al. (2010, 2012), Pal et al. (2012) presented privacy-preserving schemes
that are used to preserve subscription privacy and confidentiality of the publications.
Our work is similar to Ion et al. (2012), Pal et al. (2012), however, these works adopt
cryptography encryption to achieve privacy-preserving objects, which limits the effi-
ciency of the privacy-preserving scheme.

The basic security requirements of a wide-area SCADA system over publish/sub-
scribe-based infrastructure, and the solution to meet the requirements are presented in
Zhang and Chen (2012). However, that paper did not discuss how to address the policy
privacy issue in a two-layer protection way and how to embed authorization policies
into events separately. In addition, the policy privacy was not considered, and the key
focus was how to adopt an appropriate encryption scheme to provide distributed secu-
rity framework. This paper is a continuation of the work that was presented in Zhang
and Chen (2012), where a complete security framework is given, and the policy attaching
issue and policy privacy are thoroughly addressed. Our access control framework is an
extension of Zhang and Chen (2013) by adding the description of embedding policy and
preserving policy.

Preliminaries
In this section, a publish/subscribe-based IoT communication infrastructure is mod-
eled. The formal definitions for attribute-based authorization policy are provided. Fur-
thermore, we give background information on the Bloom Filter, which is used to encode
attributes and policies.

Publish/subscribe‑based IoT communication infrastructure

A publish/subscribe-based IoT communication infrastructure (generally referred to as a
Distributed Event-based System) is composed of a set of notification broker (NB) nodes
distributed over a network. These NB nodes construct an overlay network, which is a
logical network built on top of the physical network as shown in Fig. 1. The nodes of the
overlay network are brokers, and their links are paths in the physical network.

Page 6 of 31Duan et al. SpringerPlus (2016) 5:1615

Formally the distributed event-driven IoT service communication infrastructure can
be modeled as a 5-tuple CF = �B, L,P, S,T �, where: B = (NB1,NB2, . . .) is the set of noti-
fication broker nodes; L = (L1, L2, . . .) is the set of connections between broker nodes;
P = (P1,P2, . . .) is the set of publishers that may be some IoT services; S = (S1, S2, . . .)
is the set of subscribers that may be other IoT services; and T = (t1, t2, . . .) is the set of
event types.

Each publisher (e.g., P1) or each subscriber is connected to only one of the brokers
(e.g., NB1) in Fig. 1. The notification broker (e.g., NB2) that is connected to a subscriber
(e.g., S1) (or publisher) is called the access broker from a network view, and is also called
the home broker with respect to that subscriber or publisher. The notification brokers
that route events between brokers are called event routers or inner brokers (e.g., NB4).
Each publisher publishes events to its home broker. Each subscriber receives events
from its access broker. Clients can be a publisher, or a subscriber, or both.

Attribute‑based authorization policy

In this paper, we adopt the attribute-based access control model (Hu et al. 2015).

Definition 1  (Attribute Tuple) The attribute of a subject S is denoted by
sk = (sattrk , opk , valuek) and the attribute of an object O is denoted by
oe = (oattrn, opn, valuen), where sattrk and oattrn are the attribute names, op is the attrib-
ute operation such as op ∈ {=,<,>,≤,≥, in}, value is the attribute value. The action attrib-
ute can be one of object’s attributes. The attribute tuple is 〈s1, s2, . . . , sK 〉 or 〈o1, o2, . . . , oN 〉 ,
where the relationship among the attributes is conjunction. The subject S and object
O can be represented respectively by the set of attribute tuples {�s1, s2, . . . , sK �} and
{�o1, o2, . . . , oN �}.

Fig. 1  SCADA services communication infrastructure

Page 7 of 31Duan et al. SpringerPlus (2016) 5:1615

In our paper, the op is simplified as {=} by describing digital attributes with care-
ful intervals. Then S can be written as (w1,1 ∧ · · · ∧ w1,K1) ∨ · · · ∨ (wl,1 ∧ · · · ∧ wl,Kl

) ,
where wi,j := “sattri,j = valuei,j”, 1 ≤ i ≤ l, 1 ≤ j ≤ Kl. O can be written as
(w1,1 ∧ · · · ∧ w1,N1) ∨ · · · ∨ (wn,1 ∧ · · · ∧ wn,Kn) , where wi,j := “oattri,j = valuei,j”,
1 ≤ i ≤ n, 1 ≤ j ≤ Nn.

Definition 2  (Authorization Rule) An attribute-based authorization rule is rule =
(〈s1, s2, . . . , sK 〉, 〈o1, o2, . . . , oE〉), the j-th subject attribute in rule is written as rule.sj, The
j-th object attribute in rule is written as rule.oj.

Definition 3  (Authorization Policy) An authorization policy APi is the set of authori-
zation rules, which can be represented as APi =

⋃L
j=1 rulei,j, where rulei,j is the j-th ele-

ment in the rule set APi.

For example, a company, called JingFang, manages the provision of heating for citizens
in the winter. The heat consumption data is classified into A and B. The data of class A
is the detailed record for heat consumption of each residential home. The data of class
B is the record for recording the statistical information of heat consumption. JingFang
publishes these data in the SCADA system. There are two types of clients to access to the
data C1 and C2. The clients of type C1 are individuals who can access their home con-
sumption data A. The client of type C2 is a data mining company serving for JingFang,
which can access the data of class B.

The attributes of these data and clients are as follows:

1.	 A: �(class,=, individual), (consumer,=,X)�, where X is the detailed identifier of
a consumer who consumes the heat and produces the data. For the data of class A
from different homes, the identifiers are different.

2.	 B: �(class,=, statistics), (period,=,X1)�, which indicates that the data are the list of
statistical information for head consumption. That is to say, the data have the attrib-
utes as: its class is statistics, and the statistics period is X1.

3.	 C1: �(type,=, individual), (consumer,=,Y)� where Y is the detailed identifier of the
consumer. That is to say, the subject has the attributes as: its type is individual, its
consumer identifier is Y.

4.	 C2: �(type,=, company), (service,=, datamining)�. That is to say, the subject has the
attributes as: its type is company, its service is datamining.

From the above example description, the authorization policy for data A can be
represented as APA = (�(type,=, individual), (consumer,=,Y)�, �(class,=, individual),
 (consumer,=,X)�) . There is one authorization rule (�(type,=, individual),
 (consumer,=,X)� , �(class,=, individual), (consumer,=,X)�) in the policy. This
means that the client with the attribute �(type,=, individual), (consumer,=,X)�
can read the data A with the attribute �(class,=, individual), (consumer,=,X)� .
In APA , the subject attribute tuple is �(type,=, individual), (consumer,=,X)� ,
the object attribute tuple is �(class,=, individual), (consumer,=,X)� . Similarly,

Page 8 of 31Duan et al. SpringerPlus (2016) 5:1615

the authorization policy for B is represented as APB = (�(type,=, company),
 (service,=, datamining)�, �(class,=, statistics), (period,=,X1)�) .

Let Γ be an expression representing the subject attributes of rules in authori-
zation policy required to access some data, which uses logic operators to asso-
ciate the attributes, also called authorization policy, if there is no confusion.
According to the definition of the authorization policy AP, Γ could be represented as
Γ = (w1,1 ∧ · · · ∧ w1,K1) ∨ · · · ∨ (wl,1 ∧ · · · ∧ wl,Kl

), where wi,j ::= “sattri,j = valuei,j” ,
1 ≤ i ≤ l, 1 ≤ j ≤ Kl. According to the authorization policy APB for data B, i.e.,
APB = {(�(type,=, company), (service,=, datamining)�, �(class,=, statistics)�)}, the
expression for data B is ΓB = “type = company” ∧ “service = datamining”. If a customer
has attributes to match Γ , he/she can access the data B. That is to say, the conjunc-
tion of the client’s attributes includes the conjunction in Γ of the data. γ often denotes
a customer’s set of attribute conjunctions as the authorization policy. For the negative
of wi,j, we can set another attribute w′

i,j to represent it. The subject can be written as
“type = individual” ∧ “consumer = X”.

Bloom filter

A Bloom Filter is a simple, space-efficient randomized data structure for representing
a set of strings compactly for efficient membership querying (Bonomi et al. 2006). A
Bloom Filter for representing a set X = {x1, x2, ..., xn} of n elements is described by an
array of m bits, initially all set to 0. A Bloom Filter uses k independent hash functions
{h1, h2, ..., hk} with the range {1, 2, ...,m} . For each member x belonging to X, the bits
hi(x) are set to 1 for 1 ≤ i ≤ k. The bits can be set to 1 multiple times, but only the first
change has an effect. After repeating this procedure for all members of the set, the pro-
gramming of the filter is completed.

The query process is similar to programming. To check if an item y is in X, we check
whether all hi(y) are set to 1.

Access control framework for SCADA systems
In this section, we present our access control framework for SCADA systems. Our
access control framework has two layers, where the bottom layer assumes the matching
between the protection requirements of the SCADA events and SCADA applications’
capabilities, and the upper layer assumes the matching between the capabilities of the
SCADA events and the SCADA applications’ requirements. The matching function is
carried out based on some meta-data such as authorized attributes acting as capabilities
and embedded policies acting as requirements. In order to improve the performance of
access control schemes, the relation between meta-data and event names is first defined
as in Fig. 2. In Fig. 2, JinFang is a company that provides heat service for residents in win-
ter. It has a heat provision system that produces and consumes events named Telemetry,
Telesignalling, Remote Control, and so on. The Telemetry name has some child names
such as Water Temperature, Water Pressure, and so on. Each name in the name tree has
its own attributes Attr, but an access control policy AP is made for one sub-tree such
as Telemetry. It is worth pointing out that one event name has many name instances,
which seems to contradict the assumption of the publish/subscribe paradigm. In our
SCADA system, however, if a name has its child names with no different attributes and

Page 9 of 31Duan et al. SpringerPlus (2016) 5:1615

authorization policies, its child names are only used to tag different data packets and we
can regard its child names as its instances. Such a method will obviously reduce the size
of the name tree. For example, a sensor continuously measures the temperature of water
and publishes the temperature data event every second. Different temperature data
have only the difference in timestamp. We can regard all temperature data with differ-
ent timestamps as different name instances of the same name: Water Temperature. This
does not contradict the assumption of SCADA systems (i.e.that each data packet has a
unique name) because different data can be further identified by timestamp. That is to
say, we can use an instance identifier to further name a data packet, even if the parent
name is common. Therefore, we use the concept type to handle this scenario. This means
that different data packets with the same type may have a common parent name with the
same attributes. Multiple types may have a common access control policy. The relation
between event names and access control policies is as follows:

1.	 An event name may have many instances that have the same attributes. That is to
say, these instances have the same type. A type is defined by attributes, i.e., a subject
attribute expression. It is possible that two event names have the same type. In prac-
tice, a type is often unique.

2.	 Access control policies are often made for sub-trees. Multiple types may have the
same access control policy.

A two-layer framework of access control for SCADA systems is illustrated in Fig. 3.
The main component in the framework is an access control engine, a new network entity
deployed in home brokers, which lies in the middle column. The engine stores name’s

Fig. 2  The relation between event names and access control policies

Page 10 of 31Duan et al. SpringerPlus (2016) 5:1615

types and policies, as well as services’ types and policies. When a service message arrives
at the home node, the engine finds the access control policy and type by event name.
It then checks for matching between name type & policy and service type & policy if
the consumers subscribe to events with the name in the received event. If the matching
results are not empty, the engine will enforce polices in data layer for valid consumers,
where the privilege value in the event is the embedded part of the access control policy.
The embedded privilege not only binds the access control policy and type to event, but
also provides authentication to indicate that only the event publisher can embed such
value. The access control in the application layer may be carried out by the service itself.
The service can also delegate some responsibilities of access control in the application
layer to the engine in SCADA systems.

The engine in the access control framework assumes three functions, which are illus-
trated in Fig. 3: (a) Finding a name type & policy by name, (b) Matching between require-
ments and capabilities, and (c) Enforcing policies. In order to realize these functions,
two building blocks have to be provided. One is to embed authorization policies and
types into service messages, and support dynamically generating and embedding session
attributes. The embedding scheme should provide authentication support because the
bi-direction matching should be finally verified to have been carried out based on actual
attributes. It is desirable that the scheme itself assumes this authentication task for per-
formance optimization. The other is to encode attributes and policies for rapid matching
and keeping privacy (Bonomi et al. 2006).

Figure 4 illustrates an authorization procedure before the publisher publishes the data
(or service messages) in SCADA systems. The detailed steps are as follows:

1.	 The publisher attaches the name type and access control policy to the data prefix
announcement. The access control engine stores the received name type and access
control policies in its storage, called Name Type & Policy.

Fig. 3  Two-layer framework of access control for SCADA systems

Page 11 of 31Duan et al. SpringerPlus (2016) 5:1615

2.	 A subscriber publishes its authorization request for the name by its type.
3.	 After receiving the authorization request, the publisher translates the name policy

into a service policy part, called privilege value, and a network policy part, called
authorization credentials. The publisher publishes to the access control engine the
network policy part, which means that the SCADA systems cannot disclose some
sensitive information, even if the authorization credential is stored in the engine.

4.	 Embedding the service policy part into data, which will bind the type and policy to
the published data.

The authorization procedure is not our focus in this paper, see Zhang and Chen (2013)
for further details.

The data consumers trust their home nodes and assume that these home nodes are
honest. The data producers assume that the home nodes are honest but curious. That is
to say, the home nodes will follow predefined protocols, but will try to find out as much
secret information as possible. Home nodes might collude with malicious users. Adver-
saries control all communication channels, and can eavesdrop, forge, delay and discard
messages as well as dynamically corrupt any participants in the system.

Policy embedding scheme
The policy embedding function and the blind encoding function are the cornerstones of
the access control framework. In this section, we give the basic embedding scheme. In
the basic scheme, each access control policy is expressed by an access expression Γ such
as

Fig. 4  Authorization before disseminating data

Page 12 of 31Duan et al. SpringerPlus (2016) 5:1615

where Γ is a propositional formula, i.e., a disjunctive normal form, (w1,1 ∧ · · · ∧ w1,n) is a
conjunctive clause, wi,j is a basic proposition such as attri,j = valuei,j, i.e., an atomic for-
mula. A type is expressed by a subject attribute expression γ such as

where the subject attributes and object attributes are both represented by type, i.e., sub-
ject and object being relative.

The goal of embedding type and policy is to compress the variable length of attrib-
ute name and value such that it is possible to optimize the performance of matching,
communication and storage. The core idea is to adopt the one-way set hash method to
encode the attributes in a conjunctive clause, i.e., a set of attributes, of disjunctive nor-
mal form into a hash value. In addition, privacy can be considered in embedding. During
evaluation of a customer’s subscription for some sensitive event data, directly match-
ing the customer’s clear attributes against authorization policies will result in disclos-
ing some critical information of the customer or the data owner. Thus, we adopt the
policy anonymity approach, where the attribute-based access control model is used.
Each customer has her/his own attributes, which are disjunctive normal forms of attrib-
ute conjunctions such as (w1,1 ∧ · · · ∧ w1,K) ∨ · · · ∨ (wl,1 ∧ · · · ∧ wl,lK). As the customer,
each data event also has its attributes, but we pay attention to the subject attributes in
the authorization policy for the data event, which is identified by the data’s attributes.
Authorization policies made by the data owner are to say what attributes a customer
should have, in order to access the data event. The home broker makes a decision about
the customer’s subscription by matching the customer’s attributes against the data’s
authorization policy, i.e., checking whether there is an attribute conjunction of the cus-
tomer including one attribute conjunction of the authorization policy.

In order to clarify the idea of policy anonymity, we give an abstract of an anonymous
set according to our requirements. We then use the abstract as a clear and formal basis
to design our policy-attaching and policy-privacy scheme. For the abstract of our anony-
mous set, one-way random functionality and compression functionality, called set hash,
play a key role in encoding the attributes in a conjunctive clause, i.e., a set of attrib-
utes, of disjunctive normal form into a hash value. The abstract of the anonymous set is
defined as follows:

Definition 4  (Random Oracle Oset for Set) Given a set of string elements, we obtain a
random bit string, which is called Random Oracle for Set, if the conditions below are
satisfied.

1.	 For two different sets, the random bit strings output by the oracle Oset are different;
2.	 For an element in the set, the membership can be checked by the membership

checking oracle O∈;
3.	 For a sub-set of the set, the inclusion relation can be checked by the set inclusion

oracle O⊆;
4.	 For two sets, their union can be computed by the set union oracle O∪;

Γ = (w1,1 ∧ · · · ∧ w1,n) ∨ · · · ∨ (wl,1 ∧ · · · ∧ wl,ln).

γ = (w1,1 ∧ · · · ∧ w1,n′) ∨ · · · ∨ (wl′,1 ∧ · · · ∧ wl,l′n
).

Page 13 of 31Duan et al. SpringerPlus (2016) 5:1615

5.	 For two sets, their intersection cannot be computed if there exists no inclusion rela-
tion;

6.	 No elements can be computed from the set hash value (i.e.the random bit string) if
the set is not publicly known.

According to this definition, a set of sensitive attributes is encoded into one-way string
code and member elements are not able to be directly recovered from the code. A Bloom
Filter can be used to realize such an oracle Oset, but it has the deficiencies of privacy as
follows:

1.	 Encoding a clear authorization policy into a Bloom Filter, some sensitive informa-
tion can be guessed during the evaluation of customers’ requests by testing member-
ship of clear subject attributes. An attribute-blinding method should be adopted to
address this issue.

2.	 After attributes are blinded, a membership-checking function is often used in many
scenarios, which is carried out upon an explicitly given blinded attribute. When
the blinded attribute is explicitly given during the membership checking, it is also a
clue to link different Bloom Filters for different attribute sets, to link authorization
transactions, and to guess the corresponding clear attributes, because the member-
ship-checking result indicates whether two attribute sets include the same attribute.
Therefore, the blinded attribute should be kept unknown to adversaries.

3.	 The membership-checking is a basic function of a set. We should propose an alterna-
tive way, where, instead of the membership-checking function, the anonymous set-
inclusion-checking function is used to answer the membership querying, i.e., using
two Bloom Filters to complete anonymous membership querying. To the best of our
knowledge, there are no existing algorithms that use set-inclusion-checking function
to complete the anonymous checking function of a set member.

Therefore, the policy embedding scheme should be designed based on a Bloom Filter,
where the membership-checking function is a key factor of the scheme. When we talk
about using the set-inclusion-checking function to assume the membership-checking
function, we mean that, for a customer’s attribute conjunction, which attributes of the
conjunction are included in a given authorization conjunction can be queried by inclu-
sion queries without explicitly knowing these attributes. That is to say, each attribute in
the conjunction is ordered with an index, and we try to find a method to obtain these
indices, to which the attributes corresponding satisfy the authorization conjunction. The
same index value in different authorization conjunctions may correspond to different
attributes. When finding these indices, customers’ attributes and attributes in the policy
are not known and disclosed. These indices are often passed into other functions or used
as an indictor to say whether they are matched.

The key idea to realize the alternation way for membership-checking function is to
sort each attribute conjunction, predefine a series of auxiliary sets for each attribute con-
junction of the customer, and then judge which auxiliary sets include one of the attrib-
ute conjunctions in the authorization policy. When these auxiliary sets are identified,
attributes indices are computed according to the indices of these auxiliary sets. These are
described in more detail below:

Page 14 of 31Duan et al. SpringerPlus (2016) 5:1615

Definition 5  (Auxiliary Sets and Attributes Indices) Assume the number of a custom-
er’s attribute conjunctions is x and the number of attributes in a conjunction is y, and
the size of the Bloom Filter is m. We define a series of auxiliary sets for the attributes
w1,w2, . . . ,wy in a conjunction: Set1 = {w1,w2, . . . ,wy−1}, Set2 = {w1,w2, . . . ,wy−2,wy},
. . ., Sety = {w2, . . . ,wy}. If there is a set AWset that is only included in one Seti (1 ≤ i ≤ y)
and not included in other sets Setj (1 ≤ j ≤ y), then AWset includes the attributes as in
Seti and these included attribute indices are 1, . . . , y− i, y− i + 2, . . . , y. If the set AWset
is only included in two sets Seti (1 ≤ i ≤ y) and Setj (1 ≤ j ≤ y), and not included in other
sets Setk (1 ≤ k ≤ y), then AWset includes the attributes as in Seti ∩ Setj, assume j > i,
when j > i + 1, the attribute indices are 1, . . . , y− j, y− j + 2, . . . , y− i, y− i + 2, . . . , y ;
when j = i + 1, the attribute indices are 1, . . . , y− j, y− j + 2, . . . , y. The remainder can
be done in the same manner. If the set AWset is only included in the set Sety+1, and not
included in other sets Seti (1 ≤ i ≤ y), then AWset includes the all attributes as in Sety+1,
and the attribute indices are 1, . . . , y.

Policy encoding and matching
Our policy embedding scheme is based on a policy anonymity approach. In our
approach, there are three steps to realize policy privacy in the access control service:
blinding attributes, encoding blinded attributes into anonymous set, and matching
between the customer’s anonymous attribute set and an anonymous authorization pol-
icy set.

Blinding attributes

The first step is to blind attributes, which mainly consists of blinding the data’s attrib-
utes, the customer’s attributes, and authorization policies. The procedures are described
as follows:

1.	 Given the set of attributes W = {w1,w2, . . . ,wn} from all attribute conjunctions of all
customers, a data owner makes authorization policies according to it. The elements
of the set W are subject attributes. The data attributes can be discussed as the subject
attributes and are not discussed further here.

2.	 For each wi ∈ W (1 ≤ i ≤ n), a string wi is randomly chosen as an alias of wi, and wi
is replaced with wi. wi is kept secret such that all elements in W are unknown by the
home brokers, clients and adversaries.

Page 15 of 31Duan et al. SpringerPlus (2016) 5:1615

3.	 For each wi ∈ W (1 ≤ i ≤ n), wi is replaced with (wi, xi) in W, where xi is chosen by
probability p as a random string and chosen by probability 1− p as an empty string.
Thus, given an attribute conjunction with length length as input, the length of output
conjunction varies, where the attribute wi in the attribute conjunction is replaced by
(wi, xi) if xi is not empty, or by wi if xi is empty.

Through these steps, W becomes W .

We assume that the number of attributes in attribute conjunctions averages out to
lengthsae, and that the length lengthsae is extended to the anonymity length lengtha to give
each attribute conjunction an anonymity space lengtha − lengthsae. Algorithm 1 depicts
the process of blinding attributes. From Algorithm 1, we know the set of attributes used
in the access control service is extended to the ((lengtha − lengthsae)/lengtha + 1) times
of original one by appending those non-empty attributes xi (i = 1, 2, . . .) to W. For each
attribute wi in the attribute set W, we define its alias as w̄i, which is a random string.

In Algorithm 2, the authorization policy is blinded, where, if an element wi of the
authorization policy has (wi,wi, xi) in the blinded attribute set W and xi is not empty, xi
is inserted into the authorization policy. The element wi is replaced by its alias wi in the
expression. The alias and added xi are not published, and only known by the data owner.

Policy encoding

When attributes and policies are blinded, the second step is to encode blinded attribute
conjunctions from authorization policies and the customer into anonymous sets. The
Bloom Filter is used to encode the blinded attributes. The final step is to compute the set
membership, the set inclusion and intersection of two anonymous sets of the data and
customer. The alternation scheme is designed to use the set-inclusion-checking function
to complete the membership querying based on two anonymous sets. If the scheme is
available, our anonymous-set-based idea may be used to realize policy privacy.

The Encoding Procedure is defined to describe how to obtain predefined auxiliary sets
without disclosing clear attributes. The Matching Procedure is defined to describe how
to identify these auxiliary sets, including the authorization conjunction, and to compute
attribute indices without disclosing clear attributes.

Definition 6  (Encoding Procedure) The encoding procedure includes two parts: encod-
ing of the attribute conjunctions of customers, and encoding of the attribute conjunc-
tions of authorization policies.

Page 16 of 31Duan et al. SpringerPlus (2016) 5:1615

1.	 Encoding for customers’ attributes

We expand each attribute conjunction with the number of attributes in the conjunc-
tion being n, where the random attributes have been inserted into the conjunction to
hide the conjunction length (the attributes and attribute conjunctions are also blinded
by using Algorithm 1 and Algorithm 2, which are discussed in the next section). This
is in Table 1, where the whole Bloom Filter BFt represents the attribute conjunction,
Bloom Filter BF1 represents the first auxiliary attribute set Set1, Bloom Filter BF2 repre-
sents the second auxiliary attribute set Set2, and so on.

The attributes in the conjunction are distributed in the Bloom Filters as in Table 2.
The row of the table represents the Bloom Filter, and the column represents the
attribute. For example, the i − th row represents BFi, and the j − th column repre-
sents wj. If BFi(1 ≤ i ≤ n) has “1” in the j − th column, then wj(1 ≤ j ≤ n) is encoded
into BFi, i.e., wj belonging to the i − th auxiliary attribute set Seti. That is to say, if
the element (i, j) in the table is “1”, then wj(1 ≤ j ≤ n) is encoded into BFi. The bot-
tom row, i.e. the (n+ 1)− th row, represents BFt, where all attributes in the conjunc-
tion are encoded into BFt. The right column rounded by dashed line says that each
row itself is a bit string, and is denoted by Bi(1 ≤ i ≤ n). For example, b1 =

n
︷ ︸︸ ︷

11 . . . 10,

bi =

n
︷ ︸︸ ︷

11 . . . 1n−i0n−i+11n−i+2 . . . 11 and b =

n
︷ ︸︸ ︷

11 . . . 11.

For the Bloom Filter BFi (1 ≤ i ≤ n), it is computed as follows:

1.	 BFi is initialized to zero;
2.	 In the i − th row of Table 2, all attributes with “1” in their position form a set Seti;
3.	 A random string is chosen to put into Seti;
4.	 Seti is encoded into a Bloom Filter which is assigned to BFi.

For the Bloom Filter BFt, it is computed as follows:

1.	 BFt is initialized to zero;
2.	 All attributes in the conjunction form a set Sett;

Table 1  Bloom Filters in one attribute conjunction

BFt, BF1, BF2, . . ., BFn w1 w2 . . . wn

Table 2  Attribute distribution among Bloom Filters

w1 w2 . . . wn−1 wn bitstrings

BF1 1 1 . . . 1 0 b1

BF2 1 1 . . . 0 1 b2

. b . . .

BFn−1 1 0 . . . 1 1 bn−1

BFn 0 1 . . . 1 1 bn

BFt 1 1 . . . 1 1 b

Page 17 of 31Duan et al. SpringerPlus (2016) 5:1615

3.	 A random string is chosen to put into Sett if no random string is inserted into the
conjunction during expanding;

4.	 Sett is encoded into a Bloom Filter which is assigned to BFt.

2.	 Encoding for the attribute conjunction in authorization policies

The Bloom Filter BFa for the attribute conjunction in an access expression, the mask
Bloom Filter BFa−m are computed as follows:

1.	 BFa and BFa−m are initialized to zero;
2.	 All attributes in the conjunction form a set Seta;
3.	 Some random strings are chosen to be put into Seta, and also form a mask set Seta−m ;
4.	 Seta is encoded into a Bloom Filter, which is assigned to BFa;
5.	 Seta−m is encoded into a Bloom Filter, which is assigned to BFa−m.

From the definition of encoding procedure, we know that each BFi(1 ≤ i ≤ n) is
encoded from Seti = {w1, . . . ,w(n−i),w(n−i+2), . . . ,wn} and a random string. The random
string is a blinded mask for BFi, which does not affect checking whether an attribute is a
member of Seti and whether an attribute set is included in Seti.

Policy matching

For the attribute set Seta of an access conjunction, it is impossible to check whether it
is included in the attribute set Sett of subject conjunction when its Bloom Filter BFa is
blinded . To address this issue, we encode the random strings used for blinding mask
into an independent

Bloom Filter BFa−m. Because the Bloom Filter is one-way, it is impossible to remove
the blinding mask strings, even if BFa and BFa−m are given. Using bit “OR” operation,
BFa−m can be added into BFi, i.e., the blinding mask strings being encoded into BFi.
Then, the inclusion relationship is checked by the equation BFa ∧ (BFa−m ∨ BFi) = BFa ,
i.e., being whether the attribute set Seta for authorization conjunction is included in the
attribute set Sett for customers’ attribute conjunction, all the procedures is shown in
Fig. 5).

Definition 7  (Matching Procedure) Given the Bloom Filter for authorization policies:
BFa, BFa−m, the matching scheme is as follows, where each “0, 1” bit string of rows in
Table 2 is represented by bi (1 ≤ i ≤ n), ‘∧′ is bit “AND”, and ‘∨′ is bit “OR”.

1.	 Choose a “1” bit string with n size: b.
2.	 If BFa ∧ (BFa−m ∨ BFi) �= BFa, the Bloom Filter for authorization and customers’

attributes are not matched and the computation halts; otherwise, continue the next
step.

3.	 For i = 1 to n, if BFa ∧ (BFa−m ∨ BFi) = BFa , then b = b ∧ bi.
4.	 If none of BFa ∧ (BFa−m ∨ BFi) = BFa happens in (3) and (2), the computation halts;

otherwise,

Page 18 of 31Duan et al. SpringerPlus (2016) 5:1615

5.	 The indices of matched attributes are the corresponding positions with ‘1′ in b. Those
‘1′ positions are actual column indices in Table 2.

The correctness of the matching procedure is true, because:

1.	 When BFa ∧ (BFa−m ∨ BFi) = BFa, it implies that the attribute set denoted by the
i − th row of Table 2 includes the attribute set of the authorization conjunction
denoted by BFa. The attribute set denoted by the i − th row of Table 2 is written as bi.

2.	 When BFa ∧ (BFa−m ∨ BFj) = BFa, it implies that the attribute set denoted by the
j − th row of Table 2 includes the attribute set of the authorization conjunction
denoted by BFa. The attribute set denoted by the row of Table 2 is written as bj.

3.	 From (1) and (2), we know that the attribute set of the authorization conjunction
denoted by BFa is included not only in bi but also bj. That is to say, the set is included
in the intersection of bi and bj. Therefore, we compute bi ∧ bj to obtain the subset,
including the attribute set of the authorization conjunction.

Γ

Fig. 5  Matching procedure

Page 19 of 31Duan et al. SpringerPlus (2016) 5:1615

4.	 The rows of Table 2 can be used to compute all subsets of attributes in the customers’
attribute conjunction. When BFa matches against more BFxs, the set denoted by BFa
includes fewer attribute elements.

We give an example to illustrate the correctness of the matching scheme. Assume
Seta = {w1, rw1, rw2} and Seta−m = {rw1, rw2}, then BF1,BF2, . . . ,BFn−1 satisfies
(BFa−m ∨ BFi) = BFa. We compute b as follows:

From b =

n
︷ ︸︸ ︷

10 . . . 00, we know that only the position of w1 has “1” and it is concluded
that the attribute with index 1 (and w1 unknown) is the member of Seta. Assume
Seta = {w1,w2, rw1, rw2} and Seta−m = {rw1, rw2}, then BF1,BF2, . . . ,BFn−2 satisfies
BFa ∧ (BFa−m ∨ BFi) = BFa. We compute b as follows:

From
n

︷ ︸︸ ︷

110 . . . 000, we know that only the position of w1 and w2 (w1 and w2 not exposed)
has “1” and that w1 and w2 are members of Seta.

The matching function is efficient, because only a simple bit operation is carried out.
If the matching function returns False, the customer’s subscription is rejected. If the
matching function returns True, the re-encryption component may be invoked with the
matched results from the matching function as an input to indicate what re-encryption
keys should be used by the indices.

Policy privacy
A subscriber can successfully access the requested event only its attributes match the
publisher’s authorization policy, the subscriber can accept the subscribed event from the
published event type only the event attributes match the subscriber’s authorization pol-
icy. Thus our access control solution is correct. In this section, we try to clarify that, no
matter what form the attacks take from adversaries, our scheme keeps privacy.

Policy privacy analysis

The Two-layer access control framework keeps privacy, which is performed through
defining the concept of policy privacy and privacy proof. Home brokers are assumed to
be semi-honest. This means that they follow predefined protocols while they try to find
out as much secret information as possible. Home brokers might not collude with mali-
cious users, but arbitrarily send any information to users. Given such a privacy assump-
tion, we first introduce the definition ΠPE of policy evaluation scheme, and then define
the policy-privacy model for ΠPE.

Definition 8  (Policy Evaluation Scheme ΠPE .) ΠPE consists of four algorithms as
follows:

1.	 Init On input the attribute set W of a customer and an authorization policy Γ , the
blinding attribute algorithm and the blinding policy algorithm generates the blinded
attribute set W and the blinded policy Γ ′ respectively.

b = b ∧ b1 ∧ b2 ∧ b3 ∧ . . . ∧ bn−2

=

n
︷ ︸︸ ︷

111 . . . 111∧

n
︷ ︸︸ ︷

111 . . . 110∧

n
︷ ︸︸ ︷

111 . . . 101∧

n
︷ ︸︸ ︷

111 . . . 011∧ . . . ∧

n
︷ ︸︸ ︷

110 . . . 111 =

n
︷ ︸︸ ︷

110 . . . 000

Page 20 of 31Duan et al. SpringerPlus (2016) 5:1615

2.	 EncodeForPolicy(Γi[y]) On input the y− th attribute conjunction in an authorization
policy Γi of the data owner i, it outputs some randomized code BFP

i [y] and BFA
i−m[y]

by invoking Encoding Procedure.
3.	 EncodeForAttributes(γj[x]) On input the x − th attribute conjunction in the attribute

expression γj of the customer j, it outputs some randomized code BFA
j [x] by invok-

ing Encoding Procedure.
4.	 MatchinginPEP(BFA

j [x], BFP
i [y]) On input attribute codes BFA

j [x], BFA
i−m[y] and

BFP
i [y], it outputs whether two codes are matched by invoking Matching Proce-

dure. If the algorithm outputs a negative result, the access request of the customer is
rejected.

A policy evaluation scheme ΠPE in the access control system is Chosen-Plaintext
Attack (CPA) policy-privacy if adversaries cannot win with a non-negligible advantage,
the game is defined as follows:

Definition 9  (Non-intersection CPA for ΠPE .) For the policy evaluation scheme ΠPE
and a probabilistic polynomial time adversary Adv running in two phases, it is policy-
privacy if Adv’s advantage is negligible in the following game:

Setup: The challenger invokes the Init algorithm of ΠPE.
Training Phase 1: The adversary is allowed to issue queries for the following oracles:

1.	 Queries OEncode oracle for EncodeforAttributes and EncodeforPolicy of ΠPE. That is to
say, choosing one subject attribute conjunction A1 and one attribute conjunction in
an authorization policy Γ1, outputting encoded attributes BFA

1 and encoded policy
BFP

1 .
2.	 Queries OMatch(BF

A
1 ,BFP

1) oracle for MatchinginPEP of ΠPE.

Challenge Phase The adversary Adv submits two random attribute conjunctions in two
authorization policies Γ0, Γ1 and an subject attribute conjunction A. The challenger
flips a random coin δ ∈ {0, 1}, and outputs a randomized code BFP

δ to the adversary. No
attribute conjunctions Γ0, Γ1 have appeared in the previous queries.

Training Phase 2 Training phase 1 is repeated exactly, except that the adversary may
not query MatchinginPEP, for BFδ, not query oracles with any element in Γ0, Γ1.

Guess Finally, the adversary outputs their guess δ′ ∈ {0, 1}, and wins the game if δ′ = δ.
The probability is over the random bits used by the challenger and the adversary,

where Adv makes at most polynomial queries to the oracles.
This definition implies that:

1.	 For two attribute conjunctions, the adversary cannot distinguish their encodings, i.e.,
they are unable to link a Bloom Filter to a specific attribute conjunction.

2.	 The Non-intersection requires that any element in the challenge sets Γ0 and Γ1 should
not have appeared or will not appear in other queries. This indicates that our scheme
ΠPE has weaker security than that under CPA.

Page 21 of 31Duan et al. SpringerPlus (2016) 5:1615

Definition 10  (PRF CPA ASSUMPTIOM) Given a pseudo-random function
PRF(seed, key, input) with seed, key being secretly set, and two attribute conjunctions,
PRF(seed, key, input) chooses one attribute conjunction and returns one random num-
ber, and then it is hard to determine which attribute conjunction is chosen according to
the returned random number without knowing seed, key.

Definition 11  (PRF_BFScheme) A Bloom Filter BF is initialized to zero, and a key and n
seeds are secretly generated. Given an attribute set eSET, it invokes PRF(seed, key, input)
for each attribute e ⊢ eSET as input with n different seeds to obtain n random numbers
that are in (0, m], i.e., being greater than 0 and less than m+ 1. The position in BF is set
1 if one value of n random numbers points to it. When all attributes in eSET are iterated,
BF is output.

Lemma 1  The PRF_BF scheme is CPA-secure if each element in the challenge set is not
queried on.

The conclusion is straightforward. In the security proof, multiple random numbers for
one element of the challenge set can be seen as multiple oracle queries for the element
during a CPA-Security game, where the oracle answers each query with attaching fixed
different numbers to the queried element as different inputs. The random numbers for
multiple elements in the challenge set can be seen as multiple oracle queries for differ-
ent elements. The premise that each element in the challenge set is not queried indicates
that, during the challenge of PRF_BF , no queried elements are challenged. It is natural
to require that any element in the challenged set will not be queried after challenging.

Theorem 1  PES ΠPE is non-intersection CPA policy-privacy.

Proof  Suppose algorithm B is given a private key, it also generates a series of seeds for
random generation. B initializes the PRF_BF scheme with the key and seeds.

Init Given a set of attributes W = {w1,w2, . . . ,wn}, B generates a random string
wi for each attribute wi ∈ W , and randomly generates w′

i according to the prob-
ability p. Replacing wi with (wi,wi,w

′
i) , we will obtain a new blinded set of attributes

W = {(w1,w1,w
′
1), (w2,w2,w

′
2), . . . , (wn,wn,w

′
n)}.

Setup B maintains a set hash list Hlist, which is initially empty, and responds to the ran-
dom oracle queries for Adv as described below.

1.	 Random oracle for a set H(w1, . . . ,wn): If this query already appears on the Hlist ,
then returns the predefined value. Otherwise, the query invokes the PRF_BF
scheme with the set of {w1, . . . ,wn} to get a Bloom Filter bf . H(w1, . . . ,wn) = bf is
defined. Finally, it adds the tuple ({w1, . . . ,wn}, bf) to the list Hlist and respond with
H(w1, . . . ,wn).

2.	 O∈(BF ,w): If BF can be found in Hlist with BF = bf in ({w1, . . . ,wn}, bf) and
w ∈ {w1, . . . ,wn}, then returns true, otherwise returns false.

Page 22 of 31Duan et al. SpringerPlus (2016) 5:1615

3.	 O⊂(BF
A
1 ,BFP

1): If BFA
1 and BFP

1 cannot be found in Hlist with BFA
1 = bf1 in

({w1
1, . . . ,w

1
n}, bf1) and BFP

1 = bf2 in ({w2
1, . . . ,w

2
n}, bf2), then returns false. Other-

wise, if {w1
1, . . . ,w

1
n} ⊆ {w2

1, . . . ,w
2
n}, then returns true, otherwise returns false.

Phase 1 In this stage, the adversary Adv issues a series of queries, which are subject to
the restrictions of the Non-Intersection-CPA game. B maintains a list Klist that is ini-
tially empty.

1.	 Encoding Query OEncode(w1, . . . ,wl) (l ≤ n): Algorithm B finds the corresponding
wi,w

′
i for each wi ∈ {w1, . . . ,wl} in W, and obtains a new set sT = {wi,w

′
i, . . .}. If the

cardinality of the set sT is less than the parameter k, some random bit strings are gen-
erated and are added into sT such that the cardinality of sT is equal to k. Finally, adds
the tuple ({w1, . . . ,wn}, sT ,H(sT)) to the list Klist and responds with H(sT).

2.	 Matching Query OMatch(BF
A
1 ,BFP

1): If BFA
1 and BFP

1 cannot be found in
Klist with BFA

1 = H(sT1) in ({w1
1, . . . ,w

1
l1}, sT1,H(sT1)) and BFP

1 = H(sT2)
in ({w2

1, . . . ,w
2
l2}, sT2,H(sT2)) , then returns false. Otherwise, if {w1

1
, . . . ,w1

l1
}

⊆ {w2
1
, . . . ,w2

l2
} , then returns true, otherwise returns false.

Challenge When Adv decides that Phase 1 is over, Adv chooses two random attribute
conjunctions in authorization policies Γ0,Γ1 and an attribute conjunction A. B responds
as follows:

1.	 Finds the corresponding wi,w
′
i for each wi of Γ0 and Γ1 in the blinded attrib-

ute set W , and keeps wi unchanged if no wi,w
′
i in W , then obtains two new sets

sT0 = {wi,w
′
i, . . .} and sT1 = {wi,w

′
i, . . .}. We simply assume that sT0 and sT1 have

the same cardinality (otherwise, padding with random strings). At the same time,
finds the corresponding wj for each wj of A in the blinded attribute set W, then then
gets two new sets sT ′ = {wi,w

′
i, . . .}.

2.	 B chooses δ ∈ {0, 1} and submits sT0, sT1 and sT ′ as a challenge to PRF_BF , i.e.,
sends BFA

1 and BFP
δ as a Matching Query. Assuming that OMatch(BF

A
1 ,BFP

δ) are the
returned results, B sends it to Adv.

Phase 2: The phase 1 is repeated exactly, except that the adversary may not query oracles
with any element in Γ0,Γ1 and MatchinginPEP for BFδ.

Guess: Eventually, the adversary Adv returns a guess δ′ ∈ {0, 1} to B. B also outputs δ′ as
the guess of δ for PRF_BF game.

If Adv has a non-negligible probability ε in making a successful guess, i.e., guess δ′ = δ .
It indicates Adv has another non-negligible probability in distinguishing BFP

0 , BFP
1 ,

which contradicts the fact that PRF_BF scheme is CPA security. Thus, we reach a con-
tradiction. � �

Privacy management

Based on the policy embedding scheme ΠPE, the authorization management becomes
efficient and simple. The policy-privacy authorization management includes

Page 23 of 31Duan et al. SpringerPlus (2016) 5:1615

Customer Grant, New Subscription Authorization, Authorization Update, and Cus-
tomer Revocation.

Customer Subscribing Grant When a new customer B subscribing him or herself to the
SCADA system A, the system uses the traditional authorization administration tool to
decide whether customer B is granted. If B can be granted, A computes as follows:

1.	 It converts B’s subject attribute expression γ into a blinded one γ ′ according to ΠPE.
2.	 It encodes γ ′ by the encoding procedure in definition ({BFt ,BF1,BF2, . . . ,BFn}).
3.	 It sends corresponding attribute Bloom Filters ({BFt ,BF1,BF2, . . . ,BFn}) to B’s home

brokers the access control service.

New Event Grant When a new event is published in the SCADA system, it extracts the
authorization expression Γ from the authorization policies. It then computes as follows:

1.	 It converts the authorization expression Γ into a blinded one Γ ′ according to ΠPE.
2.	 Each conjunction coin′ in Γ ′ is encoded into Bloom Filters BFa and BFa−m.
3.	 It sends the corresponding Bloom Filters {(BFa,BFa−m)} to the home brokers.
4.	 Only a hash indicator is attached to the published event. If the encoding policies have

been sent for this event type, no policy conversion and transmission take place.

Authorization Update When a SCADA application modifies the authorization policy
for the event type that it will publish, the access control system computes new Bloom
Filters BF ′

a, BF ′
a−m according to the new authorization policy. It then sends BF ′

a, BF ′
a−m

to the home brokers to replace BFa, BFa−m .
Customer Revocation When the access control system revokes some privilege of

the customer B, it computes new Bloom Filters {(BF ′
t ,BF

′
1,BF

′
2, . . . ,BF

′
n)}. It sends

{(BF ′
t ,BF

′
1,BF

′
2, . . . ,BF

′
n)} to the home brokers to replace {(BFt ,BF1,BF2, . . . ,BFn)}.

Storage cost and performance evaluation
Section “Policy privacy” described the security analysis, which proved that the proposed
policy evaluation scheme ΠPE is CPA policy-privacy. In this section, we analyze the false
positive probability of Bloom Filter and ΠPE’s cost, and then evaluate the communica-
tion performance, scalability and policy matching efficiency in the publish/subscribe
system with two-layer access control framework in different test cases.

Storage cost

We analyze the false positive probability of the Bloom Filter and ΠPE’s cost because the
false positive probability is neglected during proof. Let the length size of a Bloom Filter
BF be m, the cardinality of an element set be n, and the number of the hash functions be
k, then the probability p of a random bit being “1” in BF is p = (1− 1/m)n×k ≈ e−nk/m.
The false positive probability pf of BF is pf = (1− p)k ≈ (1− e−nk/m)k.

Let the number of attributes in a conjunction of authorization policy be x, then the
false positive probability of x attributes in BFt and BFa is pBF = pxf + px−1

f (1− pf)
+ . . .+ p1f (1− pf)

x−1. For BF1,BF2, . . . ,BFn  , the false positive probability to check

Page 24 of 31Duan et al. SpringerPlus (2016) 5:1615

whether BFa is included is pvector = p
y
BF + p

y−1
BF (1− pBF)+ . . .+ p1BF (1− pBF)

y−1, where
if x >= n, then y = 1, otherwise y = n+ 1.

For example, the average number of attributes in one conjunction is 30, the aver-
age number of conjunctions for a customer is 50, and the false positive probabil-
ity is < 10−10 with 0.6185m/n, then the bit size for each conjunction is 1500 with
0.61851500/30 = 3.69× 10−11, the byte size for a matrix is 1500/8 ∗ 32 = 6000 ≈ 6KB,
and the byte size for a customer is 500 ∗ 6KB = 300KB. That is to say, the home bro-
ker should provide 300 KB storage to store his/her attribute information for a customer.
As for the publisher’s attributes, the storage needed for each rule for a data event is
0.187KB = 187bytes, and that for whole policy for the data event is 9 KB. If the number
of attributes in a conjunction is less, then the storage cost will be significantly reduced.

Performance evaluation

Access control policy enforcement may introduce the overheads for the overall commu-
nication performance in publish/subscribe system. In this section, we focus on evalu-
ating (1) the overhead of data event communication performance from publishers to
subscribers; and (2) policy matching efficiency via the broker; (3) the scalability of the
SCADA system with our access control framework, which is implemented based on a
message-oriented Java Message Service (JMS) broker; and (4) the performance impact
on overall performance.

Evaluation Metrics In order to evaluate the communication performance, scalability
and policy matching efficiency in SCADA system with our access control framework,
latency and throughput are used as the performance metrics. Here, two kinds of laten-
cies are considered: pub-to-sub latency and broker latency. To avoid ambiguity, we pre-
sent the definitions of these metrics as follows:

1.	 Pub-to-sub latency refers to the total time spent by a data event from its publisher to
its subscriber including the time taken for broker matching.

2.	 Broker latency is defined as the time spent by a broker in receiving the published
event, performing matching operations against all the requested subscribers and out-
going the data event to the matching subscribers.

3.	 Throughput is defined as the average number of the published data events per sec-
ond.

Fig. 6  Testing design

Page 25 of 31Duan et al. SpringerPlus (2016) 5:1615

Test Design We extended Apache ActiveMQ, i.e., one JMS broker, by building in a two-
layer access control framework used to preserve policy privacy for the publish/subscribe
system. The implementation framework is shown in Fig. 6. The broker connected to the
publishers provides the subscribe filters by building the policy-based access control (AC)
scheme of the published event. The broker connected to the subscribers provides the
publish filters, which are the authorization policies of subscribe services. Such a bro-
ker is called secure pub/sub broker, which conducts matching operations between the
encoded attributes and the encoded authorization policy for each data event. In our test,
we used a data event without the authorization policy as the baseline. This means that
we do not apply access control (AC) framework on the broker. Such a publish/subscibe
system without secure broker is called the publish/subscibe system with plain, in which
a publisher publishes the events to his/her broker, the subscribers subscribe events (by
event type) through her broker, and the broker sends the data event whose event type
matches the subscribed event to the subscriber.

Based on the latency measure method in Chen and Greenfield (2004), the three partial
time is measured, which consists of the time from publishing data event to broker, the
broker matching time and the time of receiving event from the subscriber’s broker. The
detailed procedures of measuring latency shown in Fig. 5 are as follows: the publisher
obtains a timestamp T1 and attaches it to the published data event as soon as he/she
sends the event to the broker. A broker connected to the publisher receives the event;
the broker obtains the t1 = T2. After the broker carries out matching operations, its out-
going data event is attached to the timestamp t2. When the subscriber receives the data
event from his/her broker, they obtain the timestamp T2. Pub-to-sub latency can be cal-
culated as pub−to−sublatency = T2 − T1, broker latency (i.e. matching latency) can be
calculated as brokerlatency = t2 − t1. For simplicity, we assume that the time spent in
sending an event from a publisher to the broker is the same as that sending the event
from the broker to the subscriber. Therefore, we obtain

Test Cases For the purpose of evaluating the performance property of the publish/sub-
scibe system with two-layer access control framework (PS-ACF), we measure these
latency metrics in PS-ACF and baseline (i.e., publish/subscibe system without access
control). The test cases are specified as follows:

1.	 Evaluating latency with access control policy and latency with plain;
2.	 Evaluating latency metric while the data event size increases;

pub−to−broker latency = broker−to−sub latency

=
pub−to−sub latency−broker latency

2

=
(T2 − T1)− (t2 − t1)

2
.

pub−to−broker latency = broker−to−sub latency

=
pub−to−sublatency− brokerlatency

2

=
(T2 − T1)− (t2 − t1)

2
.

Page 26 of 31Duan et al. SpringerPlus (2016) 5:1615

3.	 Evaluating latency metric while the number of rules in a policy (i.e., the number of
attribute conjunctions in one authorization policy) increases.

The detailed test parameters (e.g., data event size, number of rules) are shown
in Table 3. Due to high latency problems for small message sizes (i.e., payloads) of
ActiveMQ, in test cases (2), we measure latencies for encoded data event with the large
sizes of 1 KB, 4 KB, 16 KB, 64 KB, 256 KB and 1 MB. In order to assure the accuracy of
the measured results, each case test is run 1000 times.

Test Setup All experimental tests are carried out using a distributed setup, the con-
figuration of which applied to our experiment is shown in Fig. 7. Since it is difficult to
evaluate precisely in a pub/sub system without the same and synchronous clocks, both
subscriber clients and publisher client applications (Publisher/Subscriber) run on the
same computer equipped with 3.0G of RAM and Intel 1.87GHz CPUs running on the
Windows_7 32bits operating system; the broker (Broker) ran on another server equipped
with 4.0G of RAM and Intel 3.2GHz CPUs, Windows_7 32bits operating system. The
publisher/suscriber and broker machines are connected via a standard 100Mbps LAN.

Based on performing each test case, we obtain the corresponding test results as
follows:

Test Results (1) Test case (1) was carried out by sending 1 KB size data events from
one publisher and by adding one access control policy in the broker. In this case, the test
results are shown in Fig. 8a, b. Figure 8a shows the latencies spent at each step, compar-
ing to the baseline; the Pub-to-Sub latency is increased by 8ms, the broker latency with
AC is increased from 2% to 5%. The broker latency with plain (baseline) is low, and data
event is encoded as the random number, which makes broker matching time small; the

Table 3  Test cases

Test cases Description Event size Number of rules

1. For 1 KB data event size,
evaluate the latencies with
or without AC (number of rules is 1)

1 KB 1

2. Evaluate the latencies with
or without AC (number of rules is 1) for
the period 1 KB–1 MB of data event size

1 KB
16 KB
64 KB
256 KB
1 MB

1

3. For 1 KB data event size,
evaluate the latencies with AC
for 1–64 rules in a policy)

1 KB 1
4
16
64

Fig. 7  Testing environment

Page 27 of 31Duan et al. SpringerPlus (2016) 5:1615

percentage of broker latency is also low. The Pub-to-Broker time is the same as the Bro-
ker-to-Sub time; and the latencies increase by 6% when we add one access control policy
to the broker.

Test Results (2) Test case (2) was carried out by increasing data event size and by add-
ing one access control policy to the broker; results are shown in Fig. 9a, b, and the hori-
zontal axis is logarithmic (base 10). We make a performance comparison between the
pub-to-sub latency with plain and with access control, as well as the broker latency with
plain and with access control. For small data event sizes, the pub-to-sub latency and bro-
ker latency are low, such as for the 1 KB data event size, and the whole latency event

a b

Fig. 8  Latencies with plain (1 KB) & access control AC (1 policy)

a

b

Fig. 9  Performance comparison: Pub-to-Sub latency (a) and Broker latency (b) for the PS-ACF and baseline
over varying data event size

Page 28 of 31Duan et al. SpringerPlus (2016) 5:1615

messaging latency takes less than 20 ms (Fig. 9a); the policy matching latency taken on
the broker takes 5 ms (Fig. 9b). As the data event size becomes larger, the latency is con-
tinuous curve. PS-ACF shows the same behaviour as the baseline. As with the pub-to-
sub latency and the broker latency, the data event size is one of factors in the overhead.

Test Results (3) The latencies with the number of policy rules on the horizontal axis
are shown in Fig. 10, for a small number of rules (i.e. fewer than 16). Both pub-to-sub
latency and broker latency increase slowly with increasing the number of policy rules.
For the larger number of rules, the data event messaging time dominates the broker
matching time. For 16 rules in a policy, the whole latency event messaging latency takes
less than 25 ms and the policy matching latency taken on the broker takes 40 ms. How-
ever, the broker latency increases slowly with increasing number of rules, which indi-
cates that our two layers access control framework in the publish/subscribe system is
highly scalable and supports matching operations of more policy rules.

Analysis Results The collected latency metrics consist of maximum latency, minimum
latency, average latency and latency distribution. We present the event latency statisti-
cal results based on our measurement metrics in Table 4. The results show that the test
running at lower data event sizes, or with fewer policy rules may have lower pub-to-sub
latencies and lower broker latencies; furthermore, the spread of latencies is compactly
distributed.

The latency distribution test results for a data event size (1 KB) are presented in Fig. 11.
As shown in Fig. 11a, b, for 1 KB data event, about 70% pub-to-sub latencies with plain

Fig. 10  Latencies with different numbers of policy rules

Table 4  Event latencies in milliseconds (ms)

Event size
(KB)

Event latency
(ms)

Pub-to-sub
(with plain)

Pub-to-sub
(with AC)

Broker
(with plain)

Broker (with AC)

1 KB Min 15.699 21.094 0.044 2.328

Ave 21.100 27.014 0.074 5.647

Max 131.058 397.548 0.262 81.345

16 KB Min 23.517 26.017 0.182 2.552

Ave 30.085 38.658 0.411 5.526

Max 250.498 281.554 8.338 43.812

64 KB Min 39.572 42.045 0.620 3.183

Ave 53.302 59.383 1.438 6.737

Max 250.426 281.575 4.732 13.999

Page 29 of 31Duan et al. SpringerPlus (2016) 5:1615

are compactly distributed in the range of 25 ∼ 30 ms. About 55% pub-to-sub latencies
with one policy are compactly distributed in the range of 30 ∼ 35 ms. These latency
distributions show that the publish/subscribe system with the access control frame-
work presented in our paper has higher throughput and shorter latencies. As shown in
Fig. 11c, d, for 1 KB data event, About 95% broker latencies with plain are compactly
distributed in the range of 0 ∼ 5 ms. About 80% broker latencies with one policy are
compactly distributed in the range of 5 ∼ 10 ms. During the tests of all the cases, the
CPU utilization was between 15 ∼ 50%.

According to the “Little Law”, we can derive the throughput in Events Per Second
(EPS) as “Throughput = 1

Latency ”. The pub-to-sub throughput results are presented based
on the average pub-to-sub latencies with or without access control. Figure 12 shows the
average sustainable throughput in processing events per second using different event

a b

c d

Fig. 11  Latency distribution (data event size 1 KB)

Fig. 12  Throughput for different data event size in KB

Page 30 of 31Duan et al. SpringerPlus (2016) 5:1615

sizes; the horizontal axis is given in base-10 logarithms. As with pub-to-sub latencies,
the data event size is the main factor in the baseline. With data event sizes increasing,
pub-to-sub throughput decreases, that is to say, fewer data events per second can be
sent from the publisher to the subscriber.

From the above security analysis and latency evaluation results, the overhead in terms
of the number of policies for preserving the publish/subscribe system is easy to observe,
but the overhead is reasonable and acceptable. The overall latency comparison shows
that our access control framework has higher policy matching efficiency and higher
scalability.

Conclusions and future research
In SCADA systems, named, signed and potentially encrypted content forms a solid foun-
dation for routing and application security. The access control mechanism for SCADA
systems should include independent data and application layers; and the two layers should
be opaque to network entities as well as be suitable for SCADA communication features,
such as event named, caching, and so on. We then propose a two-layer framework of
access control for SCADA systems, where, integrating network capabilities, the data layer
assumes the protection of the SCADA events, and the application layer assumes the pro-
tection of services. The anonymous-set-based principle is adopted to design our policy
embedding scheme, which is presented as the foundation of access control service with
policy privacy. In our scheme, the alternation method plays a key role, which uses the
anonymous set-inclusion-checking function to assume the basic function of the anony-
mous set, i.e., the anonymous set-membership-checking function. We also extended the
open source Apache ActiveMQ broker by adding authorization policies to help realize
policy privacy. The evaluation results of latency indicate that our approach is highly scala-
ble and flexible. The security analysis and performance evaluation results of latency show
that the SCADA application with our two layers access control scheme flexibly author-
izes as in traditional access control systems, and that home brokers can securely and effi-
ciently execute the delegated policy enforcing function without re-encrypting data after
the authorization policies are updated, where policies are encoded with blinded mask and
are anonymously matched to realize policy privacy. Future research is to make our policy
embedding scheme be able to resist more powerful privacy attacks from adversaries.

Authors’ contributions
LD and YZ conceived and designed the study of this manuscript. All the experiments have been realized by SPC and
SYW. BC and JLC presented the overall guidance of approach architecture. LD and YZ drafted the initial manuscript and
all the authors contributed to its revision. All authors read and approved the final manuscript.

Author details
1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing 100876, China. 2 Data61, CSIRO, Marsfield, NSW 2122, Australia.

Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant No. 61132001,61372115);
973program of National Basic Research Program of China Grant No. 2012CB315802; National High-tech R&D Program of
China (863 Program) under Grant No. 2013AA102301. The authors would like to express their sincere gratitude for the
anonymous reviewers’ helpful comments.

Competing interests
The authors declare that they have no competing interests.

Received: 11 May 2016 Accepted: 7 September 2016

Page 31 of 31Duan et al. SpringerPlus (2016) 5:1615

References
Al-Fuqaha A, Guizani M, Mohammadi M et al (2015) Internet of things: a survey on enabling technologies, protocols, and

applications. IEEE Commun Surv Tutor 17(4):2347–2376
Bacon J, Eyers DM, Singh J, Pietzuch PR (2008) Access control in publish/subscribe systems, pp 23–34
Bakken DE, Bose A, Hauser CH, Whitehead DE, Zweigle GC (2011) Smart generation and transmission with coherent, real-

time data. Proc IEEE 99(6):928–951
Bonomi F, Mitzenmacher M, Panigrah R, Singh S, Varghese G (2006) Beyond bloom filters: from approximate membership

checks to approximate state machines. ACM SIGCOMM Comput Commun Rev 36(4):315–326
Chen S, Greenfield P (2004) Qos evaluation of jms: an empirical approach, p 10
Cheung L, Newport C (2007) Provably secure ciphertext policy abe, pp 456–465
Choi S, Ghinita G, Bertino E (2010) A privacy-enhancing content-based publish/subscribe system using scalar product

preserving transformations, pp 368–384
Doshi N, Jinwala D (2011) Hidden access structure ciphertext policy attribute based encryption with constant length

ciphertext, pp 515–523
Esposito C, Ciampi M (2015) On security in publish/subscribe services: a survey. IEEE Commun Surv Tutor 17(2):966–997
Eugster P, Felber PA, Guerraoui R, Kermarrec AM (2003) The many faces of publish/subscribe. ACM Comput Surv

35:114–131
Eugster P (2007) Type-based publish/subscribe: concepts and experiences. ACM TOPLAS 29(1):6
Fiege L, Zeidler A, Buchmann A, Kilian-Kehr R, Mühl G (2004) Security aspects in publish/subscribe systems
Gentry C et al (2009) Fully homomorphic encryption using ideal lattices. In: Proceedings of the annual ACM symposium

on theory of computing, vol 9. STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA, pp 169–178
Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for fine-grained access control of encrypted data,

pp 89–98
Hosseini M, Ahmed DT, Shirmohammadi S, Georganas ND (2007) A survey of application-layer multicast protocols. IEEE

Commun Surv Tutor 9(3):58–74
Hu VC, Kuhn DR, Ferraiolo DF (2015) Attribute-based access control. Computer 2:85–88
Ion M, Russello G, Crispo B (2012) Design and implementation of a confidentiality and access control solution for pub-

lish/subscribe systems. Comput Netw 56(7):2014–2037
Ion M, Russello G, Crispo B (2010) Providing confidentiality in content-based publish/subscribe systems, pp 1–6
Li G, Muthusamy V, Jacobsen HA (2010) A distributed service-oriented architecture for business process execution. ACM

TWEB 4(1):2
Li X, Gu D, Ren Y, Ding N, Yuan K (2012) Efficient ciphertext-policy attribute based encryption with hidden policy, pp

146–159
Loyall JP, Gillen M, Paulos A, Bunch L, Carvalho M, Edmondson J, Schmidt DC, Martignoni A III, Sinclair A (2011) Dynamic

policy-driven quality of service in service-oriented information management systems. Softw Pract Exp 41(12):1459–
1489. doi:10.1002/spe.1101

Masaud-Wahaishi A, Gaouda A (2011) Intelligent monitoring and control architecture for future electrical power systems.
Proc Comput Sci 5:759–764

Müller S, Katzenbeisser S (2011) Hiding the policy in cryptographic access control, pp 90–105
Nishide T, Yoneyama K (2009) Attribute-based encryption with partially hidden ciphertext policies. IEICE Trans Fundam

Electron Commun Comput Sci 92(1):22–32
Onica E, Felber P, Mercier H et al (2016) Confidentiality-preserving publish/subscribe: a survey. ACM CSUR 49(2):27
Opyrchal L, Prakash A, Agrawal A (2007) Supporting privacy policies in a publish-subscribe substrate for pervasive envi-

ronments. J Netw 2(1):17–26
Paci F, Mecella M, Ouzzani M, Bertino E (2011) Acconv-an access control model for conversational web services. ACM

TWEB 5(3):13
Pal P, Lauer G, Khoury J, Hoff N, Loyall J (2012) P3s: a privacy preserving publish-subscribe middleware, pp 476–495
Rao W, Chen L, Tarkoma S (2013) Toward efficient filter privacy-aware content-based pub/sub systems. IEEE Trans Knowl

Data Eng 25(11):2644–2657
Robinson PJ, Clark KL (2010) Pedro: a publish/subscribe server using prolog technology. Softw Pract Exp 40(4):313–329
Shikfa A, Önen M, Molva R (2009) Privacy-preserving content-based publish/subscribe networks, pp 270–282
Srivatsa M, Liu L (2005) Securing publish-subscribe overlay services with eventguard, pp 289–298
Wang H, Sun L, Bertino E (2014) Building access control policy model for privacy preserving and testing policy conflicting

problems[J]. J Comput Syst Sci 80(8):1493–1503
Wang C, Carzaniga A, Evans D, Wolf AL (2002) Security issues and requirements for internet-scale publish-subscribe

systems, pp 3940–3947
Wang H, Yi X, Bertino E, Sun L (2014) Protecting outsourced data in cloud computing through access management.

Concur Comput Pract Exp 28(3):600–615
Waters B (2011) Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization, pp

53–70
Wun A, Jacobsen HA (2007) A policy management framework for content-based publish/subscribe middleware, pp

368–388
Yu S, Ren K, Lou W (2008) Attribute-based content distribution with hidden policy, pp 39–44
Zhang Y, Chen Jl (2013) Data-centric access control with confidentiality for collaborating smart grid services based on

publish/subscribe paradigm, pp 45–50
Zhang Y, Chen JL (2012) Wide-area scada system with distributed security framework. J Commun Netw 14(6):597–605

http://dx.doi.org/10.1002/spe.1101

	Realizing IoT service’s policy privacy over publishsubscribe-based middleware
	Abstract
	Background
	Related work
	Privacy preserving technique
	Privacy preserving degree

	Preliminaries
	Publishsubscribe-based IoT communication infrastructure
	Attribute-based authorization policy
	Bloom filter

	Access control framework for SCADA systems
	Policy embedding scheme
	Policy encoding and matching
	Blinding attributes
	Policy encoding
	Policy matching

	Policy privacy
	Policy privacy analysis
	Privacy management

	Storage cost and performance evaluation
	Storage cost
	Performance evaluation

	Conclusions and future research
	Authors’ contributions
	References

