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Background
Particle swarm optimization (PSO) is a bio-inspired optimization algorithm introduced 
by Eberhart and Kennedy (1995), and is enlightened by the interaction and commu-
nication of bird flocking or fish schooling. PSO has attracted a great deal of attention 
as a treatment for high-dimensional nonlinear optimization problem due to its better 
computational efficiency and simple implementation. With the development of intel-
ligent manufacturing and complex system, many engineering problems are becoming 
increasingly complex to optimize, and thus time-consuming computation and prema-
ture convergence often occurs in complicated optimization process. Therefore, many 
PSO variants with new techniques have been proposed to address the above problems.

Some researchers got insight into three control parameters, named after acceleration 
coefficients and inertia weight, to develop PSO variants (Beielstein et  al. 2002; Zhang 
et  al. 2014; Shi and Eberhart 1998a, b). In (Shi and Eberhart 1998b), linearly decreas-
ing inertia weight particle swarm optimization (LPSO) was developed by modified iner-
tia weight and the introduction of this dynamic inertia weight highly strengthened the 
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performance of PSO algorithm. In recent research, multiple swarms or multiple layers 
strategies had already been proved to be an effective strategy to improve the perfor-
mance of PSO (Sun and Li 2014; Yadav and Deep 2014; Lim and Isa 2014a; Wang et al. 
2014). Sun and Li presented a cooperative particle swarm optimization (TCPSO) with 
two-swarm (the slave swarm and the master swarm) for optimization problem in large 
scale search space (Sun and Li 2014) and two subswarms using shrinking hypersphere 
PSO (SHPSO) and DE were also used in new co-swarm PSO for constrained optimiza-
tion problems (Yadav and Deep 2014). Multiple layers strategies, such as adaptive two-
layer particle swarm optimization algorithm with elitist learning strategy (ATLPSO-ELS) 
(Lim and Isa 2014a) and multi-layer particle swarm optimization (MLPSO) (Wang et al. 
2014), were also used to solve complex problems. PSO with different topologies has dif-
ferent exploration/exploitation ability and performance (Bonyadi et al. 2014; Lim and Isa 
2014b, c). Many new topology strategies [time-adaptive topology (Bonyadi et al. 2014), 
adaptive time-varying topology connectivity (Lim and Isa 2014b), increasing topology 
connectivity (Lim and Isa 2014c)] were also applied to PSO. Comparing with fully-con-
nected topology or regular topology, these topologies could lead to a different optimiza-
tion process. In recent years, new techniques such as Levy flight (Haklı and Uğuz 2014), 
parallel cell coordinate system (Hu and Yen 2015), competitive and cooperative (Li et al. 
2015) and orthogonal design (Qin et al. 2015) had also been adopted in PSO.

Many learning strategies are introduced to PSO to enhance the adaptability for com-
plex optimization problems as learning behavior stemming from social animals plays a 
key role in animals’ adaptation to the changing environment (Cheng and Jin 2015; Rao 
and Patel 2013; Lim and Isa 2014d; e; Shi and Eberhart 1999). Cheng and Jin presented 
a modified particle swarm optimization using social learning mechanism (SL-PSO) 
(Cheng and Jin 2015) and some concept of teachers, tutorial training and self motivated 
learning was proposed in teaching–learning-based PSO by Rao and Patel for perfor-
mance enhancements (Rao and Patel 2013). Using teaching and peer-learning behaviors, 
a bidirectional teaching and peer-learning PSO (BTPLPSO) (Lim and Isa 2014d) and a 
two learning phases PSO (TPLPSO) (Lim and Isa 2014e) were proposed by Lim and Isa 
simultaneously.

Communication and learning behavior is a distinguishing feature among social ani-
mals and it improves social efficiency. Sharing information mechanism plays a key role 
in this behavior. To share personal-best information fairness, a particle swarm optimizer 
using several multi-information characteristics of all personal-best information is devel-
oped in this paper. In the proposed PSO, two representative positions, which represent 
the features of all personal-best positions, are defined to acquiring the information of all 
personal-best positions. Then the cognition term in velocity update equation is formed 
by three positions. Due to the effect of all personal-best fitnesses, each particle can 
update its velocity and position by the distribution of personal-best fitnesses. This strat-
egy could make full use of all personal-best information and correct some error guided 
directions of personal-best positions.

The structure of rest paper is as follows. Section “Particle swarm optimizer” presents 
the theory and formulation of PSO algorithm and linearly decreasing inertia weight. In 
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section “Particle swarm optimization using all personal-best information”, the details of 
two representative positions are described and the proposed PSO using several multi-
information characteristics of all personal-best positions is provided. Numerical results 
and statistical analysis are shown in section “Experiments and results”. In section “Con-
clusions”, we conclude this paper.

Particle swarm optimizer
Velocity and position formulation

Particle swarm optimizer is inspired by fish’s and birds’ foraging behaviors, which 
are simplified as a swarm of particles by mimicking their key behaviors. As a swarm 
of n particles search in the feasible space, each particle’s position represents a poten-
tial solution for the optimization problem and the swarm can find high-quality solu-
tion though the particles update their velocities and positions. Assuming the decision 
has m variables, the position and velocity of particle i are represented by m-dimen-
sional vector xi = (xi1, xi2, . . . , xim) and vi = (vi1, vi2, . . . , vim). Two positions, named 
personal-best position and global-best position, are defined in PSO to update the 
velocities and guide the swarm. Personal-best position of particle i is denoted as 
pbest,i = (pbest,i1, pbest,i2, . . . , pbest,im) and global-best position of particle i is denoted as 
gbest = (gbest,1, gbest,2, . . . , gbest,m). To sum up, the formulations of the velocity vt+1

i  and 
the position xt+1

i  of particle i can be expressed by the Eq. (1) and (2).

where c1, c2 are cognitive factor and social factor. ω is inertia weight. r1, r2 are two real 
numbers randomly in (0, 1). t is the current generation. According to the theory of PSO, 
the personal experience and global experience make the particle move closer to them to 
get a new promising position.

Linearly decreasing inertia weight

Appropriate selection of inertia weight can balance global exploration and local exploi-
tation during the evolution process. Large ω can benefit the global search while small 
value can contribute to local exploitation. Linearly decreasing inertia weight adopted in 
PSO (LPSO) significantly improves the performance of PSO for solving various optimi-
zation problems and the inertia weight ω is advised by the Eq. (3):

where T is the maximal generation. ωmin and ωmax are the upper limit and lower limit. 
Numerical experiments illustrated the impact of ω, and 0.9 (upper value) and 0.4 (lower 
value) are suggested (Shi and Eberhart 1999).

(1)vt+1
i = ωvti + c1r1

(

ptbest,i − xti
)

+ c2r2
(

g tbest − xti
)

(2)xt+1
i = xti + vt+1

i

(3)ω = ωmax − (ωmax − ωmin)
t

T
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From the above description, LPSO pseudo-code is shown in Algorithm 1.

Algorithm 1  LPSO pseudo-code 

01: begin 

02:  Initialize particles’ positions x  and velocities v , find bestp  and bestg . 

03:  =1t  

03:  while ( Tt ≤ ) 

04:    max max minω (ω ω ) / T.tω ← − − ∗  

04:    for 1=i  to n  

05:       1
1 1 best, 2 2 best( ) ( );t t t t t t

i i i i ic r c rω+ ← + − + −v v p x g x  

06:       1 1t t t
i i i
+ +← +x x v  

06:       Evaluate the fitness of 1t
i
+x , and update best,ip  and bestg . 

08:    end 

09:    = +1t t  

10:  end 

11: end 

Particle swarm optimization using all personal‑best information
Analysis of personal‑best information

Learning behavior is a special skill for social animals, which can share the information 
with their members. Cooperative behavior of a swarm is more efficient than one tak-
ing an action alone due to their fruitful information and communication. In PSO, each 
particle can provide its personal-best position information to guide its flying direction. 
The whole personal-best positions of the swarm imply the distribution of fruitful good-
fitness-related information. To take full advantage of multi-information characteristics 
of all personal-best information will contribute to ignoring several particles’ error infor-
mation trapping in local optima. In the theory of PSO, personal-best position is only 
used for its own particle in evolutionary process, not reflecting the influence of fitness 
distribution in landscape. Misguided information of personal-best positions, which have 
no opportunities to be corrected, will make PSO premature. Therefore, two positions, 
which add the influence of personal-best fitness distribution, are defined to strengthen 
the particle’s ability to learn from other particles’ experience. Then cognition term with 
three defined personal-best positions in velocity update equation is formed to reduce 
the misguided opportunity. The details of the improved cognition term and the pro-
posed PSO algorithm are as follows.

Detail of improved PSO algorithm

Step 1 Calculate all personal-best positions’ fitnesses, and then figure out the minimal 
fitness and the maximal fitness among these personal-best fitnesses. The way to find the 
minimal fitness and the maximal fitness is as follows:
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where fmin and fmax stand for the minimal fitness and the maximal fitness of personal-
best positions. f denotes the fitness function.

Step 2 Normalization method of personal-best fitness.
As the fitness value varies with a wide range in various optimization problems, a 

robust way to suitably reflect the influence of fitness is to normalize personal-best fit-
ness. For minimization problem, the smaller the fitness value, the stronger the influ-
ence of personal-best position. According this feature, the normalization method is as 
Eq. (6).

where ri stands for the normalized value of the ith personal-best fitness.
Step 3 After normalized the personal-best fitness, we should also acquire the propor-

tions of these fitnesses. The proportion of the ith personal-best fitness is denoted as θi. 
Thus, for the normalized value of the ith personal-best fitness, θi can be obtained as 
follows:

Step 4 Calculate centroid position pcentr of all personal-best positions:

Centroid position is defined as weighted sum form of pbest with θ to reflect the influ-
ence of personal-best fitnesses. Similar to the relation of an object’s density and mass in 
physics, by regarding personal-best fitness as ‘the density of an object’ and personal-best 
position as ‘the location in the object’, the position pcentr can be seen as ‘the centroid 
of the object’. The centroid of an object is important factor to reflect the distribution of 
mass and thus pcentr reflects the distribution of high quality fitness. The centroid posi-
tion is always close to the area where most good fitnesses locate.

Step 5 Calculate median position pmed of all personal-best positions.
pmed represents the position of the median personal-best fitness. pmed also reflects the 

distribution of high quality fitness from another perspective. pmed is obtained without 
weighted sum form and can avoid the influence of some bad personal-best positions. Algo-
rithm 2 is Pseudo-code to find the median fitness θmed and the median position pmed.

(4)fmin = min{f (pbest,i)|i = 1, 2, . . . , n}

(5)fmax = max{f (pbest,i)|i = 1, 2, . . . , n}

(6)ri =
fmax − f (pbest,i)

fmax − fmin

θi =
{

ri
/
∑n

i=1 ri if fmax �= fmin

1
/

n otherwise

(7)pcentr,j =
n

∑

i=1

pbest,ijθi
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Algorithm 2  Pseudo-code of finding med  and medp .

01: begin 

02:    if mod( ,2) 0n                     %  n  is an even number.  

03:       [ , ] sort( , 'descend ');order index   %  Sort  in descending order. 

04:       med 2 ;n

05:       med best /2( ,:);np p index

06:    else                                %  n  is an odd number. 

07:       med median( );                 %  Find the median of personal-best fitnesses. 

08:       medfind( );index            %  Find the particle index of the median fitness 

09:       med best 1( ,:);p p index             %  Obtain the position of the median fitness 

10:    end 

11: end 

Step 6 Cognitive guiding position p′best.
In the proposed PSO, cognitive guiding position using the above defined positions is 

calculated according to the following equations:

The cognitive guiding position includes three positions, the personal-best position 
pbest, the centroid position pcentr and the median position pmed. pbest and pcentr − pmed 
are used to ‘pull’ the particle to escape local optimum because some error information of 
pbest and gbest may accelerate premature convergence. pcentr and pmed carry all personal-
best information and can guide particles to a better direction. The experimental coef-
ficient of 1/2 makes the cognitive guiding position suitable for the improved cognition 
term.

Step 7 Improved cognition term acog.

The improved cognition term acog will make full use of all personal-best fitnesses.
Step 8 Modified velocity update equation.
In this step, the work is to replace original cognition term with the improved cognition 

term acog in velocity update equation of PSO and LPSO algorithm. Therefore, particle 
swarm optimizer using multi-information characteristics of all personal-best informa-
tion (PSO-API) and Linearly decreasing inertia weight PSO-API (LPSO-API) can be 
obtained using this modified velocity update equation. Take LPSO-API algorithm for 
example, each particle’s velocity updates as Eq. (10).

Not considering the influence of the current velocity and all the coefficients, there are 
four positions (pbest,gbest,pcentr and pmed) to influence the velocity update in Eq.  (10). 

(8)p′best,i =
pbest,i + pcentr − pmed

2

(9)acog,i =
n

∑

i=1

p′best,iθi − xi

(10)vt+1
i = ωvti + r1 · atcog,i + c · r2 ·

(

g tbest − xti
)
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In PSO, �v′ = gbest + pbest,i is introduced to show the influence of gbest and pbest,i. As 
is illustrated in Fig. 1b, if the current iteration gbest is local optimum, �v′ will acceler-
ate the particles fall into local optimum region. Comparing with PSO, pcentr and pmed 
is added to velocity update equation in PSO-API. In Fig.  1a, the white circle points 
represents the personal-best positions with worse fitnesses and the grey circle points 
represents the personal-best positions with better fitnesses. From the distribution of 
these above points, the location of pcentr and pmed, which are calculated by Eq. (7) and 
Algorithm  2, are shown by the yellow circle points in Fig.  1. Defined by all personal-
best positions and their fitnesses, pcentr is more close to the region which locates many 
personal-best positions with good fitnesses. Although the fitness around the real global-
best position is worse than that of local optimum gbest, the personal-best positions are 
also prone to distribute in these positions with good fitnesses around real global-best 
position, which is the black rhombic point in Fig. 1a. Regard pcentr as a reference point, 
and �v′′ = pbest,i − pmed, which carrys all personal-best information, represents the 
influence of good fitness distribution. As is illustrated in Fig. 1c, α represents the direc-
tion adjusted by �v′′ and �v′′ makes particles adjust their directions to the real global-
best position. Constantly adjusted by α in the search process, the particles have a greater 
probability of flying to the real global-best position. Besides, |�v′′| will be small value 
when an uniform fitness distribution occurs in the search process and |�v′′| makes lit-
tle effect on particles. That is, PSO-API only has pbest and gbest influence particles’ tra-
jectory and PSO-API has the same performance as PSO in that case. Therefore, three 
terms (�v′′,pbest and gbest) contribute to adjusting the velocity and different ‘pull’ and 
‘push’ influence make PSO-API have a stable performance over a variety of problems. 
The flowchart of LPSO-API algorithm is shown in Fig. 2. 

Experiments and results
Test benchmark functions

In order to assess the performance of the proposed algorithm, twenty benchmark prob-
lems including unimodal, multimodal, rotated and shifted functions selected from the 
literature (Deep and Thakur 2007; Liang et  al. 2006; Suganthan et  al. 2005; Yao et  al. 
1999) are used to verify it. Note that all the problems are minimum problems and only 
one global optimum exists. The function name, dimensions, search range and global 
optimum value are listed in Table 1 and the formulations of these problems are listed as 
follows:

i i i

best,ip

bestg

global-best position

'v

''v

centrp

medp

medp

best,ip

bestg

centrp

'vbest,ip

bestg

centrpmedp

medp

a b c
Fig. 1  Influence of pcentr and pmed in search process. a Distribution of pcentr and pmed, b Influence of all 
defined best positions, c Adjustment of each velocity influenced by all best positions



Page 8 of 25Huang et al. SpringerPlus  (2016) 5:1632 

	 1.	 Sphere Function (unimodal function)

	

	 2.	 Schewefel’s Problem 2.22 (unimodal function)
	

	 3.	 Schewefel’s Problem 1.2 (unimodal function)
	

	 4.	 Schewefel’s Problem 2.21 (unimodal function)
	

f1(x) =
n

∑

i=1

x2i

f2(x) =
n

∑

i=1

|xi| +
n
∏

i=1

|xi|

f3(x) =
n

�

i=1





i
�

j=1

xj





2

f4(x) = max
i

{ |xi|, 1 ≤ i ≤ n}

Initialize the positions and velocities,  
and find          andbestp bestg

Find ,         by Equations (4) and (5) and caculate
by Equations (6). Then calculate .

Update the velocity and position of each particle :

maxf
r θ

Evaluate fitness of particle and update the
and

t=t+1

Is the stopping criterion met?

t=1

minf

1
1 cog, 2 best( )t t t t t

i i i ir c rω+ = + + −v v a g x
1 1t t t

i i i
+ += +x x v

Calculate by Equations (7) and           by algorithm 
2 . Then compute of each particle:

centrp medp
best'p

Compute the modified cognition term          :    coga

cog, best,
1

'
n

i i i i
i

θ
=

= −∑a p x

best, best, centr med
1' ( )
2i i= + −p p p p

Calculate by Equations (7) and         by Algorithm 
2 . Then compute of each particle:best'p

Compute the modified cognition term         :coga

Find ,        by Equations (4) and (5) and calculate
by Equations (6). Then calculate .

maxf
r θ

minf

bestp bestg

centrp medp

best, best, centr med
1' ( )
2i i= + −p p p p

cog, best,
1

'
n

i i i i
i

θ
=

= −∑a p x

. . .

Fig. 2  Flowchart of LPSO-API algorithm
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	 5.	 Step Function (unimodal function)
	

	 6.	 Quartic Function, i.e. Noise (unimodal function)
	

	 7.	 Generalized Rastrigin’s Function (multimodal function)
	

	 8.	 Non-continuous Rastrigin’s Function (multimodal function)
	

	 9.	 Ackley’s Function (multimodal function)
	

f5(x) =
n

∑

i=1

(|xi + 0.5|)2

f6(x) =
n

∑

i=1

ix4i + random[0, 1)

f7(x) =
n

∑

i=1

[

x2i − 10 cos(2πxi)+ 10
]

f8(x) =
n

∑

i=1

[

y2i − 10 cos(2πyi)+ 10
]

where yi =
{

xi
round(2xi)

2

|xi| ≤ 0.5
|xi| ≥ 0.5

f9(x) = −20 exp



−0.2

�

�

�

�

1

n

n
�

i=1

x2i



− exp

�

1

n

n
�

i=1

cos 2πxi

�

+ 20+ e

Table 1  Twenty benchmark problems

Function name Dimensions Search range Global optimum

f1(x) 20/30/50 [−100, 100]D 0

f2(x) 20/30/50 [−10, 10]D 0

f3(x) 20/30/50 [−100, 100]D 0

f4(x) 20/30/50 [−100, 100]D 0

f5(x) 20/30/50 [−100, 100]D 0

f6(x) 20/30/50 [−1.28, 1.28]D 0

f7(x) 20/30/50 [−5.12, 5.12]D 0

f8(x) 20/30/50 [−5.12, 5.12]D 0

f9(x) 20/30/50 [−32, 32]D 0

f10(x) 20/30/50 [−600, 600]D 0

f11(x) 20/30/50 [−0.5, 0.5]D 0

f12(x) 20/30/50 [−50, 50]D 0

f13(x) 20/30/50 [−1, 1]D 0

f14(x) 20/30/50 [−5.12, 5.12]D 0

f15(x) 20/30/50 [−100, 100]D 0

f16(x) 20/30/50 [−100, 100]D 0

f17(x) 20/30/50 [−1.28, 1.28]D 0

f18(x) 20/30/50 [−100, 100]D −450

f19(x) 20/30/50 [−32, 32]D −140

f20(x) 20/30/50 [−0.5, 0.5]D 90
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	10.	 Generalized Griewank Function (multimodal function)
	

	11.	 Weierstrass Function (multimodal function)
	

	12.	 Generalized Penalized Function (multimodal function)
	

	13.	 Cosine mixture Problem (multimodal function)
	

	14.	 Rotated Rastrign Function (multimodal function)
	

	15.	 Rotated Salomon Function (multimodal function)
	

	16.	 Rotated Rosenbrock Function (multimodal function)
	

	17.	 Rotated Elliptic Function (unimodal function)
	

f10(x) =
1

4000

n
∑

i=1

x2i −
n
∏

i=1

cos

(

xi√
i

)

+ 1

f11(x) =
n

∑

i=1

(

kmax
∑

K=0

[

ak cos
(

2πbk(xi + 0.5)
)]

)

− n

kmax
∑

K=0

[

ak cos
(

2πbk × 0.5
)]

where a = 0.5, b = 3, kmax = 20

f12(x) = π
n

�

10 sin
�

πy1
�

+
n−1
�

i=1

�

yi − 1
�2
�

1+ 10 sin
2
�

πyi+1

�

�

+
�

yn − 1
�2

�

+
n

�

i=1

u(xi, 10, 100, 4)yi = 1+
xi + 1

4
,u(xi, a, k ,m)

=







k(xi − a)m

0

k(−xi − a)m

xi > a
−a ≤ xi ≤ a

xi < a

f13(x) =
n

∑

i=1

x2i − 0.1

n
∑

i=1

cos (5πxi)

f14(x) =
n

∑

i=1

[

y2i − 10 cos(2πyi)+ 10
]

, y = M × x

f15(x) = 1− cos



2π

�

�

�

�

n
�

i=1

y2i



+ 0.1

�

�

�

�

n
�

i=1

y2i , y = M × x

f16(x) =
n−1
∑

i=1

[

100
(

y2i − yi+1

)2
+

(

yi − 1
)2
]

, y = M × x

f17(x) =
n

∑

i=1

(

106
)(i−1)/ (n−1)

y2i , y = M × x
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	18.	 Shifted Schewefel’s Problem 2.21 (unimodal function)
	

	19.	 Shifted Rotated Ackley’s Function (multimodal function)
	

	20.	 Shifted Rotated Weierstrass Function (multimodal function)
	

Experimental analysis

Validity of the proposed strategy

To validate the proposed strategy, PSO-API and LPSO-API algorithms are implemented 
on matlab 2011a to compare with PSO and LPSO algorithms. All twenty benchmarks are 
tested in the experiments. Parameter settings of the four algorithms are as follows: The 
size of the population is 30. c1 and c2 are both equal to 2 in PSO and LPSO algorithms, 
and c is equal to 2 in PSO-API and LPSO-API algorithms. ω is equal to 0.7 in PSO and 
PSO-API algorithms and uses the suggested linearly decreasing version of section “Lin-
early decreasing inertia weight” in LPSO and LPSO-API algorithms (Shi and Eberhart 
1999). 20, 30 and 50 dimensions are adopted in our experiments and the generations are 
5000. Also, 20 independent trials are implemented on these problems. Tables  7, 9 and 
11 in “Appendix” show the comparisons of 20, 30, 50 dimensions’ results of average best 
fitness(AVE), rank(Rank) of average best fitness, median best fitness (MED), standard 
deviation (SD), average rank (AR) and final rank (FR) of average best fitness.

Wilcoxon’s rank sum test is commonly used to analyze whether two data sets are sta-
tistically different from each other, and p value(p), h-value(h) and zval(z) are acquired in 
Wilcoxon’s rank sum test. In this test, significance level needs to be set and a value of 0.05 
significance level indicates that something occurs more than the probability of 95  %. In 
Wilcoxon’s rank sum test, h-value only has three value, 1, 0, −1, which indicate that the 
proposed algorithm have a significantly better, same and worse performance than the com-
pared algorithm, respectively (Beheshti et al. 2013). Tables 8, 10 and 12 in “Appendix” show 
the comparisons of 20, 30, 50 dimensions’ results of Wilcoxon’s rank sum test. In details, the 
last three rows of Tables 8, 10 and 12 list the numbers of 1, 0 or −1 that h-value equals. Note 
that the best results for each benchmark function are marked in bold in Tables 7–12.

From 20, 30 and 50 dimensions’ results in Tables 7, 9 and 11, it is clearly that LPSO-
API algorithm obtains the minimum value in terms of AVE on twelve, fourteen, and fif-
teen of twenty benchmark problems, respectively and PSO-API algorithm obtains the 
minimum value of AVE on ten, ten and eight of twenty benchmark problems, respec-
tively. It is obviously that LPSO-API algorithm and PSO-API algorithm obtains more 
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minimum results than LPSO algorithm and PSO algorithm in terms of AVE on the suite 
of benchmark problems. It is worth pointing out that several global optimums are also 
obtained by LPSO-API algorithm and PSO-API algorithm. The numbers of best AVE 
obtained by four algorithms are described in Fig. 3.

For three different dimensions, final rank obtained by LPSO-API algorithm all takes the 
first place and that obtained by PSO-API algorithm are all the second. The final rank can 
reflect the comprehensive performance of algorithm on a suite of benchmark problems. 
From the rank, it is clearly seen that LPSO-API algorithm and PSO-API algorithm shows 
the superiority than LPSO algorithm and PSO algorithm in high-quality solutions.

From the data in Tables 8, 10 and 12, the number of h-value = 1 is 16, 17 and 17 for 
PSO-API algorithm and 13, 14 and 17 for LPSO-API algorithm on 20, 30 and 50 dimen-
sions’ problems. A few h-value = − 1 and h-value = 0 exist. It means that the results 
of LPSO-API and PSO-API algorithm statistically significantly outperform that of the 
PSO and LPSO algorithm. Also, by comparing the number of h-value = 1 with 20, 30, 50 
dimensions’ problems, we can seen that the higher the dimension, the larger the num-
ber of h-value = 1 of LPSO-API algorithm and PSO-API algorithm. It illustrates that the 
LPSO-API algorithm and PSO-API algorithm perform better on high-dimension prob-
lem than low-dimension problem to some degree. From the above analysis, the pro-
posed strategy of using all personal-best information is valid and efficient for solving 
most optimization problems, especially in high dimensions.

Six representative benchmark problems, two unimodal problems f1(x) and f5(x), two mul-
timodal problems f7(x) and f11(x), a rotated problems f14(x), a shifted problems f18(x) are 
chosen for describing the process of fitness evolution. The evolutions of average fitness on 
these six problems are shown in Figs. 4a–f, 5a–f, 6a–f, respectively. Note that it is the loga-
rithm of average fitness on vertical axis. It is clearly seen from these figures that PSO-API 
algorithm and LPSO-API algorithm obtain better solution with a fast convergence speed.  

Comparison experiments with other PSO variants

In recent literatures, various PSO algorithms are also developed and perform well 
on numerical experiments. To compare with these PSO algorithms, eight PSO vari-
ants (PSO-cf (Kennedy and Mendes 2002), FIPS (Mendes et  al. 2004), HPSO-TVAC 
(Ratnaweera et  al. 2004), VPSO (Kennedy and Mendes 2006), DMS-PSO (Liang and 
Suganthan 2005), CLPSO (Liang et al. 2006) and APSO (Zhan et al. 2009) are introduced 
to optimize ten benchmark functions, which are f1(x), f2(x), f3(x), f5(x), f6(x), f7(x), f8(x), 
f9(x), f10(x) and f12(x) in section “Test benchmark functions”. Table 2 shows their param-
eters settings and their results are from the corresponding paper (Zhan et al. 2009). The 
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Fig. 3  Number of best AVE obtained by four algorithms
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generations are 2 × 105 and dimension number is 30. The size of population is 20. All the 
problems are optimized 30 times. Parameters settings of PSO-API and other settings are 
identical to that in last section. The comparisons of these PSO algorithms are shown in 
Table 3 in terms of average best fitness (Best) and standard deviation (SD), rank (Rank), 
average rank (AR) and final rank (FR) of average best fitness. Note that the best results 
for each benchmark function are marked in bold in Table 3. 

From Table  3, the data of Rank demonstrates that PSO-API algorithm obtains best 
results on f1(x), f2(x), f3(x), f5(x), f7(x), f8(x), f9(x), f10(x) and performs worst on f6(x) 
and f12(x). Table  3 also shows FR obtained by PSO-API algorithms is better than that 
obtained by other eight PSO variants. It can be concluded that PSO-API algorithm has 
the highest comprehensive performance among them. Consequently, the comparisons 
indicate that PSO-API algorithm has the best overall performance over several existing 
PSO variants and is an effective method for solving a variety of optimization problems.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

x

fit
ne

ss

PSO-API
PSO
LPSO-API
LPSO

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-4

-2

0

2

4

6

8

10

12

x

fit
ne

ss

PSO-API
PSO
LPSO-API
LPSO

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

x

fit
ne

ss

PSO-API
PSO
LPSO-API
LPSO

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-40

-35

-30

-25

-20

-15

-10

-5

0

5

x

fit
ne

ss

PSO-API
PSO
LPSO-API
LPSO

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
3.5

4

4.5

5

5.5

6

6.5

x

fit
ne

ss

PSO-API
PSO
LPSO-API
LPSO

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

5.85

5.9

5.95

6

6.05

6.1

x

fit
ne

ss

PSO-API
PSO
LPSO-API
LPSO

a b

c d

e f

Fig. 4  Evolution curves (20 dimensions). a f1(x), b f5(x), c f7(x), d f11(x), e f14(x), f f18(x)



Page 14 of 25Huang et al. SpringerPlus  (2016) 5:1632 

Time complexity of algorithm also should be considered and a computational experi-
ment of six PSO variants [PSO-cf (Kennedy and Mendes 2002), FIPS (Mendes et  al. 
2004), DMS-PSO (Liang and Suganthan 2005), CLPSO (Liang et  al. 2006), LPSO (Shi 
and Eberhart 1998c) and PSO-API] is performed over 20 independent runs and the exe-
cution times of these algorithms are compared. In the experiment, parameters sittings of 
these algorithms are the same as Table 2. The population, dimension and generations are 
20, 30 and 3000, respectively. Table 4 lists CPU times (in seconds) of six PSO algorithms. 
In Table 4, ‘AV(CPU)’ and ‘Rank’ stand for the average CPU time over 20 runs and the 
ascending order of each ‘AV(CPU)’, respectively. ‘AR’ and ‘FR’ stand for the average rank 
of Rank and the ascending order of AR, respectively.

From Rank of LPSO and PSO-API algorithm, we can conclude that our proposed pol-
icy adding to the original PSO increases the computational time. In Table 4, AR reflects 
comprehensive time-consuming order of the algorithm for twenty benchmarks. From 
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Table 4, the value of AR for PSO-cf and LPSO are smallest among all six algorithms. It 
illustrates that PSO-cf and LPSO, which are better than our proposed algorithm, have 
the best CPU time. The value of ‘AR’ for PSO-API algorithm and CLPSO are highly close 
to each other and it demonstrates that they have similar overall time consumption. The 
value of ‘AR’ for PSO-cf and LPSO are ‘4.7’ and ‘5.45’, which are both worse than PSO-
API algorithm. From the value of ‘FR’, although PSO-API algorithm only ranks four, it is 
worthy of spending time to improve the accuracy of PSO algorithm. It is clear from the 
above comparisons of the accuracy and time consumption that PSO-API algorithm has a 
good overall balance between the performance and time complexity.

Comparisons experiments with similar PSO algorithms

In order to compare with FSS (Carmelo Filho et al. 2008) and CenterPSO (Liu et al. 2007), 
several experiments are carried out in this section. To compare with FSS algorithm, the 
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experiments settings are as follows: five benchmarks with 30 dimensions are used to 
assess the algorithms. In detail, Generalized Rosenbrock Function and f3(x), f7(x), f9(x), 
f10(x) in section “Test benchmark functions” are introduced. Generalized Rosenbrock 
Function is denoted as f21(x), and the expression of f21(x) is shown as follows.

Table 2  Parameters settings of PSO variants

PSO variant Topology Parameters settings

PSO-cf Local ring ω:0.9 − 0.4, c1 = c2 = 2.0

FIPS Local ring χ = 0.729, ∑ ci = 4.1

HPSO-TVAC Global star ω:0.9 − 0.4, c1:2.5 − 0.5, c2:0.5 − 2.5

DMS-PSO Dynamic multi-swarm ω:0.9 − 0.4, m = 3, R = 5

VPSO Local von neumann ω:0.9 − 0.4, c1 = c2 = 2.0

CLPSO Comprehensive learning ω:0.9 − 0.4, C = 1.49455, m = 7

APSO Global star ω : 0.9, c1 = c2 = 2.0, δ : random in [0.050.1], σ : 1−0.1

Table 3  Numerical results for the comparisons

Name PSO-cf FIPS HPSO-
TVAC

DMS-PSO VPSO CLPSO APSO PSO-API

f1(x) Best 4.77e−29 3.21e−30 3.38e−41 3.85e−54 5.11e−38 1.89e−19 1.45e−150 0.00

SD 1.13e−28 1.91e−30 8.50e−41 1.75e−53 1.91e−37 1.49e−19 5.73e−150 0.00

Rank 7 6 4 3 5 8 2 1

f2(x) Best 2.03e−20 1.32e−17 6.9e−23 2.61e−29 6.29e−27 1.01e−13 5.15e−84 3.95e−323

SD 2.89e−20 7.86e−18 6.89e−23 6.6e−29 8.68e−27 6.51e−14 1.44e−83 5.13e−322

Rank 6 7 5 3 4 8 2 1

f3(x) Best 18.60 0.77 2.89e−7 47.5 1.44 395 1.0e−10 0.00

SD 30.71 0.86 2.97e−7 56.4 1.55 142 2.13e−10 0.00

Rank 6 4 3 7 5 8 2 1

f5(x) Best 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rank 1 1 1 1 1 1 1 1

f6(x) Best 1.49e−2 2.55e−3 5.54e−2 1.1e−2 1.08e−2 3.92e−3 4.66e−3 5.88e−001

SD 5.66e−3 6.25e−4 2.08e−2 3.94e−3 3.24e−3 1.14e−3 1.7e−3 2.73e−001

Rank 6 1 7 5 4 2 3 8

f7(x) Best 34.90 29.98 2.39 28.1 34.09 2.57e−11 5.8e−15 0.00

SD 7.25 10.92 3.71 6.42 8.07 6.64e–11 1.01e−14 0.00

Rank 8 6 4 5 7 3 2 1

f8(x) Best 30.40 21.33 35.91 1.83 32.8 0.167 4.14e−16 0.00

SD 9.23 9.46 9.49 2.65 6.49 0.397 1.45e−15 0.00

Rank 6 5 8 4 7 3 2 1

f9(x) Best 1.85e−14 7.69e−15 2.06e−10 8.52e−15 1.14e−14 2.01e−12 1.11e−14 3.55e−015

SD 4.80e−15 9.33e−16 9.45e−10 1.79e−15 3.48e−15 9.22e−13 3.55e−15 0.00e+000

Rank 6 2 8 3 5 7 4 1

f10(x) Best 1.10e−2 9.04e−4 1.07e−2 1.31e−2 1.31e−2 6.45e−13 1.67e−2 0.00

SD 1.60e−2 2.78e−3 1.14e−2 1.73e−2 1.35e−2 2.07e−12 2.41e−2 0.00

Rank 5 3 4 7 6 2 8 1

f12(x) Best 2.18e−30 1.22e−31 7.07e−30 2.05e−32 3.46e−3 1.59e−21 3.76e−31 9.72e−002

SD 5.14e−30 4.85e−32 4.05e−30 8.12e−33 1.89e−2 1.93e−21 1.2e−30 1.97e−002

Rank 4 2 5 1 7 6 3 8

AR 5.5 3.7 4.9 3.9 5.1 4.8 2.9 2.4

FR 8 3 6 4 7 5 2 1
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Population size of PSO-API sets as 30. 30 runs are conducted for each problem and 
each run will perform 1 × 104 generations. To compare with CenterPSO algorithm, the 
experiments settings are as follows: Three benchmarks f7(x), f10(x), f21(x) with 30 dimen-
sions are used. The generations is 2000. The population has four sizes of 20, 40, 80, 160. 
Each experiment will perform 100 runs. Average best fitness (Avg. best fitness) and 
standard deviation (SD) of PSO-API, FSS and CenterPSO are presented in Tables 5 and 
6. It’s worth noting that the better results are marked in bold in Tables 5 and 6. 

From the data in Table 5, it can be seen that PSO-API obtains better average best fit-
ness and standard deviation than that obtained by FSS algorithm for all five benchmarks 
except Generalized Rosenbrock Function. However, for Generalized Rosenbrock Func-
tion, PSO-API and FSS algorithm obtain the results with the same order of magnitude. 
From the Table 6, the results obtained by PSO-API with all population sizes are better 
than that obtained by CenterPSO algorithm for all three benchmarks. Therefore, statis-
tics analysis indicates the proposed algorithm have better performance than FSS algo-
rithm and CenterPSO algorithm. For most of the benchmarks, all above experiments 
indicates that PSO-API is a high-performance algorithm.

f21(x) =
n−1
∑

i=1

(100(xi+1 − x2i )
2 + (xi − 1)2) (− 100 ≤ xi ≤ 100)

Table 4  Computational time of six PSO algorithms

Function PSO-cf FIPS DMS-PSO CLPSO LPSO PSO-API

f1(x) AV(CPU)/Rank 6.09e−001/1 4.19e+000/6 4.04e+000/5 3.60e+000/4 7.59e−001/2 1.28e+000/3

f2(x) AV(CPU)/Rank 1.76e+000/3 4.10e+000/5 4.85e+000/6 3.55e+000/4 9.99e−001/1 1.51e+000/2

f3(x) AV(CPU)/Rank 1.01e+001/2 1.16e+001/3 1.28e+001/4 9.95e+000/1 1.44e+001/5 1.61e+001/6

f4(x) AV(CPU)/Rank 3.06e+000/3 4.19e+000/5 5.50e+000/6 3.67e+000/4 1.13e+000/1 1.66e+000/2

f5(x) AV(CPU)/Rank 3.31e+000/3 4.12e+000/6 4.11e+000/5 3.78e+000/4 8.22e−001/1 1.27e+000/2

f6(x) AV(CPU)/Rank 5.78e+000/1 7.04e+000/4 8.51e+000/6 6.79e+000/3 6.51e+000/2 7.35e+000/5

f7(x) AV(CPU)/Rank 3.17e+000/3 4.49e+000/5 4.56e+000/6 3.98e+000/4 1.03e+000/1 1.46e+000/2

f8(x) AV(CPU)/Rank 5.05e+000/2 6.59e+000/5 6.96e+000/6 5.89e+000/4 4.72e+000/1 5.31e+000/3

f9(x) AV(CPU)/Rank 4.83e+000/3 6.31e+000/5 7.23e+000/6 5.66e+000/4 3.18e+000/1 3.89e+000/2

f10(x) AV(CPU)/Rank 4.21e+000/1 6.53e+000/5 6.83e+000/6 6.16e+000/4 4.74e+000/2 5.20e+000/3

f11(x) AV(CPU)/Rank 5.09e+001/2 5.17e+001/3 6.52e+001/4 4.78e+001/1 9.52e+001/5 9.80e+001/6

f12(x) AV(CPU)/Rank 6.19e+000/1 1.22e+001/3 1.25e+001/4 1.12e+001/2 1.80e+001/6 1.75e+001/5

f13(x) AV(CPU)/Rank 4.52e−002/1 3.98e+000/6 3.91e+000/5 3.51e+000/4 1.07e+000/2 1.46e+000/3

f14(x) AV(CPU)/Rank 3.66e+000/3 4.78e+000/5 4.97e+000/6 4.24e+000/4 2.51e+000/1 2.94e+000/2

f15(x) AV(CPU)/Rank 3.81e+000/3 4.90e+000/5 5.00e+000/6 4.47e+000/4 2.72e+000/1 3.15e+000/2

f16(x) AV(CPU)/Rank 4.49e+000/2 5.57e+000/5 6.62e+000/6 5.10e+000/4 4.14e+000/1 4.51e+000/3

f17(x) AV(CPU)/Rank 4.80e+000/3 5.90e+000/5 1.02e+001/6 4.67e+000/1 4.79e+000/2 5.35e+000/4

f18(x) AV(CPU)/Rank 3.12e−003/1 4.60e+000/5 5.70e+000/6 3.67e+000/4 2.19e+000/2 2.58e+000/3

f19(x) AV(CPU)/Rank 1.56e−003/1 5.84e+000/5 6.25e+000/6 4.35e+000/3 4.13e+000/2 4.57e+000/4

f20(x) AV(CPU)/Rank 2.65e+001/2 2.76e+001/3 3.25e+001/4 2.00e+001/1 4.99e+001/6 4.95e+001/5

AR 2.05 4.7 5.45 3.2 2.25 3.35

FR 1 5 6 3 2 4



Page 18 of 25Huang et al. SpringerPlus  (2016) 5:1632 

Conclusions
In this work, to make full use of multi-information characteristics of all personal-best 
information, an improved PSO algorithm using three positions with all personal-best 
information has been adopted to enhance the performance. In proposed algorithm, an 
improved cognition term using the personal-best position, the centroid position and the 
median position is introduced in velocity update process of PSO. To validate this strat-
egy, a set of benchmark functions including unimodal, multimodal, rotated and shifted 
benchmark functions with 20, 30 and 50 dimensions have been optimized. Experimental 
results show that the strategy using multi-information characteristics of all personal-best 
information is a valid strategy for the purposes of improving the PSO’s performance. 
Moreover, PSO-API algorithm has also been used to compare with several PSO variants 
and some similar algorithms of the proposed algorithm. Numerical results show that the 
PSO-API algorithm has higher precision and satisfied performance. To sum up, the pro-
posed strategy enhances the search ability of PSO and PSO-API algorithm is an efficient 
PSO variant to obtain promising solution for most of benchmark functions.
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Table 5  Comparison results with FSS algorithm

Name PSO-API FSS

f3(x) Avg. best fitness/SD 3.883e−090/9.563e−090 8.080e−002/2.200e−002

f7(x) Avg. best fitness/SD 0.000e+000/0.000e+000 1.338e+001/4.005e+000

f9(x) Avg. best fitness/SD 3.789e−015/9.013e−016 4.000e−002/2.000e−002

f10(x) Avg. best fitness/SD 0.000e+000/0.000e+000 2.700e−003/2.000e−003

f21(x) Avg. best fitness/SD 2.635e+001/3.145e−001 1.611e+001/7.290e−001

Table 6  Comparison results with CenterPSO algorithm

Name Size PSO-API CenterPSO

f7(x) 20 Avg. best fitness/SD 0.000e+000/0.000e+000 3.359e+001/9.562e+000

40 Avg. best fitness/SD 0.000e+000/0.000e+000 2.668e+001/7.764e+000

80 Avg. best fitness/SD 0.000e+000/0.000e+000 2.276e+001/6.758e+000

160 Avg. best fitness/SD 2.020e−010/2.020e−009 2.141e+001/5.949e+000

f10(x) 20 Avg. best fitness/SD 2.311e−004/1.711e−003 1.200e−002/1.650e−002

40 Avg. best fitness/SD 7.841e−005/7.841e−004 8.800e−003/1.190e−002

80 Avg. best fitness/SD 8.442e−006/8.442e−005 9.300e−003/1.200e−002

160 Avg. best fitness/SD 7.308e−015/7.151e−014 1.200e−002/1.680e−002

f21(x) 20 Avg. best fitness/SD 2.702e+001/3.831e−001 1.319e+002/1.358e+002

40 Avg. best fitness/SD 2.649e+001/3.276e−001 8.717e+001/6.365e+001

80 Avg. best fitness/SD 2.626e+001/1.987e−001 6.234e+001/5.940e+001

160 Avg. best fitness/SD 2.601e+001/2.379e−001 4.299e+001/4.499e+001
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Appendix
See Tables 7, 8, 9, 10, 11, 12.

Table 7  Results of  twenty benchmark problems (generations  =  5000 and  dimen‑
sions = 20)

Name PSO-API PSO LPSO-API LPSO

f1(x) AVE/rank 6.143e−101/2 3.714e−012/4 1.992e−180/1 5.879e−052/3

MED/SD 2.803e−102/1.498e−100 6.501e−013/8.397e−012 4.447e−183/2.124e−180 1.476e−053/1.638e−051

f2(x) AVE/rank 1.522e−050/2 1.000e+000/3 3.973e−091/1 3.000e+000/4

MED/SD 7.388e−051/2.773e−050 1.387e−010/3.077e+000 7.565e−092/1.174e−090 2.895e−033/4.701e+000

f3(x) AVE/rank 1.049e−060/2 3.145e+003/3 3.938e−132/1 8.000e+003/4

MED/SD 8.599e−062/3.394e−060 2.604e+003/3.448e+003 5.529e−134/1.488e−131 1.000e+004/5.342e+003

f4(x) AVE/rank 8.837e−042/2 2.666e+000/4 1.290e−078/1 5.100e−004/3

MED/SD 1.414e−042/1.569e−041 2.376e+000/1.136e+000 1.071e−079/4.198e−078 3.224e−004/6.771e−004

f5(x) AVE/rank 0.0e+000/1 0.0e+000/1 0.0e+000/1 0.0e+000/1

MED/SD 0.0e+000/0.0e+000 0.0e+000/0.0e+000 0.0e+000/0.0e+000 0.0e+000/0.0e+000

f6(x) AVE/rank 4.992e−001/3 7.748e−001/4 4.983e−001/2 4.625e−001/1

MED/SD 5.276e−001/3.032e−001 8.512e−001/3.869e−001 5.067e−001/2.680e−001 5.071e−001/2.670e−001

f7(x) AVE/rank 0.0e+000/1 1.411e+001/3 0.0e+000/1 2.490e+001/4

MED/SD 0.0e+000/0.0e+000 9.455e+00/1.125e+001 0.0e+00/0.0e+000 1.542e+01/1.996e+001

f8(x) AVE/rank 0.0e+000/1 2.034e+001/3 1.773e+000/2 2.530e+001/4

MED/SD 0.0e+000/0.0e+000 1.867e+01/1.158e+001 0.0e+00/6.846e+000 2.700e+01/1.999e+001

f9(x) AVE/rank 3.552e−015/1 2.440e−007/3 3.552e−015/1 7.676e−001/4

MED/SD 3.552e−015/0.0e+000 1.615e−007/2.245e−007 3.552e−015/0.0e+000 7.105e−015/3.432e+000

f10(x) AVE/rank 0.0e+000/1 4.861e−002/4 7.404e−004/2 3.588e−002/3

MED/SD 0.0e+000/0.0e+000 4.785e−002/3.737e−002 0.0e+000/3.311e−003 2.834e−002/3.710e−002

f11(x) AVE/rank 0.0e+000/1 2.615e−007/3 0.0e+000/1 2.000e−001/4

MED/SD 0.0e+000/0.0e+000 1.650e−008/9.516e−007 0.0e+000/0.0e+000 0.000e+000/8.944e−001

f12(x) AVE/rank 5.335e−002/4 3.893e−008/1 5.103e−002/3 7.775e−003/2

MED/SD 5.383e−002/9.641e−003 6.931e−014/1.741e−007 4.906e−002/1.051e−002 2.355e−032/3.477e−002

f13(x) AVE/rank −2.0e+000/1 −2.0e+000/1 −2.0e+000/1 −2.0e+000/1

MED/SD −2.0e+000/0.0e+000 −2.0e+000/3.520e−015 −2.0e+000/0.0e+000 −2.0e+000/0.0e+000

f14(x) AVE/rank 3.963e+001/1 8.864e+001/4 4.278e+001/2 5.657e+001/3

MED/SD 3.702e+01/1.884e+001 8.617e+01/3.462e+001 4.612e+01/1.646e+001 5.323e+01/2.357e+001

f15(x) AVE/rank 9.987e−002/1 1.370e+000/4 9.987e−002/1 1.199e+000/3

MED/SD 9.987e−002/2.883e−010 4.998e−001/3.682e+000 9.987e−002/4.206e−010 3.998e−001/3.579e+000

f16(x) AVE/rank 1.876e+001/1 3.382e+007/3 1.877e+001/2 4.691e+008/4

MED/SD 1.876e+001/2.135e−002 1.952e+03/1.374e+008 1.877e+001/1.374e−002 1.971e+08/5.627e+008

f17(x) AVE/rank 1.529e−012/2 1.252e+004/4 8.245e−035/1 8.891e+003/3

MED/SD 1.549e−032/6.838e−012 4.387e+03/1.629e+004 8.006e−096/3.687e−034 6.856e+03/8.742e+003

f18(x) AVE/rank −4.224e+002/2 −4.161e+002/3 −4.288e+002/1 −4.051e+002/4

MED/SD −4.229e+02/3.728e+000 −4.173e+02/1.819e+001 −4.290e+02/2.251e+000−4.077e+02/1.290e+001

f19(x) AVE/rank −1.1921e+2/4 −1.1931e+2/1 −1.1925e+2/3 −1.1928e+2/2

MED/SD −1.1920e+2/6.117e−002 −1.1928e+2/1.049e−001 −1.1923e+2/5.970e−002 −1.1928e+2/7.102e−002

f20(x) AVE/rank 1.0953e+002/4 1.047e+002/2 1.0951e+002/3 1.042e+002/1

MED/SD 1.095e+02/2.107e+000 1.050e+02/2.457e+000 1.094e+002/2.029e+000 1.037e+02/2.714e+000

AR 1.85 2.9 1.55 2.9

FR 2 3 1 3
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Table 8  Wilcoxon’s rank sum test results (generations = 5000 and dimensions = 20)

Name PSO-API and PSO LPSO-API and LPSO

f1(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f2(x) p/h/z 6.795e−008/1/−5.396e+000 6.690e−008/1/−5.399e+000

f3(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f4(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f5(x) p/h/z 0.000e+000/0/0.000e+000 0.000e+000/0/0.000e+000

f6(x) p/h/z 3.151e−002/1/−2.150e+000 7.352e−001/0/3.381e−001

f7(x) p/h/z 8.006e−009/1/−5.768e+000 8.006e−009/1/−5.768e+000

f8(x) p/h/z 8.006e−009/1/−5.768e+000 3.519e−007/1/−5.093e+000

f9(x) p/h/z 8.006e−009/1/−5.768e+000 2.412e−008/1/−5.579e+000

f10(x) p/h/z 8.006e−009/1/−5.768e+000 2.859e−007/1/−5.132e+000

f11(x) p/h/z 8.006e−009/1/−5.768e+000 1.625e−001/1/−1.396e+000

f12(x) p/h/z 6.795e−008/1/5.396e+000 2.776e−007/1/5.137e+000

f13(x) p/h/z 3.122e−006/1/−4.662e+000 0.000e+000/0/0.000e+000

f14(x) p/h/z 3.293e−005/1/−4.152e+000 9.090e−002/0/−1.690e+000

f15(x) p/h/z 6.709e−008/1/−5.398e+000 5.612e−008/1/−5.430e+000

f16(x) p/h/z 1.200e−006/1/−4.855e+000 6.795e−008/1/−5.396e+000

f17(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f18(x) p/h/z 1.402e−001/0/−1.474e+000 1.025e−007/1/−5.322e+000

f19(x) p/h/z 3.381e−004/−1/3.584e+000 1.555e−001/0/1.420e+000

f20(x) p/h/z 3.499e−006/−1/4.639e+000 2.061e−006/−1/4.747e+000

1 16 13
0 2 6

−1 2 1
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Table 9  Results of  twenty benchmark problems (generations  =  5000 and  dimen‑
sions = 30)

Name PSO-API PSO LPSO-API LPSO

f1(x) AVE/rank 1.499e−082/2 1.500e+003/4 2.291e−159/1 1.184e−028/3

MED/SD 9.419e−084/3.947e−082 1.782e−003/3.663e+003 6.706e−163/9.471e−159 2.128e−029/3.017e−028

f2(x) AVE/rank 4.736e−042/2 5.000e+000/3 5.600e−082/1 1.450e+001/4

MED/SD 2.354e−042/6.150e−042 4.860e−004/6.069e+000 2.822e−082/6.334e−082 1.500e+001/9.986e+000

f3(x) AVE/rank 1.395e−043/2 1.510e+004/3 2.721e−108/1 1.660e+004/4

MED/SD 1.715e−044/2.946e−043 1.580e+004/6.208e+003 1.049e−109/5.623e−108 1.666e+004/5.629e+003

f4(x) AVE/rank 5.252e−032/2 1.769e+001/4 1.338e−066/1 1.968e+000/3

MED/SD 1.688e−032/8.290e−032 1.719e+001/3.485e+000 8.649e−068/3.874e−066 1.846e+000/7.950e−001

f5(x) AVE/rank 0.000e+000/1 4.500e−001/4 0.000e+000/1 5.000e−002/3

MED/SD 0.000e+000/0.000e+000 0.000e+000/8.255e−001 0.000e+000/0.000e+000 0.000e+000/2.236e−001

f6(x) AVE/rank 5.199e−001/2 2.045e+000/3 4.889e−001/1 2.307e+000/4

MED/SD 5.157e−001/3.248e−001 1.456e+000/1.958e+000 4.368e−001/3.293e−001 6.323e−001/4.144e+000

f7(x) AVE/rank 0.000e+000/1 6.980e+001/3 0.000e+000/1 7.686e+001/4

MED/SD 0.000e+000/0.000e+000 7.259e+001/2.296e+001 0.000e+000/0.000e+000 7.522e+001/2.848e+001

f8(x) AVE/rank 0.000e+000/1 1.018e+002/4 0.000e+000/1 8.270e+001/3

MED/SD 0.000e+000/0.000e+000 9.411e+001/3.081e+001 0.000e+000/0.000e+000 8.001e+001/3.588e+001

f9(x) AVE/rank 3.552e−015/1 7.264e−001/3 3.552e−015/1 3.807e+000/4

MED/SD 3.552e−015/0.000e+000 7.494e−003/3.189e+000 3.552e−015/0.000e+000 2.131e−014/6.874e+000

f10(x) AVE/rank 0.000e+000/1 5.139e−002/3 3.720e−004/2 1.354e+001/4

MED/SD 0.000e+000/0.000e+000 4.340e−002/5.443e−002 0.000e+000/1.664e−003 1.845e−002/3.301e+001

f11(x) AVE/rank 0.000e+000/1 6.248e−001/3 0.000e+000/1 1.805e+000/4

MED/SD 0.000e+000/0.000e+000 2.362e−002/1.952e+000 0.000e+000/0.000e+000 2.395e−003/3.033e+000

f12(x) AVE/rank 1.078e−001/3 2.256e−001/4 1.067e−001/2 5.183e−003/1

MED/SD 1.040e−001/1.480e−002 1.098e−002/5.944e−001 1.030e−001/1.504e−002 1.634e−028/2.318e−002

f13(x) AVE/rank −3.000e+000/1 −2.999e+000/3 −3.000e+000/1 −2.940e+000/4

MED/SD −3.000e+00/0.000e+000 −2.999e+000/7.685e−006 −3.000e+00/0.000e+000 −3.000e+00/2.683e−001

f14(x) AVE/rank 8.703e+001/1 2.200e+002/4 8.865e+001/2 1.319e+002/3

MED/SD 9.867e+001/4.002e+001 2.177e+002/3.608e+001 1.101e+002/4.941e+001 1.186e+002/6.466e+001

f15(x) AVE/rank 9.987e−002/1 2.446e+000/3 9.987e−002/1 1.025e+001/4

MED/SD 9.987e−002/5.355e−010 2.350e+000/6.174e−001 9.987e−002/7.443e−010 1.529e+001/9.398e+000

f16(x) AVE/rank 2.869e+001/1 1.573e+009/3 2.870e+001/2 2.542e+009/4

MED/SD 2.869e+001/1.449e−002 1.095e+006/3.957e+009 2.870e+001/1.788e−002 1.082e+009/4.418e+009

f17(x) AVE/rank 1.786e−036/2 4.287e+003/3 3.634e−104/1 9.561e+003/4

MED/SD 1.651e−037/3.264e−036 3.560e+003/2.774e+003 2.468e−110/1.625e−103 7.780e+003/6.709e+003

f18(x) AVE/rank −3.972e+002/3 −4.016e+002/2 -4.127e+002/1 −3.880e+002/4

MED/SD −3.965e+02/3.643e+000 −4.060e+02/1.933e+001 −4.127e+02/4.270e+000 −3.966e+02/2.133e+001

f19(x) AVE/rank −1.190e+002/4 −1.190e+002/1 −1.190e+002/3 −1.190e+002/2

MED/SD −1.190e+002/5.490e−002 −1.190e+02/6.539e−002−1.190e+002/4.999e−002 −1.190e+002/1.005e−001

f20(x) AVE/rank 1.244e+002/3 1.153e+002/1 1.270e+002/4 1.172e+002/2

MED/SD 1.239e+002/2.857e+000 1.154e+002/3.703e+000 1.266e+002/2.562e+000 1.166e+002/2.931e+000

AR 1.75 3.05 1.45 3.4

FR 2 3 1 4
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Table 10  Wilcoxon’s rank sum test results (generations = 5000 and dimensions = 30)

Name PSO-API and PSO LPSO-API and LPSO

f1(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f2(x) p/h/z 6.795e−008/1/−5.396e+000 6.690e−008/1/−5.399e+000

f3(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f4(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f5(x) p/h/z 9.496e−003/1/−2.593e+000 3.421e−001/0/−9.500e−001

f6(x) p/h/z 1.575e−006/1/−4.801e+000 3.851e−002/1/−2.069e+000

f7(x) p/h/z 8.006e−009/1/−5.768e+000 8.006e−009/1/−5.768e+000

f8(x) p/h/z 8.006e−009/1/−5.768e+000 8.006e−009/1/−5.768e+000

f9(x) p/h/z 8.006e−009/1/−5.768e+000 6.764e−009/1/−5.796e+000

f10(x) p/h/z 8.006e−009/1/−5.768e+000 2.208e−006/1/−4.733e+000

f11(x) p/h/z 8.006e−009/1/−5.768e+000 3.494e−007/1/−5.094e+000

f12(x) p/h/z 7.711e−003/−1/2.664e+000 3.415e−007/−1/5.098e+000

f13(x) p/h/z 8.006e−009/1/−5.768e+000 1.625e−001/0/−1.396e+000

f14(x) p/h/z 6.757e−008/1/−5.397e+000 1.476e−001/0/−1.447e+000

f15(x) p/h/z 6.776e−008/1/−5.396e+000 6.766e−008/1/−5.397e+000

f16(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f17(x) p/h/z 6.795e−008/1/−5.396e+000 6.795e−008/1/−5.396e+000

f18(x) p/h/z 1.545e−002/−1/2.421e+000 8.505e−006/1/−4.452e+000

f19(x) p/h/z 9.277e−005/1/3.908e+000 6.389e−002/0/1.852e+000`

f20(x) p/h/z 3.938e−007/−1/5.071e+000 9.172e−008/−1/5.342e+000

1 17 14
0 0 4

−1 3 2
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Table 11  Results of  twenty benchmark problems (generations  =  5000 and  dimen‑
sions = 50)

Name PSO-API PSO LPSO-API LPSO

f1(x) AVE/rank 8.111e−069/2 4.571e+003/4 6.638e−146/1 3.000e+003/3

MED/SD 2.816e−069/1.213e−068 1.378e+002/6.841e+003 4.585e−152/2.968e−145 9.040e−012/4.701e+003

f2(x) AVE/rank 1.339e−035/2 2.635e+001/3 1.770e−076/1 3.800e+001/4

MED/SD 6.996e−036/1.559e−035 3.020e+001/1.696e+001 5.086e−078/6.311e−076 3.000e+001/1.735e+001

f3(x) AVE/rank 7.320e−029/2 6.095e+004/3 6.921e−091/1 7.035e+004/4

MED/SD 4.714e−031/3.121e−028 6.084e+004/1.020e+004 2.327e−092/1.678e−090 6.774e+004/2.032e+004

f4(x) AVE/rank 9.832e−024/2 4.042e+001/4 1.467e−055/1 2.482e+001/3

MED/SD 3.494e−024/1.388e−023 4.021e+001/4.275e+000 1.603e−057/5.564e−055 2.621e+001/3.161e+000

f5(x) AVE/rank 0.000e+000/1 1.106e+003/3 0.000e+000/1 5.000e+003/4

MED/SD 0.000e+000/0.000e+000 1.130e+002/3.090e+003 0.000e+000/0.000e+000 1.000e+000/6.069e+003

f6(x) AVE/rank 4.829e−001/1 1.498e+001/3 5.144e−001/2 1.795e+001/4

MED/SD 4.569e−001/2.745e−001 1.618e+001/9.801e+000 5.114e−001/2.600e−001 1.068e+001/1.779e+001

f7(x) AVE/rank 0.000e+000/1 2.677e+002/4 0.000e+000/1 2.329e+002/3

MED/SD 0.000e+000/0.000e+000 2.671e+002/5.346e+001 0.000e+000/0.000e+000 2.276e+002/4.966e+001

f8(x) AVE/rank 1.259e+001/2 2.729e+002/4 0.000e+000/1 2.725e+002/3

MED/SD 0.000e+000/5.634e+001 2.803e+002/5.489e+001 0.000e+000/0.000e+000 2.680e+002/5.470e+001

f9(x) AVE/rank 4.973e−015/2 9.682e+000/3 4.618e−015/1 1.185e+001/4

MED/SD 3.552e−015/1.785e−015 1.316e+001/5.389e+000 3.552e−015/1.670e−015 1.370e+001/7.483e+000

f10(x) AVE/rank 0.000e+000/1 2.885e+001/3 0.000e+000/1 3.159e+001/4

MED/SD 0.000e+000/0.000e+000 2.355e+000/4.211e+001 0.000e+000/0.000e+000 1.599e−002/5.296e+001

f11(x) AVE/rank 0.000e+000/1 1.107e+001/4 0.000e+000/1 7.587e+000/3

MED/SD 0.000e+000/0.000e+000 1.186e+001/3.728e+000 0.000e+000/0.000e+000 6.002e+000/4.384e+000

f12(x) AVE/rank 2.453e−001/3 5.749e+003/4 2.361e−001/2 9.655e−002/1

MED/SD 2.475e−001/3.344e−002 1.219e+002/1.672e+004 2.427e−001/2.283e−002 6.220e−002/1.673e−001

f13(x) AVE/rank −5.000e+000/1 −4.573e+000/4 −5.000e+000/1 −4.611e+000/3

MED/SD −5.000e+00/0.000e+000−4.771e+000/4.670e−001 −5.000e+00/0.000e+000 −4.926e+000/8.788e−001

f14(x) AVE/rank 1.381e+002/2 6.056e+002/4 1.368e+002/1 4.808e+002/3

MED/SD 2.115e+002/1.298e+002 5.709e+002/1.049e+002 2.102e+002/1.290e+002 4.337e+002/2.018e+002

f15(x) AVE/rank 9.987e−002/1 1.897e+001/3 9.987e−002/1 2.485e+001/4

MED/SD 9.987e−002/5.210e−010 1.899e+001/6.756e+000 9.987e−002/5.908e−010 2.559e+001/7.030e+000

f16(x) AVE/rank 4.862e+001/1 1.186e+010/3 4.865e+001/2 1.631e+010/4

MED/SD 4.862e+001/1.551e−002 4.668e+009/1.816e+010 4.864e+001/2.043e−002 1.336e+010/1.745e+010

f17(x) AVE/rank 6.371e−031/2 8.266e+004/3 7.198e−097/1 1.111e+005/4

MED/SD 1.426e−031/1.347e−030 7.732e+004/4.103e+004 4.644e−104/3.219e−096 8.578e+004/8.496e+004

f18(x) AVE/rank −3.782e+002/3 −3.824e+002/2 −3.911e+002/1 −3.586e+002/4

MED/SD −3.788e+002/1.934e+000−3.834e+002/1.983e+001 −3.909e+002/3.716e+000 −3.539e+002/1.941e+001

f19(x) AVE/rank −1.1883e+002/3 −1.1890e+002/1 −1.1882e+002/4 −1.1889e+002/2

MED/SD −1.1883e+02/3.887e−002−1.1889e+02/3.944e−002−1.1881e+02/4.171e−002 −1.1887e+02/7.086e−002

f20(x) AVE/rank 1.565e+002/3 1.435e+002/2 1.597e+002/4 1.426e+002/1

MED/SD 1.566e+002/3.440e+000 1.421e+002/5.957e+000 1.590e+002/3.475e+000 1.436e+002/3.741e+000

AR 1.8 3.2 1.4 3.25

FR 2 3 1 4
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