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Background
The deterministic shortest path problem has been studied extensively and applied in 
many fields of optimization; there are polynomial time algorithms to solve the determin-
istic shortest path problem (Dijkstra 1959; Bellman 1958; Orlin et  al. 2010). However, 
paths in networks should be reliable to transmit flow from a source node to a destina-
tion node especially in delay sensitive networks. The best connection helps to avoid traf-
fic congestion in networks. So, the arrival probability is used to evaluate the reliability 
of paths and it has been considered as an optimality index of the stochastic shortest 
path length (Bertsekas and Tsitsiklis 1991; Fan et  al. 2005; Kulkarni 1986; Shirdel and 
Abdolhosseinzadeh 2016). The stochastic shortest path problem (SSP) is defined as the 
best path with stochastic optimality condition. Liu (2010) assumed the arc lengths to 
be uncertain variables. Pattanamekar et al. (2003) considered the individual travel time 
variance and the mean travel time forecasting error. Also, Hutson and Shier (2009) and 
Rasteiro and Anjo (2004) supposed two criteria: mean and variance of path length. Fan 
et al. (2005) assumed known conditional probabilities for link travel times that each link 
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could be congested or uncongested. Wu et  al. (2004) modeled a stochastic and time-
dependent network with discrete probability distributed arc weights. Peer and Sharma 
(2007) assumed two kinds of nodes, possible failure and always working. Ji (2005) solved 
three models of the shortest path by integrating stochastic simulation and genetic algo-
rithm. The considered model in this paper is a directed acyclic stochastic network with 
known discrete distribution probabilities of leaving or waiting in nodes.

Our criterion to evaluation of the connections from the source node toward the des-
tination node in the network is presented as the arrival probability, which is obtained 
by the established discrete time Markov chain (DTMC) in the network (Shirdel and 
Abdolhosseinzadeh 2016); then, the best possible connection is determined with the 
largest arrival probability. Liu (2010) converted his models into deterministic program-
ming problems. Hutson and Shier (2009) and Rasteiro and Anjo (2004) obtained the 
maximum expected value of a utility function. Fan et al. (2005) applied a procedure for 
dynamic routing policies. Nie and Fan (2006) formulated the stochastic on-time arrival 
problem with dynamic programming, and Fan et  al. (2005) minimized the expected 
travel time.

In this paper, the maximum arrival probability from a given source node to a given 
destination node is computed according to known discrete distribution probabilities of 
leaving or waiting in nodes, and a DTMC stochastic process is used to model the prob-
lem rather than dynamic programming or stochastic programming. Kulkarni (1986) 
developed a method based on a continuous time Markov chain (CTMC) to compute the 
distribution function of the shortest path length. Azaron and Modarres (2005) applied 
Kulkarni’s method to queuing networks. Thomas and White (2007) modeled the prob-
lem of constructing a minimum expected total cost route as a Markov decision process. 
They wanted to respond to dissipated congestion over time according to some known 
probability distribution.

The arrival probability gives overall information of the network conditions to transmit 
flow from the source node toward the destination node. Two conditions at any state of 
the established DTMC are assumed: departing from the current state to a new state, or 
waiting in the current state with expecting better conditions. There are several unstable 
connections between nodes. The leaving distribution probability from one node toward 
another node is known as the probability that their connected arc is uncongested. 
A DTMC with an absorbing state is established and the transition matrix is obtained. 
Then, the arrival probability from the source node toward the destination node is com-
puted as the multi-step transition probability from the initial state to the absorbing state 
in DTMC. The arrival probability introduced by Shirdel and Abdolhosseinzadeh (2016) 
is reviewed in this paper, and it is extended and the concepts and definitions are organ-
ized to find the stochastic shortest path.

This paper is organized as follow. In “The unstable topology of the network” section 
some definitions and assumptions of networks with unstable topology is introduced. The 
concept of the stochastic process and the established DTMC in the network is described 
in “The established discrete time Markov chain” section; also, the computations of the 
arrival probability and the stochastic shortest path are presented in “The established dis-
crete time Markov chain” section. “Numerical results” section contains some numerical 



Page 3 of 12Shirdel and Abdolhosseinzadeh ﻿SpringerPlus  (2016) 5:1529 

results of implementation of the proposed method on some networks with various 
topologies.

The unstable topology of the network
In this section, we introduce some definitions and assumptions of networks with unsta-
ble topology. Let network G = (N ,A), with node set N and arc set A, be a directed 
acyclic network. Then, we can label its nodes in a topological order such that for any 
(i, j) ∈ A, i < j (Ahuja et al. 1993). The physical topology for any (i, j) ∈ A shows the pos-
sibility of communication between nodes i, j ∈ N  in the network. In the transportation 
networks there are some physical connections between nodes, but we cannot traverse 
anymore toward the destination node because of probable congestion. If there are some 
facilities in the network G, but it is not possible to use them continuously, then G has 
unstable topology. So, for any arc (i, j) ∈ A it is not mean there is a stable communication 
between nodes i, j ∈ N  all the time (it could be probably congested). For any node i, it 
is supposed that the uniform distribution probabilities of leaving arcs (i, j) to be uncon-
gested are known (Shirdel and Abdolhosseinzadeh 2016).

Now, consider the situation that some arcs are congested and flow cannot leave 
because of the unstable topology. There are two kinds of wait situations: first, waiting in 
a particular node with expecting some facilities to release from the current condition, 
and it is called option 1; second, traversing some arcs those do not lead to visit a new 
node, and it is called option 2. For example, if it is decided to be in node 3 in the example 
network (Fig. 1), arc (1, 3) does not cause to visit a new node whereas arc (3, 4) leads to 
the new node 4. The produced wait situations are more extended than queuing networks 
considered by Azaron and Modarres (2005) and Thomas and White (2007).

The stochastic variable of arc (i, j) according to the unstable topology is shown by xij . 
If xij = 1, it is possible to traverse arc (i,  j), and otherwise xij = 0. The probability that 
arc (i, j) to be uncongested is qij = Pr[xij = 1], and it represents the uniform probability 
that node i is leaved toward node j (an adjacency node). Then, the wait probability in 
node i, is qii = 1−

∑

{j:(i,j)∈A} qij, and it is the probability that leaving arcs by node i are 
congested.

Figure 1 shows the example network with its topological ordered nodes and it is the 
initial physical topology of the network. The numbers on arcs show the leaving prob-
abilities qij. Node 1 is the source node and node 4 is the destination node. It is not possi-
ble to traverse arc (2, 4) because it does not exist in the physical topology of the example 

Fig. 1  The example network with 4 nodes and 5 arcs
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network. However, the arcs in the physical topology could be congested according to the 
known distribution probabilities.

The established discrete time Markov chain
In this section, the proposed DTMC by Shirdel and Abdolhosseinzadeh (2016) is 
reviewed. The discrete time stochastic process {Xr , r = 1, 2, 3, . . .} is called Markov chain 
(Xr shows the process position), if it satisfies the following Markov property (see Ross 
2006 and Thomas and White 2007)

Any state Sl of the established DTMC determines the traversed nodes of the original 
network. For the example network (Fig. 1) the created states Si, are shown in Table 1. 
The conditional probability of the next state depends on the current state and independ-
ent of the previous states. Let S = {Si, i = 1, 2, 3, . . .}, the initial state S1 = {1} of DTMC 
contains the single source node and the absorbing state S|S| = {1, 2, . . . , |N |} contains all 
nodes of the network and it is not possible to depart; so, S is a finite state space (it is not 
possible to depart from S|S|).

For the example network, the absorbing state S5 = {1, 2, 3, 4} contains all nodes of the 
network; and the instance state S4 of the state space S (Table 1) contains nodes {1, 2, 3} 
and all connected components of the example network, those are constructed by nodes 
1, 2 and 3, as seen in Fig. 2.

The final state contains the destination node of the network, where DTMC does not 
progress anymore, and it is called assumption i. The states of the established DTMC con-
tain the traversed nodes of the network, those are reached from some nodes in a previ-
ous state, and it is called assumption ii. It is not allowed to return from the last traversed 
node; however, it is possible to wait in the current state. Clearly, a new state is revealed if 
a leaving arc (i, j) ∈ A is traversed such that the current node i is contained in the current 
state and the new node j is contained in the new state, and it is called assumption iii. As 
previously said, the wait states are one of option 1 or option 2.

The state space diagram of the established DTMC for the example network is con-
structed as Fig. 3; the values on arcs show the wait and the transition probabilities.

Pr[Xr+1 = Sl |Xr = Sk ,Xr−1 = Sm, . . . ,X1 = Sn] = Pr[Xr+1 = Sl |Xr = Sk ] = plk .

Table 1  The state space of the established DTMC for the example network

States S1 S2 S3 S4 S5

Nodes {1} {1, 2} {1, 3} {1, 2, 3} {1, 2, 3, 4}

Fig. 2  Constructed connected components of state S4
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The transition and the wait probabilities

The transition probabilities pkl satisfy the following conditions

• • 0 ≤ pkl ≤ 1 for k = 1, 2, . . . , |S| and l = 1, 2, . . . , |S|

• •
∑

l pkl = 1, for k = 1, 2, . . . , |S|.

The transition probabilities are elements of matrix P|S|×|S|, where pkl is kth row and lth 
column of matrix P, and it is called the transition matrix or Markov matrix (Ibe 2009). 
The following theorems are used to obtain the transition matrix of the established 
DTMC in the network by Shirdel and Abdolhosseinzadeh (2016). The transition prob-
abilities (except the absorbing state) are obtained by Theorem 1.

Theorem  1  If pkl is klth element of matrix P, that k �= l, l < |S| and 
Sk = {v0 = 1, v1, . . . , vm} is the current state, then the transition probability from state Sk 
to state Sl is computed as follow

if l < k then pkl = 0, otherwise if l > k then

Evw denotes the event which arc (v,  w) is traversed during transition from Sk to Sl and 
� = {(v,w) ∈ A : v ∈ Sk\{vm},w ∈ Sl\Sk , |Sl\Sk | = 1}.

Proof  Since, it is not allowed to traverse from one state to the previous states (assump-
tion ii), then necessarily pkl = 0, for l < k. Otherwise, suppose l > k, during transi-
tion from the current state Sk to the new state Sl, it should be reached just one node 
other than the nodes of the current state, so |Sl\Sk | = 1, v ∈ Sk, and w ∈ Sl\Sk are held 
by assumption ii and iii. Two components of pkl formula should be computed.

In the last node vm of the current state Sk, it is possible to wait in vm with probability 
qvmvm. Notice, it is not possible to wait in the other nodes v ∈ Sk\{vm} because it should 
be leaved to construct the current state, however it is not necessary for node vm with 

pkl = Pr
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Fig. 3  The state space diagram of the established DTMC
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the largest label (leaving vm leads to a new node, and therefore results in a new state). If 
w ∈ Sl\Sk, then one or all of events Evw (i.e. to traverse a connecting arc between a node 
of the current state and another node of the new state) can happen for (v,w) ∈ �, and the 
arrival probability of node w ∈ Sl from the current state Sk is equal to Pr[

⋃

(v,w)∈� Evw] . 
The collection probability should be computed because of deferent representations of 
the new state (for example see Fig. 2). Then, the nodes of the current state v ∈ Sk\{vm} 
(while waiting in vm) should be prevented from reaching other nodes u /∈ Sk and u �= w 
(assumption iii), so arcs (v,u) are not allowed to traverse and they are excluded simulta-
neously, thus it is equal to 

∏

(v,w)∈� (1−
∑

(v,u) ∈ A
u �= w,u /∈ Sk

qvu)). The other possibility in 

node vm, that is leaving it toward the new node w ∈ Sl\Sk with probability qvmw.�  �

For example, in the established DTMC of the example network, the transi-
tion probability p24 is computed by the constructed components as shown 
in Fig.  4; and it is P(E13)× (1− q14)× q22 + q23, where P(E13) = q13, then 
p24 = q22 × q13 × (1− q14)+ q23. It is possible to wait in node 2 but not other nodes 
of the current state S2 = {1, 2}; where, by traversing arc (1,  3) or (2,  3) the new state 
S4 = {1, 2, 3} is revealed.

Theorem 2 describes the transition probabilities to the absorbing state S|S|, and they 
are the last column of the transition matrix P.

Theorem 2  To compute the transition probability from state Sk = {v0 = 1, v1, . . . , vm} to  
the absorbing state S|S| for k = 1, 2, . . . , |S| − 1, which is k|S|th element of matrix P, sup-
pose vn ∈ S|S| is the given destination node of the network then

Evvn denotes the event that arc (v, vn) ∈ N  of the network is traversed during the transition 
from Sk to S|S|.

Proof  To compute the transition probabilities pk|S|, for k = 1, 2, . . . , |S| − 1 it should be 
noticed the final state is the absorbing state S|S| = {1, 2, 3, . . . , |N |} containing all nodes 
of the network, and the stochastic process does not progress any more (assumption i). 
So, it is sufficient to consider leaving arcs (v, vn) from v ∈ Sk, the nodes of the current 
state, toward the destination node vn ∈ S|S|. Then, one or all of events Evvn (i.e. to traverse 
a connecting arc between a node of the current state and the destination node of the 

pk|S| = Pr





�

v∈Sk ,(v,vn)∈A

Evvn



.

Fig. 4  The constructed states during transition from S2 to S4
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absorbing state) can happen and the transition probability from the current state Sk to 
the absorbing state S|S| is totally equal to Pr[

⋃

v∈Sk ,(v,vn)∈A
Evvn ]. The collection probabil-

ity should be computed because of different representations of the states (for example 
see Fig. 2).�  �

For state S4, transition probability p45 is obtained by P(E14 ∪ E34 ∪ E24), however 
q24 = 0 as seen in Fig. 1, then p45 = q14 + q34 − q14 × q34. The wait probabilities, those 
are the diagonal elements of the transition matrix P, are obtained by Theorem 3.

Theorem 3  Suppose Sk = {v0 = 1, v1, . . . , vm} is the current state, then the wait prob-
ability pkk is kkth element of matrix P and it is 

Proof  The wait probabilities pkk are the complement probabilities of the transition 
probabilities from the current state Sk, for k = 1, 2, . . . , |S| − 1, toward the all depar-
ture states Sj, for j = k + 1, k + 2, . . . , |S|. Then, we have pkk = 1−

∑|S|
j=k+1

pkj, for 
k = 1, 2, . . . , |S| − 1, in other word, they are the diagonal elements of matrix P, those 
are computed for any row k = 1, 2, . . . , |S| − 1 of the transition matrix (see Ibe 2009). 
The absorbing state S|S| does not have any departure state, so p|S||S| = 1 as the transition 
matrix P.�  �

The arrival probability

The arrival probability determines the overall reliability of connections in the network, 
and it shows the probability that they are not congested during the transmission of flow 
from the source node to the destination node in the network. The arrival probability 
is defined as multi-step transition probability from the initial state S1 to the absorb-
ing state S|S| in the established DTMC. According to the assumptions i, ii and iii, the 
state space of DTMC is directed and acyclic (otherwise return to the previous states is 
allowed contradictively). Out-degree of any state is at least one (without loop wait tran-
sition arcs consideration), except the absorbing state S|S|, then for any state Sk, there is 
one\multi-step transition from the initial state to the absorbing state that traverses state 
Sk . Consequently, the absorbing state is accessible from the initial state after some finite 
transitions. Let pkl(r) = Pr[Xm+r = Sl |Xm = Sk ] denote the conditional probability 
that the process will be in state Sl after exactly r transitions, given that it is presently 
in state Sk. So, if matrix P(r) is the transition matrix after exactly r transitions, it can be 
shown that P(r) = Pr, and let pkl(r) be klth element in matrix Pr (see Ibe 2009). Thus, 
the arrival probability after exactly r transitions is p1|S|(r) = Pr[Xr = S|S||X0 = S1] and it 
is the 1|S|th element in the matrix Pr.

For the example network, we want to obtain the probability of the arrival node 4 from 
node 1. The arrival probability p15(r) is obtained as shown in Fig. 5 after six transitions. 
For r sufficiently large, the probabilistic behavior of DTMC becomes independent of the 
starting state i.e. Pr[Xr = S|S||X0 = S1] = Pr[Xr = S|S|], that is the multi-step transition 
probability (Ibe 2009).

pkk =

{

1−
∑|S|

j=k+1
pkj if k < |S|

1 if k = |S|.
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The stochastic shortest path 

Now, we extended Shirdel and Abdolhosseinzadeh (2016) method to compute the arrival 
probability for a specific path, it should be considered as the probable shortest path. So, 
it is enough to put some conditions on the leaving probabilities qij, those enforce the 
nodes of the considered shortest path to be reached sooner than the other nodes in the 
network. Thus, the stochastic shortest path is determined as the path which has the larg-
est arrival probability. For path � with node set N� and arc set A�, following changes in 
the network imply that path � is the stochastic shortest path; for all i ∈ N� 

a.	 if j /∈ N� and (j, i) ∈ A� then qji := 0 and qjj := qjj + qji

b.	 if j ∈ N� and (i, j) /∈ A� then qji := 0.

For example, in path 1 → 3 → 4 the changes are q23 := 0, q22 := 1, q14 := 0. For all of the 
paths in the example network: path1: 1 → 4, path2: 1 → 3 → 4, path3: 1 → 2 → 3 → 4 , 
Fig. 5 shows path2 to be the stochastic shortest path with the largest arrival probability.

Numerical results
Some implementations of the proposed method on the networks with different topolo-
gies are presented in this section. The instances are directed acyclic networks and there 
is a path from each node to the destination node. The leaving probabilities of nodes are 
random numbers produced by the uniform distribution probability. Then, the arrival 
probability is computed for the established DTMC. All of the experiments are coded in 
MATLAB R2008a and they are performed on Dell Latitude E5500 (Intel(R) Core(TM) 2 
Duo CPU 2.53 GHz, 1 GB memory). To avoid vague demonstration just the stochastic 
shortest path with the arrival probability computation results are shown by square and 
circle markers in the figures, respectively; whereas, dashed lines are the results for other 
paths.

We use two propositions inductively to be sure there will be a path from the source 
node to the destination node in its initial topology, and the created network is an acyclic 
network.
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Fig. 5  The arrival probabilities of the example network
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Proposition 1   If node k is the first node with larger index than source node 1 
andin-degree(k) = 0, let 1 ≤ l < k is an arbitrary node, then by adding arc (l,  k) there 
exists a path from source node 1 to node k.

Proposition 2   If node k is the first node with smaller index than destination node n and 
out-degree(k) = 0, let k < l ≤ n is an arbitrary node, then by adding arc (k, l)there exists 
a path from node k to destination noden.

Network 1 has an arbitrary topology with 8 nodes and 18 arcs and the leaving prob-
abilities of arcs are shown in Table 2. For the established DTMC on network 1, the size of 
the state space is 47. The absorbing state containing the destination node is accessible by 
at least two transitions.

As shown in Fig. 6, path 4: 1 → 6 → 8 is the stochastic shortest path of network 1 with 
arrival probability 0.6523 among 27 possible paths.

Network 2 and network 3 are grid networks and the leaving probabilities of their arcs 
are shown in Table 3. The size of the state space for the established DTMC on network 2 
is 76 and for network 3 is 49.

The destination node of network 2 is accessible after at least four transitions, and it is 
done for network 3 after at least three transitions.

As shown in Fig.  7, path 11: 1 → 2 → 4 → 8 → 9 is the stochastic shortest path 
of network 2 with arrival probability 0.6535 among 33 paths. For network 3, path 3: 
1 → 2 → 5 → 6 → 9 is the stochastic shortest path with arrival probability 0.3996 
among 6 paths (see Fig. 8).

Table 2  The leaving probabilities of arcs in network 1

(i, j) qij (i, j) qij (i, j) qij

(1,2) 0.0115 (2,5) 0.4622 (5,6) 0.1661

(1,3) 0.2059 (2,7) 0.1531 (5,7) 0.3756

(1,5) 0.0080 (3,5) 0.3232 (5,8) 0.1135

(1,6) 0.7532 (3,8) 0.5544 (6,7) 0.3756

(2,3) 0.0877 (4,5) 0.5714 (6,8) 0.4780

(2,4) 0.1900 (4,6) 0.2184 (7,8) 0.8725

Fig. 6  The arrival probability of network 1
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Network 4 is a complete graph with 9 nodes and 36 arcs and the leaving probabilities 
are shown in Table 4. The size of the state space for the established DTMC on network 4 
is 129.

The obtained arrival probabilities of network 4 are shown in Fig.  9, and path 16: 
1 → 3 → 5 → 9 is the stochastic shortest path with arrival probability 0.4882 among 
128 possible paths.

Table 3  The leaving probabilities of arcs in network 2 and network 3

Network 2 Network 3

(i, j) qij (i, j) qij (i, j) qij (i, j) qij (i, j) qij

(1,2) 0.0397 (3,5) 0.3229 (5,8) 0.1930 (1,2) 0.9035 (5,6) 0.4611

(1,4) 0.7819 (3,6) 0.4969 (5,9) 0.2432 (1,4) 0.0172 (5,8) 0.3773

(1,5) 0.0883 (4,5) 0.0366 (6,8) 0.3481 (2,3) 0.3828 (6,9) 0.8620

(2,3) 0.4905 (4,7) 0.1349 (6,9) 0.6039 (2,5) 0.5076 (7,8) 0.6601

(2,4) 0.1362 (4,8) 0.7921 (7,8) 0.9531 (3,6) 0.6024 (8,9) 0.6725

(2,5) 0.1199 (5,6) 0.3169 (8,9) 0.7373 (4,5) 0.2695

(2,6) 0.1360 (5,7) 0.1909 (4,7) 0.7305

Fig. 7  The arrival probability of network 2

Fig. 8  The arrival probability of network 3



Page 11 of 12Shirdel and Abdolhosseinzadeh ﻿SpringerPlus  (2016) 5:1529 

The obtained arrival probability in a network determines the general situation of the 
network to transmit flow from a source node toward a destination node (Shirdel and 
Abdolhosseinzadeh 2016); however, the presented method precisely determines the path 
with the largest probability amongst all paths.

Conclusions
The arrival probability from a given source node to a given destination node was com-
puted according to the probability of transition from the initial state to the absorbing 
state by multi-step transition probability of the established discrete time Markov chain 
in the original network. The proposed method to obtain the arrival probability deter-
mines that the destination node is accessible for the first time. The stochastic shortest 
path was separately determined which has the largest arrival probability value. So, this 
method can be applied to rank paths of a network by considering their obtained arrival 
probabilities. Also, the proposed method evaluates the reliability of connections in the 
networks. So, it can be used in the shortest path problem with recourse, where locally 
should be decided which path is selected to traverse. The discrete nature of the proposed 
model could apply meta-heuristic methods to reduce the computations. Also, the pro-
posed method can be used for the stochastic problems as a policy evaluation index.

Table 4  The leaving probabilities of arcs in network 4

(i, j) qij (i, j) qij (i, j) qij (i, j) qij (i, j) qij

(1,2) 0.0386 (2,3) 0.0540 (3,5) 0.7742 (4,8) 0.0420 (6,9) 0.4366

(1,3) 0.6457 (2,4) 0.0384 (3,6) 0.0322 (4,9) 0.1813 (7,8) 0.4114

(1,4) 0.0272 (2,5) 0.5310 (3,7) 0.0165 (5,6) 0.0977 (7,9) 0.3568

(1,5) 0.0012 (2,6) 0.0338 (3,8) 0.1278 (5,7) 0.1253 (8,9) 0.6908

(1,6) 0.0979 (2,7) 0.1042 (3,9) 0.0180 (5,8) 0.2494

(1,7) 0.0568 (2,8) 0.0682 (4,5) 0.5820 (5,9) 0.4490

(1,8) 0.0433 (2,9) 0.1101 (4,6) 0.0358 (6,7) 0.1300

(1,9) 0.0443 (3,4) 0.0165 (4,7) 0.1545 (6,8) 0.2981

Fig. 9  The arrival probability of network 4
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