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Background
The multiplicative seasonal autoregressive moving average models, SARMA 
(p, q)× (ps, qs)s, for the univariate time series Zt , t = 1, 2, . . . , n, is defined by

where φ(B) = 1− φ1B
1 − · · ·φpBp and θ(B) = 1− θ1B

1 − · · · θqBq are polynomi-
als in B of degrees p and q respectively, whereas �(Bs) = 1−�1B

s − · · ·φpsBsps and 
�(Bs) = 1−�1B

s − · · ·�qsB
sqs are polynomials in Bs of degrees ps and qs respectively, p 

and q ≥ 0 are the order of the non-seasonal autoregressive, AR, model and moving aver-
age, MA, model respectively, whereas ps and qs ≥ 0 are the order of the seasonal autore-
gressive, SAR, model and seasonal moving average, SMA, model respectively, B is the 
backshift operator on t, and s > 0 is the length of the seasonal period. The white noise 
process at is assumed to be uncorrelated in time with a mean zero; that is, E(at) = 0 and 
E(atat−ℓ) = σ 2δℓ, where σ 2 is the variance and δℓ is the usual Kronecker delta with unity 
at lag ℓ = 0 and zero elsewhere. It is assumed that the model is stationary, invertible and 

(1)�(Bs)φ(B)Zt = �(Bs)θ(B)at ,
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not redundant (Box and Jenkins 1970; Cleveland and Tiao 1976; Brockwell and Davis 
2009; Box et al. 2005).

Under the null hypothesis that the model has been correctly identified the residu-
als, ât, are approximately white noise. When there is no significant autocorrelation in 
the residuals, their sample autocorrelations, r̂ℓ =

∑n
t=ℓ+1 ât ât−ℓ/

∑n
t=1 â

2
t ≈ 0, for 

ℓ = 1, 2, . . . ,m ≤ n− 1, where m is the largest lag considered for autocorrelation. On 
the other hand, when there is autocorrelation present, the autocorrelation values should 
significantly deviate from zero. However, the Box and Pierce (1970) and the Ljung and 
Box (1978) portmanteau test statistics are commonly used to check the lack of fit of 
ARMA models (Li 2004); in many situations, they are implemented to check the lack of 
fit of SARMA models. Using such tests for SARMA models would be misleading and not 
enough as these tests consider the autocorrelations corresponding to the nonseasonal 
lags ≤ m and ignore the possibility of autocorrelations at seasonal lags of multiple period 
s. Despite the popularity of the SARMA  models in various economic time series and 
financial data, the portmanteau tests at seasonal lags 1s, 2s, 3s, . . . ,ms ≤ (n− 1) where 
s is the seasonal period, has not yet received as much attention as it should deserve. 
Recently Duchesne (2007), Ursu and Duchesne (2009) considered serial correlation test-
ing in multiplicative seasonal univariate and multivariate time series models. Duchesne 
(2007) proposed his test statistic based on a kernel-based spectral density estimator of 
Shin (2004), whose weighting scheme is more adapted to autocorrelations associated to 
seasonal lags. Complementary statistics for testing whether the seasonal autocorrela-
tions of the series are different from zero are then needed in literature. In particular, for 
SARMA processes with p ≪ s and q ≪ s where the roots of the equation φ(B)θ(B) = 0 
are not close to the unit circle, McLeod (1978) indicated that the residual autocorrela-
tions at the seasonal lags 1s, 2s, . . . ,ms, where m is any fixed number ≫ 1, may have the 
approximately the same covariance matrix as the first m residual autocorrelations in the 
nonseasonal model

where the order of �(B) and �(B) are ps and qs respectively. Motivated by these facts, we 
introduce a list of new seasonal portmanteau tests that can be used as complementary 
tests to those classical portmanteau tests found in literature. The proposed tests ignore 
lags that are not at multiples of the natural period and consider only relevant autocor-
relations at multiple period lags 1s, 2s, . . . ,ms so that the seasonal test can gain more 
power for some cases where data exhibit a very strong seasonal behavior with a period s 
and insignificant correlations at nonseasonal lags.

In the next section, a brief review of commonly univariate portmanteau tests employed 
for diagnostic checking in ARMA  models is given. In "Portmanteau test statistics for 
SARMA models" section, we modify the usual portmanteau test statistics suggested by 
Box and Pierce (1970), Ljung and Box (1978), Peña and Rodríguez (2002, 2006), Fisher 
and Gallagher (2012), Gallagher and Fisher (2015) to the SARMA class. The approxima-
tion distributions of the proposed tests are derived in "Asymptotic distributions" sec-
tion. In "Simulation studies" section provides simulation experiments demonstrating the 
behaviour of the asymptotic distributions of the proposed test statistics. We close this 
article with "An empirical application" section by introducing an illustrative application 

(2)�(B)Zt = �(B)at ,
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of seasonal data demonstrating the usefulness of the devised tests. We conclude in "Con-
clusion" section with a discussion.

Portmanteau test statistics for ARMA models
The diagnostic portmanteau test for the adequacy of fitted ARMA  models was intro-
duced by Box and Pierce (1970) based on the asymptotic distribution of the residual 
autocorrelations, r̂1, r̂2, . . . , r̂m, where m ≤ n− 1 is the largest selected lag. Their test sta-
tistic is

Ljung and Box (1978) improved the finite sample performance of Box and Pierce (1970) 
by introducing a modified statistic based on standardizing the residual autocorrelations

Peña and Rodríguez (2002) devised a univariate portmanteau test based on the m-th 
root of the determinant of the Toeplitz residual autocorrelation matrix of order m+ 1,

where r̂−ℓ = r̂ℓ for all lags ℓ = 1, 2, . . . ,m. They approximated the distribution of their 
proposed test statistic by the gamma distribution and provided simulation experiments 
to demonstrate the improvement of their statistic in comparison with the one that is 
given by Ljung and Box (1978). Peña and Rodríguez (2006) suggested to modify the gen-
eralized variance test by taking the log of the (m+ 1)-th root of the determinant of R̂m 
given in (5). They proposed two approximations by using the Gamma and Normal distri-
butions to the asymptotic distribution of this test and indicated that the performance of 
both approximations for diagnostic checking in linear models is similar and more pow-
erful for small sample size than the previous one.

Battaglia (1990) noted that the powers of portmanteau tests can be misleading as 
they falsely decrease as m increases. In this light, Lin and McLeod (2006) suggested an 
improvement to Peña and Rodríguez (2002, 2006) statistics using Monte-Carlo version 
as they noted that it is quite often that the test statistic does not agree with the suggested 
Gamma approximation. Mahdi and McLeod (2012) extended Peña and Rodríguez (2002, 
2006) and Lin and McLeod (2006) tests to the multivariate time series. Their univariate 
test statistic is

(3)Qm = n

m
∑

ℓ=1

r̂2ℓ ∼ χ2
m−p−q .

(4)Q̂m = n(n+ 2)

m
∑

ℓ=1

(n− ℓ)−1r̂2ℓ ∼ χ2
m−p−q .

(5)R̂m =









1 r̂1 . . . r̂m
r̂−1 1 . . . r̂m−1

... . . . . . .
...

r̂−m r̂−m+1 . . . 1









,

(6)Dm = −3n(2m+ 1)−1 log |R̂m| ∼ χ2
3m(m+1)(4m+2)−1−p−q

.
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Recently, Fisher and Gallagher (2012) provided a portmanteau statistic consisting of a 
weighted sum of squared of residual autocorrelation terms as follows

where wℓ(.) are the weights putting more emphasis on the autocorrelations correspond-
ing to the smaller lags. They utilized the approximation similar to Peña and Rodríguez 
(2002) and derived the limiting distribution of their weighted portmanteau tests as a 
Gamma distribution. More recently, Gallagher and Fisher (2015) suggested to con-
sider three weighting schemes for the weights in (7). The weighting schemes used in 
their three statistics were: the squared Daniell kernel-based weights as suggested by 
Hong (1996a, b), wℓ = (n+ 2)(n− ℓ)−1K 2(ℓ/m), the geometrically decaying weights, 
wℓ = (p+ q)aℓ−1, for some 0 < a < 1, and the data-adaptive weights which give the fol-
lowing data-adaptive weights test

where the first m0 terms obtain the standardizing weight (n+ 2)/(n− ℓ) from the Ljung-
Box statistic, and the remaining weights selected to be summable wℓ = − log(1− | π̂ℓ |) , 
m0 = min(log(n),M), where M is a finite bound, π̂ℓ is the residual partial autocorrela-
tion at lag ℓ and Daniell kernel function is

Gallagher and Fisher (2015) indicated that the weighted portmanteau tests can be more 
powerful to detect the underfit ARMA models in many situations and less sensitive to 
the choice of the maximum correlation lag, especially when m depends on n comparing 
with the other statistics found from the literature.

Portmanteau test statistics for SARMA models
Replacing r̂ℓ, ℓ = 1, 2, . . . ,m by r̂ℓs, where r̂1s, r̂2s, . . . , r̂ms are the residual autocorrelations 
at the multiple period lags 1s, 2s, . . . ,ms, will easily extend the classical portmanteau test 
statistics to test for seasonality at lags multiple of period s. This modification is justifiable 
under the conditions indicated by McLeod (1978) that we mentioned in the introduc-
tion of this article. We devise a list of new portmanteau tests for diagnostic checking of 
seasonal time series.

The proposed goodness-of-fit tests modify those statistics given in Box and Pierce 
(1970), Ljung and Box (1978), Fisher and Gallagher (2012) and Mahdi and McLeod 
(2012) to the SARMA class, respectively, as follows

(7)Q̃m = n(n+ 2)

m
∑

ℓ=1

wℓ(n− ℓ)−1r̂2ℓ ,

(8)Q̇m = n(n+ 2)

m0
∑

ℓ=1

(n− ℓ)−1r̂2ℓ + n

m
∑

ℓ=m0+1

wℓr̂
2
ℓ ,

K (u) =
{

sin(
√
3πu)/

√
3πu, for |u| < 1;

0, for |u| ≥ 1.

(9)Qm(s) = n

m
∑

ℓ=1

r̂2ℓs
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where

It is worth noting that seasonal process has a spectral representation containing a sto-
chastic periodic component with period s and non infinitesimal contribution to the vari-
ance of the process. Such a periodic component is a linear combination, with random 
weights, of sines with periods s  /  j, where j = 1/2, . . . , s/2. The corresponding contri-
bution to the autocorrelation is a damped sine wave with period s. It follows that the 
autocorrelation may be affected by seasonality at each lag. Thus, the proposed seasonal 
tests are expected to provide more power than the classical portmanteau tests found in 
literature for pure seasonality by ignoring lags that are irrelevant. On the other hand, 
when the correlations at the nonseasonal lags are presented, the classical nonseasonal 
tests will outperform the proposed procedure. This restricts the use of the seasonal tests; 
therefore, we recommend to use the seasonal and nonseasonal test statistics as comple-
mentary to each other.

Asymptotic distributions
The limiting distribution of the resulting seasonal tests are obtained by a straightforward 
extension of those obtained in Box and Pierce (1970), Ljung and Box (1978), Fisher and 
Gallagher (2012), Gallagher and Fisher (2015) and Mahdi and McLeod (2012) and are 
summarized in the following theorems.

Theorem 1  Assume that the SARMA (p, q)× (ps, qs)s model specified as in (1) has i.i.d. 
innovations {at} with mean zero and finite constant variance. For constants m and s, as 
n → ∞, where ms ≤ (n− 1), p, q ≪ s, and the roots of the equation φ(B)θ(B) = 0 are 
not close to the unit circle. When the model has adequately been identified, the test sta-
tistics for lack of SARMA  fit models, Qm(s) and Q̂(s), would for large n approximately 
distributed as χ2

m−ν, where ν = ps + qs.

Proof  Box and Pierce (1970) showed that the vector of the residual autocorrelations 
at nonseasonal lags 

√
nr̂m from a correctly identified and fitted ARMA (p, q) model can 

be asymptotically distributed as a multivariate normal distribution with mean vector 
zero and covariance matrix (Im −Q), where Im is an identity matrix and Q is a matrix 

(10)Q̂m(s) = n(n+ 2)

m
∑

ℓ=1

(n− ℓs)−1r̂2ℓs

(11)Q̃m(s) = n(n+ 2)

m
∑

ℓ=1

wℓs(n− ℓs)−1r̂2ℓs

(12)Dm(s) = −3n(2m+ 1)−1 log |R̂m(s)|

(13)R̂m(s) =









1 r̂s r̂2s . . . r̂ms

r̂−s 1 r̂s . . . r̂(m−1)s

... . . . . . . . . .
...

r̂−ms r̂−(m−1)s r̂−(m−2)s . . . 1








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with rank p+ q. Consider the SARMA model where p ≪ and q ≪ s and the roots of 
the equation φ(B)θ(B) = 0 are not close to the unit circle. McLeod (1978) indicated that 
the vector of the residual autocorrelations at seasonal lags 1s, 2s, . . . ,ms, has approxi-
mately the same distribution of the vector of the residual autocorrelations at nonsea-
sonal lags 1, 2, . . . ,m. Thus, the vector 

√
nr̂ms from a correctly identified and fitted 

SARMA (p, q)× (ps, qs)s model would for large n be distributed as a multivariate nor-
mal with mean vector zero and covariance matrix (Im −Qs), where Qs is a matrix with 
rank ps + qs. It follows that both Qm(s) and Q̂(s) have the same asymptotic distribution 
as χ2

m−ν, where ν = ps + qs.�  �

Theorem  2  Under the assumptions of  Theorem  1, Q̃m(s) converges in distribution 
to 

∑m
i=1 �iχ

2
i , where {χ2

i } denotes a sequence of independent chi-squared random vari-
ables, each with one degree of freedom, and �1, . . . , �m are the eigenvalues of (Im −Qs)M 
with Im an identity matrix, Qs is a projection matrix defined as Qs = X�−1X ′, where 
�−1 is the information matrix for the parameters �1, . . . ,�ps and �1, . . . ,�qs, X is an 
m× (ps + qs) matrix defined similar to McLeod (1978, Eq. (16)) with elements �′, and �′ 
defined by 1/�(B) =

∑∞
i=1�

′
iB

i, and 1/�(B) =
∑∞

i=1�
′
iB

i, and M is an m×m diago-
nal matrix with diagonal weights {1, (m− 1)/m, . . . , 2/m, 1/m}.

Proof  The test statistic Q̃m(s) can be be expressed as quadratic form

where r̂ms = (rs, . . . , rms)
′ is the m× 1 vector of the autocorrelations at seasonal lags and 

M is an m×m diagonal matrix with diagonal elements {1, (m− 1)/m, . . . , 2/m, 1/m}. 
Using the same argument in the proof of the previous theorem, we notice that the vec-
tor 

√
nr̂ms from a correctly identified and fitted SARMA (p, q)× (ps, qs)s model would 

for large n be distributed as a multivariate normal with mean vector zero and covari-
ance matrix (Im −Qs), where Qs is a matrix with rank ps + qs and defined as X�−1X ′, 
where X is an m× (ps + qs) matrix and �−1

s  is the information matrix for the parameters 
�1, . . . ,�ps, and �1, . . . ,�qs.

From the theorem on quadratic forms given by Box (1954, Theorem 2.1), the asymp-
totic distribution of Q̃m(s), as n → ∞, is approximated by

where {χ2
i } is a sequence of independent chi-squared random variables, each with one 

degree of freedom, and �1, . . . , �m are the eigenvalues of (Im −Qs)M, where M is a diag-
onal matrix of size m with diagonal elements {1, (m− 1)/m, . . . , 2/m, 1/m}. � �

Theorem 3  Under the assumptions of  Theorem 1, Dm(s) converges in distribution to 
∑m

i=1 �iχ
2
i , where {χ2

i } denotes a sequence of independent chi-squared random variables, 
each with one degree of freedom, and �1, . . . , �m are the eigenvalues of (Im −Qs)M, where 

Q̃m(s) = nr̂′msMr̂ms,

(14)

m
∑

i=1

�iχ
2
i ,
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Qs is given in Theorem 2 and M is a diagonal matrix of size m with diagonal elements 
{m,m− 1, . . . , 1}.

Proof  As in Mahdi and McLeod (2012), the determinant of the block partitioned 
matrix R̂m(s) is

where η̂2ℓ(s) = r̂′
ℓs
R̂

−1
(ℓ−1)(s)r̂ℓs and r̂ℓs = (rs, . . . , rℓs)

′. It follows that

Taylor expansion of logarithmic function implies

Following the same arguments in proof of Theorem  2, the asymptotic distribution of 
−n log |R̂m(s)| is approximated by

where {χ2
i } is a sequence of independent chi-squared random variables, each with one 

degree of freedom, and �1, . . . , �m are the eigenvalues of (Im −Qs)M, where M is a diag-
onal matrix of size m with diagonal elements m,m− 1, . . . , 1.�  �

It is worth noting that the Dm(s) statistic may be seen as a weighted Ljung and Box 
(1978) considering of the residual autocorrelations at the seasonal lags 1s, 2s, . . . ,ms . 
It essentially has the same characteristics as Q̃m(s) with standardizing weights 
3m(2m+ 1)−1, 3(m− 1)(2m+ 1)−1, . . . , 3(2m+ 1)−1 using the seasonal residuals at 
lags 1s, 2s, . . . ,ms.

From the theorem on quadratic forms given by Box (1954, Theorem 3.1) it follows that 
Q̃m(s) and Dm(s) can be approximated by gamma distribution or aχ2

b , where a and b are 
chosen to make the first two moments agree with those of exact distribution of Q̃m(s) 
and Dm(s). Hence, a =

∑

�
2
i /

∑

�i and b = (
∑

�i)
2/

∑

�
2
i , where,

(15)|R̂m(s)| =
m
∏

ℓ=1

(1− η̂2ℓ(s)),

(16)−n log |R̂m(s)| = −n

m
∑

ℓ=1

log(1− η̂2ℓ(s)),

(17)

−n log |R̂m(s)| = n

m
∑

ℓ=1

∞
∑

k=1

k−1η̂2kℓ (s),

= n

m
∑

ℓ=1

(m− ℓ+ 1)r̂2ℓs + Op(n
−3),

(18)−n log |R̂m(s)| →
m
∑

i=1

�iχ
2
i ,

(19)

m
∑

i=1

�i = tr (Im −Qs)M,

m
∑

i=1

�
2
i = tr (Im −Qs)M(Im −Qs)M.
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where �1, . . . , �m are the eigenvalues of (Im −Qs)M and M is a diagonal matrix of size m 
with diagonal elements {1, (m− 1)/m, . . . , 2/m, 1/m} for the statistic Q̃m(s) and diagonal 
elements {m,m− 1, . . . , 1} for the statistic Dm(s).

So that the seasonal portmanteau test statistic Dm(s) may approximately distributed as 
χ2
b , where b = 3m(m+ 1)(4m+ 2)−1 − ν, whereas the seasonal test statistic Q̃m(s) can 

be approximated as Gamma with shape and scale

respectively, where ν = ps + qs and {wℓ} is the sequence of weights satisfies 
∑∞

ℓ=1 wℓ < ∞.

Simulation studies
The objective of our simulations is to explore the performance of the proposed port-
manteau seasonal tests, Qm(s), Q̂m(s), Q̃m(s), and Dm(s), in finite samples and when the 
sample size grow. We study the empirical type I and type II error rates demonstrating 
the accuracy of the approximation distributions of the proposed seasonal tests in pro-
ducing the correct sizes and conducting a power comparison studies. For each simula-
tion experiment, we determine the critical values from the corresponding asymptotic 
distributions of the proposed seasonal test statistics. One can use the Monte-Carlo test 
procedures, as described by Lin and McLeod (2006) and Mahdi and McLeod (2012), 
to compute these critical values instead of using the approximation distributions. The 
simulations were run on a modern quad-core personal computer using the R package 
portes (Mahdi and McLeod 2015) and WeightedPortTest (Fisher and Gallagher 
2012) that are available from the CRAN website (R Development Core Team 2015).

Comparison of type I error rates

The empirical type I error rates at nominal levels 1, 5, and 10  % for the portmanteau 
seasonal test statistics using the approximation distributions based on 104 simulations 
have been evaluated under the Gaussian SAR (1)s models where s = 4, 12. The results 
were summarized in Table 1 at lags m = 5, and 15 and Fig. 1 at lag m = 10. It is seen that 
seasonal portmanteau test statistic convergence to its asymptotic distribution increases 
as the sample size n increases from 50 to 500 and all proposed statistics have acceptable 
size levels compared to their nominal levels.

Power comparisons

Here, we conduct a power comparison simulation study between the proposed sea-
sonal Q̂m(s), Q̃m(s),Dm(s) statistics where the critical values are calculated from the 
corresponding asymptotic distributions. Table  2 below provides the empirical power 
of these statistics when a series of length n = 200 is generated from a 20 Gaussian 
SARMA (2, 2)× (2, 2)s processes are inadequately fitted by SAR (1)s or SMA (1)s, s = 4 
and 12, and tested at lag m = 10. In each case, the test statistic with the largest power 
has been put in italic to assist the reader. The results in Table 2 indicate that the pro-
posed tests are competitors to each others with no absolute known optimal test that is 
determined.

α = (
∑

wℓ)
2

2(
∑

w2
ℓ − ν)

and β = 2(
∑

w2
ℓ − ν)

∑

wℓ

,
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To compare the empirical power of our proposed seasonal statistics with those clas-
sical statistics found in literature, we generated data from a nonseasonal ARMA  (1,1) 
process Zt = 0.9Zt−1 + at − 0.8at−1 and improperly fit a seasonal moving average 
SMA (1)4. The results are presented on Fig.  2 where the power of these statistics is 
shown as a function of the sample size n and maximum lag m = n/5. We see that in this 
particular case, when the correlations at the nonseasonal lags are presented, the classi-
cal nonseasonal tests in most cases outperform the proposed nonseasonal statistics. For 
this reason, we recommend to restrict the use of our proposed seasonal test statistics as 
complementary (and not as an alternative) to other classical statistics found in literature.

An empirical application
In this section, we make use of the monthly Federal Reserve Board Production Index 
data. Data is available from the R package astsa with the name prodn from Janu-
ary 1948 to December 1978 with 372 observations (Shumway and Stoffer 2011) and 

Table 1  The empirical 1, 5 and 10 % significance levels for different fitted SAR (1)s models, 
with  different SAR  coefficients �1 = 0.1, 0.3, 0.5, 0.7, and  0.9, for  the seasonal portman-
teau test statistics Q̂m(s), Q̃m(s), and Dm(s), where s = 4, 12, n = 200 and lags m = 5, 15

�1 Q̂5(s) Q̃5(s) D5(s) Q̂15(s) Q̃15(s) D15(s)

(s = 4) α = 0.01 0.1 0.010 0.013 0.007 0.013 0.012 0.008

0.3 0.007 0.017 0.007 0.009 0.010 0.007

0.5 0.009 0.010 0.008 0.014 0.007 0.009

0.7 0.010 0.017 0.009 0.014 0.015 0.006

0.9 0.016 0.009 0.009 0.019 0.005 0.007

α = 0.05 0.1 0.050 0.041 0.034 0.051 0.038 0.033

0.3 0.043 0.051 0.039 0.035 0.040 0.037

0.5 0.049 0.049 0.042 0.055 0.039 0.041

0.7 0.049 0.070 0.041 0.068 0.050 0.041

0.9 0.060 0.055 0.044 0.064 0.043 0.042

α = 0.10 0.1 0.091 0.081 0.077 0.109 0.070 0.070

0.3 0.092 0.105 0.089 0.084 0.084 0.088

0.5 0.095 0.087 0.082 0.101 0.081 0.081

0.7 0.093 0.134 0.090 0.106 0.102 0.086

0.9 0.122 0.107 0.085 0.113 0.090 0.088

(s = 12) α = 0.01 0.1 0.018 0.018 0.006 0.014 0.011 0.005

0.3 0.015 0.010 0.007 0.018 0.008 0.007

0.5 0.015 0.018 0.010 0.016 0.012 0.008

0.7 0.019 0.014 0.012 0.015 0.010 0.011

0.9 0.023 0.015 0.008 0.022 0.013 0.009

α = 0.05 0.1 0.070 0.061 0.031 0.046 0.041 0.030

0.3 0.068 0.063 0.044 0.067 0.041 0.040

0.5 0.072 0.070 0.040 0.050 0.047 0.041

0.7 0.075 0.076 0.039 0.069 0.054 0.037

0.9 0.073 0.069 0.043 0.072 0.060 0.038

α = 0.10 0.1 0.119 0.126 0.083 0.088 0.091 0.080

0.3 0.129 0.142 0.090 0.118 0.089 0.121

0.5 0.133 0.140 0.102 0.091 0.104 0.099

0.7 0.150 0.144 0.074 0.114 0.104 0.088

0.9 0.141 0.140 0.088 0.130 0.120 0.111
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displayed in Fig. 3. All p-values from seasonal and nonseasonal tests suggest rejecting 
the null hypothesis, at the significance of 5 % level, that the seasonal and nonseasonal 
autocorrelations of the prodn series are equal to zero. Following Shumway and Stoffer 
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Fig. 1  The empirical 5 % significance level of the seasonal portmanteau test statistics 
Qm(4), Q̂m(4), Q̃m(4), and Dm(4) at lag m = 10, for a fitted SAR (1)4 model to series with lengths 
n = 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 simulated from a Gaussian quarter SAR model with a 
coefficient � = 0.3

Table 2  The empirical power for  a nominal 5  % level test comparing the approximation 
distributions of  the seasonal portmanteau test statistics Q̂m(s), Q̃m(s), and Dm(s), at  lag 
m = 10 based on 104 simulations. In each simulation, the SAR (1)s and SMA (1)s are fitted 
to data of series length n = 200 generated from SARMA (2, 2)× (2, 2)s models where aster-
isk (*) refers to NULL and s = 4, 12

Model φ1 φ2 θ1 θ2 �1 �2 �1 �2 Q̂m(4) Q̃m(4) Dm(4) Q̂m(12) Q̃m(12) Dm(12)

Fitted by SAR (1)

 1 * * * * * * −0.5 * 0.111 0.133 0.129 0.100 0.113 0.119

 2 * * * * * * −0.6 0.3 0.333 0.301 0.389 0.301 0.301 0.356

 3 * * * * 0.7 * −0.4 * 0.087 0.091 0.063 0.084 0.090 0.062

 4 * * * * 0.1 0.3 * * 0.102 0.119 0.120 0.092 0.095 0.089

 5 0.3 * * * −0.35 * * * 0.786 0.663 0.652 0.763 0.641 0.661

 6 0.4 * * * * * −0.8 * 0.961 0.998 0.971 0.951 0.996 0.965

 7 * * * * 0.4 −0.6 0.3 * 0.371 0.401 0.442 0.363 0.396 0.406

 8 0.7 0.2 * * −0.5 * * * 1.000 1.000 1.000 1.000 1.000 1.000

 9 0.7 * 0.7 * −0.8 * * * 0.124 0.096 0.075 0.119 0.094 0.066

 10 0.1 0.3 * * * * −0.8 * 0.867 0.918 0.889 0.844 0.907 0.887

Fitted by SMA (1)

 11 * * * * 0.5 * * * 0.126 0.148 0.150 0.111 0.144 0.143

 12 * * * * * * −0.6 0.3 0.175 0.172 0.264 0.161 0.165 0.244

 13 * * * * 0.7 * −0.4 * 0.382 0.701 0.665 0.378 0.700 0.662

 14 * * * * 0.1 0.3 * * 0.113 0.100 0.211 0.109 0.098 0.203

 15 0.3 * * * −0.35 * * * 0.760 0.689 0.662 0.755 0.679 0.654

 16 0.4 * * * * * −0.8 * 0.958 0.961 0.913 0.953 0.958 0.908

 17 * * * * 0.4 * 0.3 * 0.204 0.367 0.265 0.201 0.295 0.257

 18 0.7 0.2 * * −0.5 * * * 1.000 1.000 1.000 1.000 1.000 1.000

 19 0.7 * 0.7 * −0.8 * * * 0.632 0.761 0.935 0.628 0.757 0.931

 20 0.1 0.3 * * * * −0.8 * 0.779 0.705 0.700 0.770 0.698 0.698
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(2011), we take the seasonal difference of the differenced production data ∇12(Zt − Zt−1) 
and apply the BIC criteria to select the preferred model SARMA (2, 0)× (0, 3)12. Here, 
we are not interested in selecting the best fitted model but the main objective of this 
application is to demonstrate that the proposed seasonal tests are useful for investigating 
whether the autocorrelations of the residual SARMA model at the seasonal period are 
different from zero.

A diagnostic check on the residual series is displayed in Fig. 4, and we note, as indi-
cated by Shumway and Stoffer (2011), that there may be a small amount of nonseasonal 
autocorrelation still remained in the SARIMA  (2, 1, 0)× (0, 1, 3)12 model (not at the 
multiple of the seasonal lags).

We apply the approximation distribution tests for the p-values associated with 
α = 5% of Q̂m(s), Q̃m(s) and Dm(s), on the residuals of the SARIMA (2, 1, 0)× (0, 1, 3)12 
model, where m = 10, 15, and 20 are the lags at seasonal and nonseasonal periods 
s = 12, 1, respectively (Table 3). As seen in Table 3, all seasonal tests indicate that the 
SARIMA  model is good in capturing the seasonal autocorrelations where no period 
autocorrelations are detected at seasonal lags 10, 15, and 20. On the other hand, as noted 
by Shumway and Stoffer (2011), we note that the classical nonseasonal tests (except that 
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Fig. 2  Empirical power as a function of sample size n and maximum lag m = n/5 comparing seasonal (s = 4) 
to nonseasonal (s = 1) tests, where series from nonseasonal ARMA (1,1) with φ1 = 0.9 and θ1 = 0.8 are gener-
ated, and a SMA (1)4 model is fitted
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Fig. 3  Monthly Federal Reserve Board Production Index data
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Dm) indicate that the model SARIMA (2, 1, 0)× (0, 1, 3)12 is inadequate where it does 
not capture the nonseasonal autocorrelations at lag m = 15.

Conclusion
Despite the popularity of the SARMA models in various economic and financial data, 
the goodness-of-fit portmanteau tests at multiple period lags 1s, 2s, 3s, . . . ,ms, where m 
is the largest lag considered for autocorrelation and s is the seasonal period, has not yet 
received as much attention as it should deserve. In literature, the classical nonseasonal 
portmanteau statistics Box and Pierce (1970), Ljung and Box (1978), Peña and Rodríguez 
(2002, 2006), Mahdi and McLeod (2012), Fisher and Gallagher (2012) and Gallagher and 
Fisher (2015) for testing the lack of fit of SARMA  models would be misleading since 
they are only implementing at the nonseasonal lags 1, 2, . . . ,m ignoring the possibil-
ity of autocorrelations at seasonal lags of multiple period s. In this paper, we devise a 
new list of portmanteau statistics for seasonal time series using the asymptotic distri-
bution of the residual autocorrelation at seasonal lags of multiple period s. We modify 
the classical nonseasonal portmanteau tests of the ARMA models mentioned above to 
the SARMA  class with a case of p, q ≪ s and the roots of the equation φ(B)θ(B) = 0 
are not close to the unit circle. We provide simulation studies to demonstrate that the 
asymptotic tests are valid with satisfactorily performance in finite sample. In summary, 
in order to check the adequacy of time series models, we recommend to use the seasonal 
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Fig. 4  Diagnostic plots for residuals of fitted SARMA (2, 0)× (0, 3)12 to monthly difference of the differenced 
Federal Reserve Board Production Index data

Table 3  The SARMA (2, 0)× (0, 3)12 model was fitted to the monthly difference of the dif-
ferenced federal reserve board production index data

The residuals of the fitted model are tested at the seasonal and nonseasonal lags using the portmanteau test statistics 
Qm(s), Q̂m(s), Q̃m(s), and Dm(s) approximations, where s = 1, 12 (for nonseasonal and seasonal respectively) and m = 10, 15, 
and 20

Test m = 10 m = 15 m = 20

s = 12 s = 1 s = 12 s = 1 s = 12 s = 1

Qm(s) 0.822 0.114 0.381 0.030 0.574 0.069

Q̂m(s) 0.744 0.107 0.087 0.024 0.093 0.055

Q̃m(s) 0.824 0.097 0.676 0.033 0.596 0.058

Dm(s) 0.623 0.057 0.520 0.076 0.570 0.054
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and nonseasonal versions of anyone of the portmanteau test statistics Box and Pierce 
(1970), Ljung and Box (1978), Peña and Rodríguez (2002, 2006), Mahdi and McLeod 
(2012), Fisher and Gallagher (2012) and Gallagher and Fisher (2015) as complementary 
to each other.
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