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Background
Information security heavily relies on modern cryptography. Most of the cryptographic 
algorithms are designed to be resistant against attacks. Asymmetric cryptography or 
public-key cryptography is one of the cryptographic primitives based on computation-
ally hard problems. For instance, the RSA algorithm (Rivest et al. 1978) in asymmetric 
cryptography, a large integer number N of more than 300 digits is given, and the task 
is to factorize N to its product of two big prime numbers p and q. This computation-
ally hard problem, which RSA is based on, is called factoring problem, which protects 
the system from attacks by adversaries. Using General Number Field Sieve (GNFS) algo-
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 (Wiener 1990), that can factor 

large integers, is the most efficient attack on a classical computer. Although asymmetric 
cryptosystems that are based on hard problems have been proven secure, they are not 
efficient for the use in real-time encryption of large messages. Thus, one of the main uses 
of RSA is to distribute the secret key shared by two parties that are communicating in a 
secure channel; in this task, the second primitive of cryptography (symmetric cryptogra-
phy or private-key cryptography) performs the real-time encryption.

Abstract 

To evaluate the security of a symmetric cryptosystem against any quantum attack, the 
symmetric algorithm must be first implemented on a quantum platform. In this study, 
a quantum implementation of a classical block cipher is presented. A quantum circuit 
for a classical block cipher of a polynomial size of quantum gates is proposed. The 
entire work has been tested on a quantum mechanics simulator called libquantum. 
First, the functionality of the proposed quantum cipher is verified and the experimental 
results are compared with those of the original classical version. Then, quantum attacks 
are conducted by using Grover’s algorithm to recover the secret key. The proposed 
quantum cipher is used as a black box for the quantum search. The quantum oracle is 
then queried over the produced ciphertext to mark the quantum state, which consists 
of plaintext and key qubits. The experimental results show that for a key of n-bit size 
and key space of N such that N = 2
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In symmetric cryptography, when the symmetric cryptosystem exhibits a good ran-
domness level and the exhaustive search for the secret key is the only attack that can 
break the cryptosystem, the hardness or strength of the cryptosystem is determined 
by the size of the encryption key. A key with n bits size has 2n possibilities of keys and 
therefore O(2n) steps are needed to try all of these possibilities. For example, 2128 opera-
tions are required to try all the possibilities of a 128-bit key, which cannot be achieved 
using conventional or classical computing techniques. Advanced Encryption Standard 
(AES; Stallings 2002) and Data Encryption Standard (DES; Coppersmith et al. 1997) are 
well-known symmetric cryptographic algorithms.

Asymmetric and symmetric cryptography are believed to be secure against any attack 
using classical computers. Unfortunately, this view is no longer valid in the present of the 
quantum mechanics where the calculations are performed based on the behavior of par-
ticles at subatomic levels. Thus, quantum computing poses threats to asymmetric and 
symmetric cryptography. Regarding asymmetric cryptography, in the presence of scalable 
quantum computers, the cryptographic algorithm based on the factoring problem would 
be completely jeopardized (Shor 1997). Various studies have been published on quantum 
number factorization (Lanyon et al. 2007; Markov and Saeedi 2013; Martín-López et al. 
2012; Lucero et al. 2012). Consequently, other alternative solutions besides the factoring 
problem are investigated, such as code-based cryptography and lattice-based cryptogra-
phy (Bernstein et al. 2008). Moreover, some solutions to the key distribution problem have 
come from quantum mechanics and opened the field of quantum cryptography (Nicolas 
et al. 2002; Cláudio and Viana 2010; Mihara 2007; Jeong and Kim 2015).

In the scope of this study concerning symmetric cryptography, the situation remains 
doubtful compared with the clear impact of quantum computing on asymmetric cryp-
tography. The only known and clear quantum threat to symmetric algorithms is that 
the exhaustive key search can be performed more efficiently on the quantum platform 
with quadratic speedup using Grover’s algorithm (Grover 1996). However, the quantum 
exhaustive search attack cannot be applied unless the symmetric algorithm is imple-
mented on the quantum platform. Few studies have been published on quantum sym-
metric cryptanalysis whereas a large number of studies has focused on asymmetric 
cryptography.

One of the first papers on quantum cryptanalysis of block ciphers is by Akihiro 
(2000), who discussed the effect of Grover’s algorithm when used to recover the secret 
key of block ciphers based on the assumption that the block cipher was already imple-
mented on quantum and used the block cipher as a black box for Grover’s algorithm. 
The researchers discussed that the security of a block cipher could be evaluated by using 
Prassarad, Høyer, and Tapp’s quantum algorithm (Brassard et al. 1998).

Roetteler et al. (2015) published a note on quantum-related key attacks based on three 
assumptions: the secret key can be found with a small number of plaintext/ciphertext 
pairs, the block cipher can be implemented efficiently as a quantum circuit, and the 
related keys can be queried in superpositions. The researchers stated that even though 
the attack is powerful, it is unlikely to pose a practical threat because of the difficulties in 
querying the secret keys in superpositions.

In quantum asymmetric cryptanalysis such as RSA, when factoring an integer number 
N into its two prime numbers p and q, implementing the RSA algorithm on a quantum 
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platform is unnecessary. By contrast, when applying a quantum attack on a symmetric 
cipher to determine the secret key, the cipher algorithm must be first implemented on a 
quantum platform. We claim that this is one of the main reasons for the small number 
of published papers on quantum symmetric cryptography compared with asymmetric 
cryptography. Moreover, the few published studies are based on the assumption that the 
symmetric cryptosystem algorithm is implemented efficiently on a quantum platform. In 
this study, a quantum circuit for a classical symmetric cryptosystem is introduced.

This paper is organized as follows: the simplified-DES cryptosystem is introduced in 
second section. A preview on Grover’s algorithm is presented on third section. The pro-
posed quantum circuit is explained in detail in fourth section. The complexity analysis 
is conducted in fifth section. The experimental results are presented and discussed in 
sixth section. Finally, seventh section provides the conclusion and suggestions for future 
research.

Simplified‑DES
Simplified-DES (SDES) is a simple version of the well-known cipher DES developed by 
Schaefer (1996). With small parameters, SDES has similar properties and structure to 
DES (Stallings 2010). The small structure of SDES represents accurately the structure 
of the original DES. Subsequently, SDES is a good case study to represent Feistel class 
block ciphers. It is highly likely that if SDES can be coded into a quantum circuit, then 
a good number of Feistel class block ciphers can be coded into quantum circuit as well. 
The SDES algorithm consists of key generation and encryption function fk as shown in 
Fig. 1.

In the key generation of SDES, two 8-bit subkeys are generated from the main 10-bit 
secret key. First, the key is permuted through P10. Then, the 10-bit key is divided into 
two halves, each with 5 bits. The one-bit left shift (LS-1) is applied to each half and the 
output after the left shifting is combined again. Then, the 10-bit output goes through the 
permutation function P8 to generate the first subkey k1. The combined output after (LS-
1) is separated again and left shifted by two bits through (LS-2). Thereafter, the output 
goes through function P8 to produce the second subkey k2. All of the permutation func-
tions are illustrated in Fig. 2.

The SDES encryption algorithm, as shown in Fig. 1, has only two rounds of encryp-
tion. First, 8-bit plaintext is permuted through the initial permutation function IP. Then, 
the plaintext is divided into two halves. The right half of the plaintext is expanded to 8 
bits by applying the expansion function E/P. Thereafter, the output from E/P is XOR-ed 
with the first subkey. The 8-bit output is then divided into two 4-bit halves. The left half 
is fed to the substitution box (S-box) S0 and the right half goes to S1. The S-boxes S0 and 
S1 are the most complicated components of the SDES algorithm. One S-box can be rep-
resented as a 4 × 4 matrix. The first and fourth bits of the input are considered as a 2-bit 
number used to specify the row of the S-box. The second and the third bits of the input 
specify the column of the S-box. The two S-boxes S0 and S1 are represented as follows:

S0 =







1 0 3 2
3 2 1 0
0 2 1 3
3 1 3 2






S1 =







0 1 2 3
2 0 1 3
3 0 1 0
2 1 0 3






.
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The 4-bit output from S0 and S1 is XOR-ed with the left half of the plaintext to pro-
duce the 4-bit half of the ciphertext. The right 4-bit half of the plaintext is not altered 
in the first round. The switch function SW interchanges the right and left halves before 

Fig. 1  Simplified-DES

Fig. 2  Permutation functions in simplified-DES
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the second round of SDES takes place. The second round is identical to the first round 
except that the second subkey k2 was used instead of k1. Finally, the output of the second 
round is then subjected to the inverse of the initial permutation IP-1 and the ciphertext 
is produced.

Grover’s algorithm
This section presents a view of quantum bits (qubits) and the quantum search algorithm 
(Grover’s algorithm). As a reference, quantum information and unitary transformation 
are discussed in quantum computing introductory books such as David Mermin (2007).

The quantum bit (qubit) is characterized by two orthogonal states |0� and |1�. In con-
trast to classical bit, the qubit can be in a superposition state as follows:

where α and β ǫ C, which representing the amplitude probability such that 
|α|

2
+ |β|

2
= 1 . Those states of the qubit can be expressed as vectors in two-dimensional 

Hilbert space H as:

The quantum search algorithm was discovered by Grover (1996) and named after him. 
Grover’s search algorithm and Shor’s period finding algorithm (Shor 1997), along with 
their extensions, constitute the masterpiece algorithms of quantum computations 
(David Mermin 2007).

Problem definition   Given an unstructured database of N elements, find the element 
a ∈ N . This can be modeled as a function f : {0, 1}n → {0, 1}, where the space N = 2n , 
for any x ∈ {0, 1}n:

When the database is unstructured, the element ‘a’ can be found among N random 
elements (by assuming the uniform probability distribution) with probability of 1  / N. 
Therefore, on a classical computer, O(N ) = O(2n) steps are needed to find ‘a’.

On the other hand, quantum computing using Grover’s algorithm, the element ‘a’ can 
be found with a significant speedup that is quadratically faster than that on any classi-
cal computer. The search through an unstructured database can be accomplished within 
O(

√
N ) computational steps (Boyer et al. 1998; Christof 1999). The procedure of Grov-

er’s algorithm is shown in Algorithm 1. 

(1)|ψ� = α|0� + β|1�

(2)|0� =

(

1
0

)

, |1� =

(

0
1

)

, |ψ� =

(

α

β

)

(3)f (x) =

{

1 if x = a(a solution);
0 otherwise (not a solution).
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Additional discussions with circuit illustration on the oracle and the inversion about 
the mean are conducted in fourth section. All the steps of Grover’s algorithm listed in 
Algorithm 1, can be expressed as follows:

where O is the oracle and R is the number of iterations. Assume there is a function 
f : {0, 1}n → {0, 1} has a unique solution i ∈ {0, 1}n, and N = 2n, the number of itera-
tions R in Eq. 4 is calculated as follows:

In the case when there are multiple solutions (M), R is calculated as follows:

SDES quantum circuit
The proposed quantum circuit of the cipher SDES is shown in Fig.  3. The encryption 
key is composed of ten qubits and another eight qubits defined for the plaintext. Eight 
ancilla qubits can be used for the ciphertext. More ancilla qubits are used for the work 
space to design the quantum SDES circuit which we named Quantum SDES (QSDES). 
Figure 4 illustrates the steps of the first encryption round. In the following subsections, 
each part of the circuit is discussed in detail.

Initial permutation and expansion

In classical computing, the permutation process can be achieved using temporary vari-
ables and then the data can be copied to those temporary variables by changing the indi-
ces. In quantum, fan-out circuit is a good solution to perform quantum permutation 
over the qubits. The powerful fan-out circuit has been studied in detail by Høyer and 

(4)((2|ψ��ψ | − I)O)
R

(5)R =
π

4

√
N .

(6)R =
π

4

√

N

M
.
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Ŝpalek (2005). Both of the initial permutation and the expansion of the right half of the 
plaintext are integrated in one step to minimize the number of quantum gates. Integrat-
ing these two steps is achieved as illustrated in Fig. 5.

The quantum permutation and expansion circuit are shown in Fig.  6. The quantum 
permutation is applied using eight CNOT gates and eight ancilla qubits. The left half 
of the plaintext is copied using the fan-out circuit to other ancilla qubits, and then later 
XOR-ed with the output of the S-boxes. In fact, this step can be ignored and more ancilla 
qubits can be saved; however, for the benefit of the reader, we try to facilitate the com-
parison of the quantum circuit QSDES with the classical SDES.

First subkey generation and key mixing

Similar to DES, subkey generation of SDES involves a group of bit permutations over 
the secret key. Even the left shift rotations can be considered as permutations. Regard-
ing the first subkey, the different permutation steps, namely, P10, LS-1, LS-1, and P8, are 

Fig. 3  The proposed quantum SDES (QSDES)

Fig. 4  The circuit of the first encryption round
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integrated into one step in a similar way as shown in “Initial permutation and expansion” 
section. Figure 7 shows how the first subkey is generated in one step. Then, the gener-
ated subkey k1 is XOR-ed with the expanded plaintext using 8 CNOT gates.

Fig. 5  Integrating IP and E/P in one step

Fig. 6  IP and E/P circuit

Fig. 7  Integrating first subkey permutations into one single step
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The quantum substitution boxes

The quantum S-boxes (QS-boxes) are the most complicated parts of the entire circuit of 
QSDES and they require a larger number of quantum gates. The quantum gates are still 
considered to be a polynomial circuits, as discussed in the complexity analysis section. 
In general, S-boxes are essential components in symmetric algorithm because they sat-
isfy the Shannon property of confusion (Shannon 1949). The confusion property hides 
the relation between the secret key and the ciphertext; this property has to be achieved 
even in the quantum platform when the key is in a superposition.

The S-boxes can be categorized into two types: statistically defined S-boxes and 
dynamically key-dependent generated S-boxes. Moreover, the statistically defined 
S-boxes can be generated dynamically by different methods such as hand crafted, math-
ematically generated data dependent, etc. (Stallings 2002). Concerning memory space, 
the S-boxes can be generated dynamically at the run time or can be predefined statisti-
cally. Conversely, the key-dependent dynamically generated S-boxes, such as Blowfish 
(Schneier 1993) and Twofish (Schneier et al. 1999) ciphers, as well as the elements of the 
S-boxes, continue changing in accordance with the secret key.

In the case of SDES, the S-boxes are predefined statistically. In the following context, 
the design of the Quantum S-box (QS0) is discussed in details while the second quan-
tum S-box (QS1) is omitted as the only difference is in the values of the elements of the 
S-box. The table of QS0 which shown in Table 1, is rewritten as a lookup table derived 
from the matrix of Eq. 2.

As shown in Table 1, the 16 possible inputs of the 4-bit input are listed with the cor-
responding 2-bit output of each input. The quantum circuit of QS0 is presented in Fig. 8. 
As the output of QS0 is two qubits, one of the four states 00, 01, 10, and 11 could be 
expected or all of these four states could be the output simultaneously with equal proba-
bilities. In the circuit shown in Fig. 8, the first top four qubits are the input of QS0. Then, 
three ancilla qubits are needed for the work space and two qubits for the output.

The circuit, when the input is 4 and the output state is 11, is detailed in Fig. 9. First, 
the binary representation of 4 (0100) is implemented using Pauli X gates to represent 
0. Thereafter, three Toffoli gates are used to compose the Boolean circuit. The ancilla 
qubits Out1 and Out2 are triggered to the state 1 if the input to QS0 is 4. According to 
the lookup table (Table  1), the input 4 provides the output 11; therefore, the ancilla 
qubits Out1 and Out2 need to be triggered using two CNOT gates as shown in the circuit. 
Thereafter, the three Toffoli gates are applied again to reverse the process.

XOR‑ing the right half of the plaintext

The output four qubits from QS0 and QS1 are permuted through P4 as in the original 
classical algorithm. The output after the quantum permutation of P4, is XOR-ed with the 
right half of the plaintext by using four CNOT gates. P4 is performed in a similar way as 
in the previous subsections. All of the steps in the previous subsections, from plaintext 
expansion to the last process, are reversed, as shown in Fig. 4. In this proposed design, 
no garbage qubits hold states. All of the ancilla qubits will be reused in the next encryp-
tion round. Therefore, those qubits must be returned to their initial states.
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The switch function

The first round of SDES alters the left half of the plaintext, whereas the right half is 
untouched. The switching function is constructed using four quantum SWAP gates to 
interchange the four qubits on the left with the four qubits on the right. A quantum 
SWAP gate can be constructed from three CNOT gates, which means that 12 CNOT 
gates are needed for the switch function.

The second encryption round

Because of the reversal process, all of the work space ancilla qubits are set to their ini-
tial states, which make them reusable for the second round of encryption. Only ancilla 
qubits that hold the produced ciphertext of the first round cannot be used. The second 
encryption round is performed similarly to the first round. It takes the input qubits after 
SW and produces the output ciphertext in the last ancilla qubits. In contrast to the first 
round, no IP involved in this round; thus, the round starts with plaintext expansion 
function E/P.

The last function in classical SDES is the permutation function IP−1, which is the 
inverse of the IP function. This function is integrated within the second round in the 
same way as the IP is integrated in the first round. Finally, all the steps involved in this 
round are inversed, as shown in Fig. 3. For instance, the key qubits are |K �

⊗10, the plain-
text qubits are |P�⊗8, and the ciphertext are in the last ancilla qubits |C�⊗4 and |C�⊗4.

Table 1  QS0 lookup table

Input 0010 0111 1000 0000 0101 1011 1100 0011 0110 1010 1111 0001 0100 1001 1101 1110

Output 00 00 00 01 01 01 01 10 10 10 10 11 11 11 11 11

Fig. 8  QS0 circuit as illustrated in Table 1

Fig. 9  Circuit of the state 4 of S0
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Black box of quantum search

The QSDES circuit is designed with consideration of the fact that the entire circuit will 
be used as a black box or Oracle for Grover’s quantum search. Thus, no garbage qubits 
are involved in the circuit such that for every iteration of Grover’s algorithm, all the 
qubits return to their initial states, resulting in multiple levels of reversibility in the cir-
cuit. The first reversibility level is within the quantum S-boxes where the processes are 
reversed. The second reversibility level is within every encryption round, and the third 
level of reversibility is when the complete round is reversed (in case of the first round).

Grover’s algorithm, as mentioned in third section, searches for a marked element(s) 
through many different input states of equal probabilities. In a quantum exhaustive key 
search attack, the input is a chosen plaintext and its corresponding ciphertext, and the 
output is the secret key. The complete quantum exhaustive search for the encryption key 
is shown in Fig. 10.

First, the 10 key qubits (k0 − k9) are initialized to state 0 and the plaintext qubits 
(p0 − p7) are set according to the chosen plaintext. In the circuit shown in Fig. 10, the 
chosen plain text is (0001 0000). All other ancillas, which are used as work space, are set 
to 0. One more ancilla qubit is needed as an oracle qubit, which is set to 1 using Pauli X 
gate. The |ψ0� phase is at the initialization step and the quantum register is as illustrated 
by Eq. 7.

Hadamard operators H are applied for every key qubit (k0 − k9). For equivalency, Had-
amard gates H⊗k are applied to create equal superpositions for all possible states of the 
key. In addition, another Hadamard operator is applied to the oracle qubit. The quantum 
register at |ψ1� is shown in Eq. 8.

(7)

|ψ0� = |K �
⊗10

⊗ |P�⊗8
⊗ |q�

= |k9k8k7k6k5k4k3k2k1k0� ⊗ |p7p6p5p4p3p2p1p0� ⊗ |q�

= |0000000000� ⊗ |00010000� ⊗ |1�

Fig. 10  Quantum search for the encryption key of QSDES
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The chosen ciphertext is implemented in the circuit before the Grover oracle takes place. 
The corresponding ciphertext of the plaintext (0001 0000) is (0011 0011). The circuit in 
Fig. 11 illustrates the implementation of the ciphertext.

In classical computing, the SDES algorithm can be expressed as the following:

where K is the key, P is the plaintext, and C is the output ciphertext. Similarly, in quan-
tum the QSDES algorithm can be expressed the same way when there is no superposi-
tion involved:

However, when the key is in superposition, all the possible ciphertexts encrypted by 
all possible 10-qubit keys for the chosen plaintext can be produced at once. Therefore, 
QSDES with key in superposition can be expressed as follows:

(8)

|ψ1� = H |K �
⊗10

⊗ |P�⊗8
⊗H |q�

=
1

√
K

K−1
∑

i=0

|ki� ⊗ |00010000� ⊗
|0� − |1�

√
2

=
1

√
210

210−1
∑

i=0

|ki� ⊗ |00010000� ⊗
|0� − |1�

√
2

=
1

32

1024−1
∑

i=0

|ki� ⊗ |00010000� ⊗
|0� − |1�

√
2

(9)SDES(K ,P) = C

(10)QSDES

(

9
⊗

i=0

Ki,

7
⊗

i=0

Pi

)

=

7
⊗

i=0

Ci

(11)QSDES

(

H

(

9
⊗

i=0

Ki

)

,

7
⊗

i=0

Pi

)

=

1024−1
∑

i=0

(

7
⊗

i=0

Ci

)

Fig. 11  Ciphertext implementation circuit (CTXT)
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Thus, at phase |ψ2�, all the expected ciphertext generated by all possibilities of the 
10-qubit key for the chosen plaintext are produced. In fact, the quantum oracle is 
applied over the ciphertext, not the key itself. However, according to the oracle answer, 
the whole quantum state is influenced. Therefore, the oracle shown in Algorithm  1 is 
rewritten as the following equation:

Therefore, once the chosen ciphertext is found, the oracle flips the quantum state that 
includes the target ciphertext in the quantum register. For instance, the secret key we 
are looking for is marked at phase |ψ3�. All of the previous steps are reversed and all the 
qubits in the quantum register are set to their initial values at phase |ψ4�.

Grover operator or the inversion about the mean is also called Conditional Phase Flip 
(CPF). CPF circuit which shown in Fig. 10, is illustrated in detail in Fig. 12. At this phase, 
the marked state in the quantum register, which has a different phase from other states, 
is constructively interfered, whereas all other states in the quantum register are distrac-
tively interfered.

Complexity analysis
The complexity analysis is conducted in term of computing the size of the quantum gates 
used in the proposed circuit (size of the circuit). The calculations are performed with 
respect to subkey size (Ks), plaintext size (Ps), number of rounds (Rn), number of permu-
tation functions (Pn), input size of S-box (Sin), and output size of S-box (Sout). Regarding 
the key generation process for SDES, since all steps of generating one subkey are inte-
grated in one step then 8 CNOT gates are needed corresponds to the size of the subkey. 
Since there are two encryption rounds then the number of CNOT gates = Rn × Ks.

The encryption function of QSDES consists of four permutation steps (XOR-ing left 
half of PTXT, E/P, P4, and XOR-ing the right half of PTXT), key XOR-ing, and two sub-
stitution processes (S0 and S1). The key XOR-ing is already calculated when computed 

(12)
|ψ3�

O
−→ (−1)f (k)|ψ�

|ψ3�
O
−→ (−1)QSDES(Pi ,Ci)(k)|ψ�

Fig. 12  Conditional phase flip circuit (CPF)
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the circuit size of the key generation which is 8 CONT gates. The E/P permutation func-
tion needs 8 CNOT gates. Each of the other permutation functions needs 4 CNOT gates 
corresponds to the half of the plaintext size. Therefore, the circuit size of the permuta-
tion functions can be expressed as number of CNOTs = (Pn × Ps)/2.

The largest number of quantum gates used is in the substitution process. Every S-box 
of QSDES has 16 states corresponds to the size of the input to the S-box which is 24. 
Each state of them needs X Pauli gates to implement the zeros. Thus, approximately 32 
X Pauli gates are needed for the 16 states. In addition, every state needs 3 Toffoli gates 
and 2 CNOT gates. Therefore, for the 16 states of one S-box, 16× 3 = 48 Toffoli gates 
and 16× 2 = 32 CNOT gates are used. Thus, the total number of quantum gates needed 
is:

• • number of X Pauli gates = 2Sin × 2 = 16× 2,
• • number of Toffoli gates = 2Sin × Sin − 1 = 16× 3, and
• • number of CNOT gates = 2Sin × Sout = 16× 2.

The total number of all used gates is then multiplied by 2 for the reversal process within 
the S-box. In addition, for the reversal process within every round, the total number of 
gates is multiplied by 2. The conducted complexity analysis provides an evidence that the 
SDES can be implemented efficiently with a polynomial size of quantum gates. Although 
the largest number of used gates is in S-box design which is exponentially related to the 
input size of the S-box but this can be considered as a polynomial since most of the 
block ciphers have S-boxes of input size of 28 or less such as AES, Blowfish, Towfish, etc.

Experiments and results
In this section, the quantum simulation used in this study is briefly introduced and the 
simulation results are interpreted. Then, the functionality of the proposed QSDES is ver-
ified and compared with SDES. The quantum exhaustive search results are shown in the 
last subsection.

Simulation of quantum mechanics

The C library (libquantum; http://www.libquantum.de/) is used to simulate the QSDES 
and to apply the quantum search. Libquantum offers high performance and low mem-
ory consumption. To interpret the result of libquantum, we present the following values 
of the quantum register at phase |ψ0�, which is the initialization stage of the circuit in 
Fig. 10:

The preceding results are interpreted as follows:

1.	 This is the probability amplitude of the states of the quantum register. It is a complex 
number in Hilbert space. It is also used to calculate the probabilities regarding the 
state in which the quantum system will settle.

(13)(

a
︷ ︸︸ ︷

1.000000+

b
︷ ︸︸ ︷

0.000000i)
︸ ︷︷ ︸

1

|16�
︸︷︷︸

2

(1.000000e + 00)
︸ ︷︷ ︸

3

|

a
︷ ︸︸ ︷

0000000000

b
︷ ︸︸ ︷

00010000�
︸ ︷︷ ︸

4

http://www.libquantum.de/
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(a)	 The real part of the complex number,
(b)	 The imaginary part.

2.	 This is the integer representation of the qubits states. For example 
|16� = |000000000000010000�. In this simulation, the ancilla qubits will appear in 
this number.

3.	 These are the calculated probabilities of the qubit states by making use of the ampli-
tude in 1.

4.	 These are the qubits being defined in the quantum register. In contrast to 2, this is 
the binary representation of the qubits. Ancilla qubits (if any), do not appear in this 
part of the result. This part also shows that the register width is the number of qubits.

(a)	 Key qubits,
(b)	 Plaintext qubits.

To summarize, the result in the shown example can be interpreted in the sense that the 
quantum register has only one state |000000000000010000� of probability of 1. All other 
states of the quantum system in the Hilbert space H⊗18, have 0 probability. From now 
on, only the quantum states and the associated probabilities are presented.

QSDES functionality

In Table  2, the results of three arbitrary plaintext and keys of the classical SDES and 
QSDES are illustrated.

The resultant ciphertexts of the three arbitrary examples listed in Table 2 are identical 
for both classical and quantum platforms, which proves that the proposed QSDES works 
precisely as the classical SDES. Moreover, Table 3 shows the results of the QSDES when 
the key qubits are in superpositions. The plaintext (1001 1010) is encrypted simultane-
ously by all possible keys with only one query of QSDES, which is called natural paral-
lelism. In Table 3, 1024 possibilities correspond to the key size, which is 10 qubits, are 
shown. Each state has a probability of 9.765623× 10−4.

Quantum exhaustive key search

According to Eq. 5 in third section, the number of needed queries (Grover iterations) to 
find the secret key is calculated as follows:

Table 4 illustrates the results of the quantum exhaustive search for the encryption key 
that used to encrypt the plaintext 0001 0000 and produced the ciphertext 0011 0011 
with 25 Grover iterations.

Table  4 shows that the state |1 1100010011 0001000� has the highest probability 
0.9994553, whereas all the other states have very low probabilities of 5.266659× 10−07 . 
Therefore, the secret key 11 0001 0011 is found in 25 queries in quantum compared to 

(14)

R =
π

4

√
N

=
π

4

√
1024

≈ 25.13
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an average of 1023 queries in classical computing. The results of this experiment are 
illustrated in Fig. 13.

Surprisingly, the quantum attack was a highly competent in detecting the collision of 
multiple keys that can encrypt a particular plaintext and produce the same ciphertext. 
Consider k1 �= k2, but SDES(k1,Pi) = SDES(k2,Pi) = Ci. This kind of collision happens 
when the key length is larger than the plaintext length. On a classical computer, finding 
this type of collision is difficult whereas finding it on a quantum computer is easy. Fur-
thermore, the existence of two or more keys that can encrypt a particular plaintext and 
produce the same ciphertext can make the quantum search much faster because multi-
ple solutions or marked elements are available for Grover’s algorithm to search through. 
Table 5 presents the experimental results when two keys produce the same ciphertext.

The quantum search in this experiment has been accomplished with only 18 Grover 
iterations. The number of iterations in case when there are two solutions (M = 2), is cal-
culated according to Eq. 6 in third section as follows:

Table 2  QSDES functionality test

Plaintext Classical Quantum

Key Ciphertext Key and ciphertext Probability

0001 0000 11 0001 0011 0011 0011 |1100010011 00110011� 1

1110 1100 00 1110 1100 1110 0000 |0011101100 11100000� 1

1011 0001 10 0111 1001 0001 1100 |1001111001 00011100� 1

Table 3  QSDES results when key is in superposition

Plaintext Key and ciphertext Probability

0 1001 1010 |0000000000 11111001� 9.765623× 10
−04

1 1001 1010 |0000000001 01010001� 9.765623× 10
−04

2 1001 1010 |0000000010 01101001� 9.765623× 10
−04

.

.

.

.

.

.

.

.

.

.

.

.

1022 1001 1010 |1111111110 11100110� 9.765623× 10
−04

1023 1001 1010 |1111111111 00001011� 9.765623× 10
−04

Table 4  Quantum exhaustive key search

Ciphertext Oracle qubit and key and plaintext Probability

0 0011 0011 |1 0000000000 00010000� 5.266659× 10
−07

1 0011 0011 |1 0000000001 00010000� 5.266659× 10
−07

.

.

.

.

.

.

.

.

.

.

.

.

787 0011 0011 |1 1100010011 00010000� 0.9994553
.
.
.

.

.

.

.

.

.

.

.

.

1022 0011 0011 |1 1111111110 00010000� 5.266659× 10
−07

1023 0011 0011 |1 1111111111 00010000� 5.266659× 10
−07
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As shown in Table 5, the chosen plaintext in the experiment is 1010 0101 and the corre-
sponding ciphertext is 0011 0110. The table indicates that the two keys 0010010111 and 
0011011111 have the highest probability of 0.4978935 each, whereas all other remaining 
states in the quantum register have a very low probability of 4.118168× 10−06 each. Fig-
ure 14 illustrates the results of this experiment.

Conclusion and future works
Quantum computing has rendered most of the classical asymmetric cryptosystems 
unsafe. However, the quantum threats to symmetric cryptosystems have not been inves-
tigated thoroughly compared with the asymmetric y cryptography. We claim that one of 
the reasons for the lack of studies on quantum cryptanalysis is that the symmetric algo-
rithm must be implemented first on a quantum platform before the security strength 
of such a cryptosystem against any quantum attack can be evaluated. In this study, we 
proposed a method to fill the research gap between quantum computing and symmetric 
cryptography by presenting for the first time a quantum circuit for a classical symmetric 
cipher. The simplified DES cipher is used as a case study. The SDES is implemented on 
a quantum platform as a quantum circuit of a polynomial number of quantum gates. 
The entire study was tested on the quantum mechanics simulator libquantum. The 
functionality of the proposed design has been examined and proven by comparing the 
experimental results of the quantum SDES with that of the classical SDES. In addition, a 

(15)
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π
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M
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π
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1024
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Fig. 13  The probabilities of all possible keys for 10-bit key size. The keys are represented in decimal format. 
The chosen plaintext in this experiment is 00010000, and the ciphertext is 00110011. After 25 Grover itera-
tions, the state 1100010011 (787 in decimal) is detected with probability of 0.9994553



Page 18 of 19Almazrooie et al. SpringerPlus  (2016) 5:1494 

quantum attack using Grover’s search algorithm has been conducted. The experimental 
results shows that the key can be recovered in π4

√
N  computational steps.

The S-boxes of SDES and other ciphers are the most complicated components. In 
SDES, the S-boxes are statically predefined and implemented in this study as quantum 
circuits. The other types of S-boxes, specifically key-dependent dynamically generated 
ones, are interesting subjects to be investigated in the future.
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Table 5  Quantum exhaustive key search when there are multiple solutions

Ciphertext Oracle qubit and key and plaintext Probability

0 0011 0110 |1 0000000000 10100101� 4.118168× 10
−06

1 0011 0110 |1 0000000001 10100101� 4.118168× 10
−06

.

.

.

.

.

.

.

.

.

.

.

.

151 0011 0110 |1 0010010111 10100101� 0.4978935
.
.
.

.

.

.

.

.

.

.

.

.

223 0011 0110 |1 0011011111 10100101� 0.4978935
.
.
.

.

.

.

.

.

.

.

.

.

1022 0011 0110 |1 1111111110 10100101� 4.118168× 10
−06

1023 0011 0110 |1 1111111111 10100101� 4.118168× 10
−06

Fig. 14  The probabilities of all possible keys for 10-bit key size. The keys are represented in decimal format. 
The chosen plaintext in this experiment is 10100101, and the ciphertext is 00110110. After 18 Grover itera-
tions, the state 0010010111 (151 in decimal) and state 0011011111 (223 in decimal) are detected with prob-
ability of 0.4978935 each
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