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Background
There has been a recent interest in adaptive algorithms to handle sparsity in various 
signals and systems (Gu et  al. 2009; Chen et  al. 2009; Babadi et  al. 2010; Angelosante 
et al. 2010; Eksioglu 2011; Eksioglu and Tanc 2011; Kalouptsidis et al. 2011). The idea 
is to exploit a priori knowledge about sparsity in a signal that needs to be processed for 
system identification. Several algorithms based on the least-mean square (LMS) (Gu 
et al. 2009; Chen et al. 2009) and the recursive least squares (RLS) (Babadi et al. 2010; 
Angelosante et al. 2010; Eksioglu 2011; Eksioglu and Tanc 2011) techniques have been 
reported with different penalty or shrinkage functions. In a broad range of signal pro-
cessing applications, not only the system output is corrupted by measurement noise, but 
also the measured input signal may often be corrupted by the additive noise due to such 
as sampling error, quantization error and wide-band channel noise. However, the algo-
rithms for sparsity can handle only the corrupted output case. It is necessary to derive an 
algorithm to handle a noisy case of both noisy input and noisy output (i.e. the error-in-
variables problem).

One of the potential counterparts to handle the error-in-variables problem is the total-
least-squares estimator (TLS) that seeks to minimize the sum of squares of residuals on 
all of the variables in the equation instead of minimizing the sum of squares of residuals 
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on only the response variable. Golub and Van Loan introduced the TLS problem to 
the field of numerical analysis (Golub and Loan 1980); consequently, other research-
ers have developed and analyzed adaptive algorithms that employ the TLS formulation 
and its extensions (Dunne and Williamson 2000, 2004; Feng et al. 1998; Arablouei et al. 
2014; Davila 1994; Arablouei et al. 2015). Recursive based algorithms were also studied 
along with adaptive TLS estimators (Soijer 2004; Choi et al. 2005). The algorithms were 
denoted as recursive total least squares (RTLS) or sequential total least squares (STLS). 
These algorithms recursively calculate and track the eigenvector corresponding to the 
minimum eigenvalue (the TLS solution) from the inverse covariance matrix of the aug-
mented sample matrix. Some TLS based algorithms were proposed for the sparse sig-
nal processing (Tanc 2015; Arablouei 2016; Zhu et al. 2011; Dumitrescu 2013; Lim and 
Pang 2016). The algorithms in Tanc (2015), Arablouei (2016) utilized the gradient based 
method. The algorithms in Zhu et al. (2011), Dumitrescu (2013) were based on the block 
coordinate descent method. In Lim and Pang (2016), the TLS method was applied to 
handle the group sparsity problem.

In this paper, we consider the ℓ1 regularization for the RTLS cost function, in which 
the recursive procedure is derived from the generalized eigendecomposition method in 
Davila (1994) and Choi et al. (2005), and the regularization approach outlined in Eksio-
glu and Tanc (2011) is used in order to handle the sparsity. We develop the update algo-
rithm for the ℓ1-regularized RTLS using results from subgradient calculus. As a result, 
we propose the algorithm superior to the algorithm of Eksioglu and Tanc (2011) in the 
error-in-variables. We also reduce the total complexity by utilizing the inverse matrix 
update effectively. The proposed algorithm improves the sparse system estimation per-
formance in the error-in-variables with only a little additional complexity. We provide 
simulation results to examine the performance of the proposed algorithm in comparison 
with the algorithm of Eksioglu and Tanc (2011).

Sparse system identification problem
In the sparse system identification problem of interest, the system observes a signal rep-
resented by an M × 1 vector x(k) = [x1(k), . . . , xM(k)]T at time instant k, performs fil-
tering and obtains the output y(k) = xT (k)wo(k), where wo(k) = [w1(k), . . . ,wM(k)]T is 
an M–length finite-impulse-response (FIR) system that represents the actual system. For 
system identification, an adaptive filter with M coefficients ŵ(k) is employed in such a 
way that observes x(k) and produces an estimate ŷ(k) = xT (k)ŵ(k). The system identifi-
cation scheme then compares the output of the actual system y(k) and the adaptive filter 
ŷ(k), resulting in an error signal e(k) = y(k)+ n(k)− ŷ(k) = ỹ(k)− ŷ(k), where n(k) is 
the measurement noise. In this context, the goal of an adaptive algorithm is to identify 
the system by minimizing the cost function defined by

The gradient based minimization derives the following equation.

(1)ŵ = arg min
ŵ

1

2

k
∑

m=0

�
k−m

(e(m))
2.

(2)�(k)ŵ(k) = r(k),
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where �(k) =
∑k

m=0 �
k−mx(m)xT (m) and r(k) =

∑k
m=0 �

k−mỹ(m)x(m). This equation 
is the matrix form of the normal equations for least squares solution.

Especially, we call M-th order wo(k) sparse system, when the number of nonzero coef-
ficients K ≪ M. In order to estimate the M-th order sparse system, most estimation 
algorithms exploit non-zero coefficients of the system to obtain performance benefits 
and/or a computational complexity reduction (Gu et al. 2009; Chen et al. 2009; Babadi 
et al. 2010; Angelosante et al. 2010; Eksioglu 2011; Eksioglu and Tanc 2011).

ℓ1‑regularized RTLS (recursive total least squares)
In TLS, we assume a given unknown system that both the input and output are cor-
rupted by noise. The system should be estimated from the noisy observation of the input 
and the output (Fig. 1). In this system output is given by:

where the output noise no(k) is the Gaussian white noise with variance σ 2
o  and independ-

ent of the input signal. The noisy input of the system is given by:

where the input noise ni(k) is the Gaussian white noise with variance σ 2
i .

For TLS solution, the augmented data vector is considered as:

And its covariance matrix has the following structure:

where p = E
{

x̃(k)y(k)
}

 and c = E
{

y(k)y(k)
}

, R̃ = E
{

x̃(k)x̃T (k)
}

= R + σ
2
i I , R =

E
{

x(k)xT (k)
}

. In Davila (1994) and Choi et al. (2005), the TLS problem is thus reduced 
to finding the eigenvector that is associated with the smallest eigenvalue of R̄ . The 

(3)ỹ(k) = x̃T (k)wo + no(k),

(4)x̃(k) = x(k)+ ni(k),

(5)x(k) =
[

x̃T (k), ỹ(k)
]T

∈ R (M+1)×1.

(6)R =

[

˜R p

pT c

]

,

Fig. 1  The model of noisy input and noisy output system



Page 4 of 9Lim and Pang ﻿SpringerPlus  (2016) 5:1460 

following equation is the simplified cost function to find the eigenvector that is associ-
ated with the smallest eigenvalue of R̄.

where D =

[

I 0

0 γ

]

 with γ = σ
2
o

σ
2
i

. Minimum value of (7) is recognized as the smallest 

generalized eigenvalue of R (Dunne and Williamson 2004). Therefore, we can find the 
eigenvector associated with the smallest eigenvalue. The smallest eigenvector can also be 
derived from the maximization of (8).

We adopt the modified cost function by the addition of a penalty function. This pen-
alty function can be chosen to reflect a priori knowledge about the true sparsity system.

where γ is the regularized parameter in Eksioglu and Tanc (2011). We adopt the ℓ1 pen-
alty function as follows:

We solve the equations by ∇w̃J (k) = 0,

where R̄(k) = �R̄(k − 1)+ x̄(k)x̄H (k), w̃(k) =
[

ŵT
(k),−1

]Tand ŵ(k) is the esti-
mation result for the unknown system at k-th time step. The subgradient of f (w̃) is 
∇s�w̃�1 = sgn(w̃) (Babadi et al. 2010; Kalouptsidis et al. 2011), and sgn (·) is the com-
ponent-wise sign function. In (11), the regularized parameter,γk, is time-varying, which 
governs a tradeoff between the approximation error and the penalty function. From (11), 
we obtain

And we obtain the estimated parameter of the unknown system as

(7)J̃ (w) = w̃TRw̃

w̃TDw̃
= [wT ,−1]R[wT ,−1]T

[wT ,−1]D[wT ,−1]T
,

(8)J̃(w) = w̃HDw̃

w̃HRw̃
= [wH ,−1]D[wT ,−1]T

[wH ,−1]R[wT ,−1]T
.

(9)J̃ (w) = [wH ,−1]D[wT ,−1]T
[wH ,−1]R[wT ,−1]T

+ γ f (w̃) = w̃HDw̃

w̃HRw̃
+ γ f (w̃),

(10)f (w̃) = �w̃�1 =
M−1
∑

i=0

∣

∣w̃i

∣

∣.

(11)

∇w̃J (k) = 0 :
Dw̃(k)

(

w̃H
(k)R(k)w̃(k)

)

(

w̃H (k)R(k)w̃(k)
)2

−
w̃H

(k)Dw̃(k)
(

R(k)w̃(k)
)

(

w̃H (k)R(k)w̃(k)
)2

+ γk∇f (w̃(k)) = 0.

(12)

w̃(k) = w̃H
(k)R(k)w̃(k)
∥

∥w̃(k)
∥

∥

2

(

R
−1

(k)w̃(k)
)

+ γk

(

w̃H
(k)R(k)w̃(k)

)2

∥

∥w̃(k)
∥

∥

2
R
−1

(k)∇f (w̃(k)).

(13)ŵ(k) = −w̃1:M(k)/w̃M+1(k).
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As the estimated unknown system can be derived from the ratio between w̃M+1(k) and 
the elements in w̃1:M(k), the normalization of w̃(k) as w̃(k) = w̃(k)/

∥

∥w̃(k)
∥

∥ keeps the 
same solution in (13) as well as numerical stability in the iteration. By applying the nor-
malization of (12) becomes,

In addition, we can approximate (14) as follows.

where R̄(k) = �R̄(k − 1)+ x̄(k)x̄H (k). In (15),

In (11), we apply the same γk in Eksioglu and Tanc (2011).

where ŵaug (k) =
[

ŵT (k),−1
]T, ŵaug ,RLS(k) =

[

ŵT
RLS(k),−1

]T, ε(k) = ŵaug (k)−ŵaug ,RLS(k),  
and ŵRLS(k) is the parameter estimated by recursive least squares (RLS).

A simplified way to solve ℓ1‑regularized RTLS
The proposed algorithm needs a solution in (15) as well as RLS solution for ŵRLS(k) in γk . 
However, this makes the algorithm complex and we find a less complex way from block 
matrix inversion lemma in Moon and Stirling (2000). The required calculation complex-

ity can be simplified if we use the following matrix manipulation: X̄(k) =
[

X̃(k)T
...ỹ(k)

]T

 

and ¯X(k) ¯XT (k) =

[

˜X(k) ˜XT (k) ˜X(k)ỹ(k)

ỹT (k) ˜XT (k) ỹT (k)ỹ(k)

]

=

[

˜X(k) ˜XT (k) a

aT c

]

, then:

where X̃(k) =
[

x̃(k),
√
�x̃(k − 1), · · · ,

(√
�

)k
x̃(0)

]

, β =
(

c − aH
(

X̃(k)X̃T
(k)

)−1
a

)−1

. 

A12 = −β

(

X̃(k)X̃(k)T
)−1

a in (18) includes

(14)

w̃(k) =
(

w̃H
(k)R(k)w̃(k)

)

×
(

R
−1

(k)w̃(k)+ γk

(

w̃H
(k)R(k)w̃(k)

)

R
−1

(k)∇f (w̃(k))

)

.

(15)

w̃(k) ≈
(

R
−1

(k)w̃(k − 1)
)

+ γk

(

w̃H
(k − 1)R(k − 1)w̃(k − 1)

)

R
−1

(k)∇f (w̃(k − 1)),

(16)

w̃H
(k)R̄(k)w̃(k) = �w̃H

(k)R̄(k − 1)w̃(k)+ w̃H
(k)x̄(k)x̄H (k)w̃(k)

≈ �w̃H
(k − 1)R̄(k − 1)w̃(k − 1)+ w̃H

(k)x̄(k)x̄H (k)w̃(k)

= �w̃H
(k − 1)R̄(k − 1)w̃(k − 1)+ ȳ(k)2.

(17)γk =
2
tr
(

R̄−1
(k)

)

M

(

f
(

ŵaug (k)
)

− ρ
)

+ ∇sf
(

ŵaug (k)
)

R̄−1
(k)ε(k)

∥

∥R̄−1(k)∇sf
(

ŵaug (k)
)∥

∥

2

2

,

(18)

R̄−1
(k) =

(

X̄(k)X̄(k)T
)−1

=
[

Pxx(k)+ βPxx(k)aa
TPxx(k) −βPxx(k)a

−βaTPxx(k) β

]

=
[

A11 A12

A21 A22

]

,
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from which the RLS solution, ŵRLS(k) can be derived by dividing A12with the constant 
−β. When we solve the proposed ℓ1-RTLS in (15–17), γk in (17) needs to solve the RLS 
for ε(k). Therefore, all procedures in (15–17) need 2M2 + 2M additional multiplications. 
However, the simplification in this section needs only an additional division.

Simulation results
In this experiment, we follow the experiment scenario in Eksioglu and Tanc (2011). The 
true system function w has a total of N = 64 taps, where only S of them are nonzero. The 
nonzero coefficients are positioned randomly and take their values from an N (0, 1/S) 
distribution. The input signal is xk ∼ N (0, 1). Noise is added to both the input and the 
output, and the additive input and output noises in this paper are nin,k ∼ N (0, σ 2

in) and 
nout,k ∼ N (0, σ 2

out), respectively. These additional noises are necessary to experiment the 
errors-in-variables problem. The proposed ℓ1-RTLS algorithm is realized with the auto-
matic γk using (17). The ρ value in (17) is taken to be the true value of f (w) as in Eksioglu 
and Tanc (2011), that is ρ = �wo�1 for the ℓ1-RTLS. We also compare the ordinary RLS 
and the ℓ1-RLS of Eksioglu and Tanc (2011) with the proposed ℓ1-RTLS.

The proposed algorithm needs the inversion of the covariance matrix as (15) in order 
to derive the eigenvector. The better covariance matrix is needed for the better eigen-
vector. Therefore, the forgetting factor is needed close to 1. Figure  2 compares the 

(19)
(

X̃(k)X̃(k)T
)−1

a =
(

X̃(k)X̃(k)T
)−1

X̃(k)ỹ(k),

forgetting factor = 0.999 forgetting factor = 0.9995

forgetting factor = 0.9999 forgetting factor = 1

a b

c d

Fig. 2  Steady-State MSD for S =2 with different forgetting factors. a forgetting factor = 0.999. b forgetting 
factor = 0.9995. c forgetting factor = 0.9999. d forgetting factor = 1
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estimation performance results between the ℓ1-RLS and the ℓ1-RTLS in mean square 
deviation (MSD) with S = 4 and the different forgetting factors. We add the noise at 
both input and output with σin = σout = 0.1. For this comparison, we set the forget-
ting factor to 0.999, 0.9995, 0.9999 and 1, respectively. Figure 2 shows that the perfor-
mance becomes better as the forgetting factor goes to 1 although the proposed ℓ1-RTLS 
becomes better when the forgetting factor is greater than 0.999.

In Fig.  3 we simulate the algorithms with σin = σout = 0.1 and for S = 4, 8, 16 and 
64, where S = 64 corresponds to a completely non-sparse system. In this simulation we 
set the forgetting factor to 0.9999. Figure  3a–d plot the MSD curves of the proposed  
ℓ1-RTLS, the ℓ1-RLS and the ordinary RLS with the different S values. Figure 3 includes 
the MSD curves from the ℓ1-RLS and the ordinary RLS with the contaminated output 
only, and shows the estimation performance of the ℓ1-RLS and the ordinary RLS signifi-
cantly deteriorates when input and output are contaminated with noise. The proposed  
ℓ1-RTLS, however, outperforms the ℓ1-RLS and the ordinary RLS when input and output 
are contaminated with noise.

Table 1 summarizes the steady-state MSD values at the end of 500 independent tri-
als for the algorithms. In this simulation, we set the forgetting factor to 0.999, 0.9995, 
0.9999 and 1 and vary the sparsity S to 4, 8, 16 and 64, respectively. Table 1 shows the 
performance of the ℓ1-RLS is almost the same as that of the ordinary RLS. This means 
the ℓ1-RLS cannot improve the estimation performance when both input and output are 

S=4 S=8

S=16 S=64

a b

c d

Fig. 3  Steady-State MSD for S = 4, 8, 16 and 64 with forgetting factor of 0.9999. a S = 4. b S = 8. c S = 16.  
d S = 64
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contaminated by noise. However, the proposed ℓ1-RTLS outperforms the other algo-
rithms. The improvement goes better as the forgetting factor gets close to 1.

Conclusion
In this paper, we propose an ℓ1-regularized RTLS for sparse system identification. The 
proposed algorithm keeps good performance in case of both noisy input and noisy 
output. We develop the recursive procedure for total least squares solution with an  
ℓ1-regularized cost function. We also present a simplified solution requiring only a little 
additional complexity in order to integrate the regularization factor. Simulations show 
that the introduced ℓ1-regularized RTLS algorithm shows better performance than RLS 
and ℓ1-regularized RLS in the sparse system with noisy input and noisy output.
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