
Random rotation survival forest for high 
dimensional censored data
Lifeng Zhou, Hong Wang* and Qingsong Xu

Background
Survival analysis of censored data plays a vital role in statistics with abundant applica-
tions in various fields such as biostatistics, engineering, finance and economics. As an 
example, regression analysis of time-to-event data finds wide applications in reliability 
studies in industrial engineering and inter-child birth times research in demography and 
sociology. To estimate the probability that a subject (patient or equipment) will survive 
past a certain time, various parametric, semi-parametric and no-parametric models 
such as Cox proportional hazard (Cox PH) model (Cox and Oakes 1984; David 1972), 
survival neural network (Faraggi and Simon 1995), survival tree (Bou-Hamad et al. 2011; 
LeBlanc and Crowley 1995), regularized Cox PH model (Fan and Li 2002), regularized 
accelerated failure time (AFT) model (Huang et al. 2006), supervised principal compo-
nents based survival models (Li and Li 2004) have been proposed.

The past two decades have seen various survival ensembles with parametric and/or 
non-parametric base models and combining techniques. These techniques include bag-
ging (Hothorn et al. 2004, 2006), boosting (Binder and Schumacher 2008; Binder et al. 
2009; Hothorn and Bühlmann 2006; Li and Luan 2005; Ma and Huang 2007; Ridgeway 
1999; Wang and Wang 2010), random survival forest (RSF) (Ishwaran et al. 2010, 2011) 
and the recently proposed rotation survival forest (RotSF) (Zhou et al. 2015). Bagging 
stochastically changes the distribution of the training data by constructing a base sur-
vival model based on different bootstrap samples (Hothorn et al. 2004). Boosting based 
approaches adaptively change the distribution of the training data according to the 
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performance of previously trained base models and usually either use all covariates to fit 
the gradients in each step for low-dimensional data (Ridgeway 1999) or update only one 
estimate of parameters corresponding to only one covariate in a componentwise man-
ner in case of high-dimensional data (Binder et al. 2009). Random survival forest (RSF) 
(Ishwaran et  al. 2008) extends random forest (RF) (Breiman 2001) to right-censored 
time-to-event data using the same principles underlying RF and enjoys all RF’s impor-
tant properties. In RSF, tree node splits are designed to maximizing survival differences 
between subtree nodes. A so-called ensemble cumulative hazard function (CHF) can 
be estimated by aggregating Nelson–Aalen estimators for all “in-bag” data samples. All 
these survival ensembles have demonstrated their usefulness compared to previous sin-
gle algorithms.

Rotation survival forest (RotSF) (Zhou et al. 2015) is newly proposed survival ensem-
ble based on rotation forest (RotF) (Rodriguez et  al. 2006), in which the training data 
for each base model is formed by applying PCA transformation to rotate the origi-
nal covariates axes. In RotSF and other RotF based approaches, ensemble diversity is 
achieved by covariates transformation for each base model and prediction accuracy is 
promoted by keeping all principal components in the training data set. However, due 
to intensive computations during eigenvalue decomposition of data covariance matrix, 
such approaches often fails when dealing with high-dimensional data.

In view of the fact that dimensionality reduction can be achieved by random subspace 
(Ho 1998) method which randomly selects a small number of dimensions from a given 
covariate set in building a base model, we propose a new survival ensemble called ran-
dom rotation survival forest (RRotSF) for analyzing high-dimensional survival data. The 
proposed methodology can be viewed as a combination of rotation forest, random sub-
space and bagging (Breiman 1996). And it extends the RotSF approach from low dimen-
sional to high dimensional time-to-event censored data. In this study, the decision tree 
algorithm is chosen as the base survival model for our survival ensemble as it is the most 
popular non-parametric method in analyzing survival data (Bou-Hamad et al. 2011).

Methods
Given a training dataset: D = (τq , δq ,Xq), q = 1, . . . , n, where τq is the survival time for 
the q-th sample, δq is the censored status indicator, Xq is a variable set V of p covari-
ates and n is the number of observed samples, a high-level description of how the pro-
posed RRotSF algorithm train a base survival model Si in the ensemble is presented in 
the following:

1.	 Randomly select r < p covariates from the p-dimensional data set D and the newly 
obtained training set Dr = (τq , δq ,Xqi) consists of r-dimensional training samples. 
Here we set r =

⌈√
p
⌉

 for simplicity.
2.	 Generate a bootstrap sample D′ = (τ ′q , δ

′
q ,X

′
qi) of size n from Dr to enhance diver-

sity and for calculating covariate importance.
3.	 Randomly split variables V into k = r/M equal size subsets Vj , j = 1, . . . , k and 

denote the not used covariates (remaining variables) as RV. Apply PCA to each 
bagged training subset with Vj covariates. Retain all derived principal component 
rotations Mjs and set rotations of RV to 0 to inject more randomness.
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4.	 Arrange all PCA rotations to match variable order in V and obtain rotation matrix 
Ra
i  .

5.	 Use the newly transformed data Dt = (τ ′q , δ
′
q ,X

′
qiR

a
i ) as the training set to train a 

base survival model Si.

The major difference between RotF (also RotSF) and the proposed RRotSF lies in that 
the former transforms the whole training set via PCA while the latter transforms only a 
random subspace of the whole training set which in turn greatly reduces the computa-
tional complexity caused by eigenvalue decomposition of high-dimensional covariance 
matrix.

The pseudo-code of the proposed RRotSF algorithm is presented in Algorithm 1:

Some parameters should be specified before applying RRotSF. Similar to other ensem-
ble methods, ensemble size which specifies the number of base survival models can be 
tuned by the users. Parameters M which controls the number within a feature subset is 
set to 2 as is done in RotSF.

Results and discussion
In the experiments, we perform five replications of two fold cross-validation as sug-
gested by Dietterich (1998). In fivefold to twofold cross-validation, the dataset is ran-
domly divided into two halves, the first half is used for training and the other half for 
testing and vice versa. This process is repeated five times for each dataset.
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Datasets

In order to carry out empirical comparisons, we want to test the proposed algorithm on 
five real high-dimensional benchmark datasets. In the following datasets, when distant 
metastasis-free survival (DMFS) time values are available, DMFS values are used as the 
primary survival end-points, otherwise relapse-free or overall survival time values are 
applied.

A short introduction of the benchmark datasets are given below.

UPP dataset

The UPP dataset contains transcript profiles of 251 p53-sequenced primary breast 
tumors published by Miller et  al. (2005). In each patient sample, 44,928 gene features 
and 21 clinical covariates are provided. The data can be obtained from the R package 
“breastCancerUPP” of “Bioconductor”.

MAINZ dataset

The MAINZ breast cancer dataset provided by Schmidt et al. (2008) contains the gene 
expression patterns of 200 tumors of patients who were not treated by systemic therapy 
after surgery using a discovery approach. Each patient sample contains 22,283 gene fea-
tures and 21 clinical covariates. The dataset is available from the R package “breastCan-
cerMAINZ” of “Bioconductor”.

TransBig dataset

This breast cancer dataset contains gene expression and clinical data published in Des-
medt et al. (2007). The data contains 198 samples to independently validate a 76-gene 
prognostic breast cancer signature as part of the TransBig project. In the data, 22,283 
gene features and 21 clinical covariates are provided for each sample. The dataset can be 
obtained through the R package “breastCancerTRANSBIG” of “Bioconductor”.

VDX dataset

The Veridex (VDX) dataset which contains 344 patients with primary breast cancer was 
published in Wang et al. (2005). In the data, 22,283 gene features and 21 clinical covari-
ates are provided for each sample. The dataset can be obtained through the R package 
“breastCancerVDX” of “Bioconductor”.

TCGA dataset

This dataset is provided by The Cancer Genome Atlas (TCGA) and presented in Fang 
and Gough (2014). It contains both clinical covariates and gene expression information 
of 3096 cancer patients covering 12 major types of cancers. In each sample, 19,420 gene 
state information and 5 clinical covariates are provided. The data is available from the R 
package “dnet” of “CRAN”.

Summary information including gene features, clinical covariates and the number of 
samples of all datasets can be found in the following Table 1.
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Performance metrics and statistical tests

In survival analysis, we are much concerned with the relative risks between patients with 
different covariates information. Hence, as suggested by Ishwaran et al. (2008), we adopt 
Harrell’s concordance index (C-index, CI) (Harrell et al. 1996) to evaluate the accuracy 
of such relative risks in our later experiments and rank their performance on all datasets.

CI can be calculated in the following steps:

• • Create all pairs of observed survival times.
• • For all valid survival time pairs, namely, pairs where one survival time Tj1 is greater 

than the other Tj2, test whether the corresponding predictions are concordant, 
i.e, ηj1 > ηj2. If so, add 1 to the running sum s; If ηj1 = ηj2, add 0.5 to the sum s; If 
ηj1 < ηj2, add 0 to the sum s.

• • Count the number n of valid survival time pairs. Divide the total sum s by the num-
ber of valid survival time pairs n and we obtain CI = s/n.

Similar to AUC used in classification, CI usually lies between 0.5 and 1. When CI = 1, 
it means that the model has a perfect prediction accuracy and when CI = 0.5, it implies 
that the model is just like random guessing.

The results obtained in experiments are further validated by some proper statistical 
tests. As suggested by Demšar (2006) and was done in Zhou et  al. (2015), we use the 
non-parametric Friedman rank sum test (Demšar 2006) to test the statistical significance 
of various survival models. If the value Friedman test is large enough, the null hypoth-
esis that there is no significant difference among the different survival models can be 
rejected and some post-hoc such as Nemenyi test can be applied to find where the differ-
ences lie. If the differences are not significant according to the Nemenyi statistics, we use 
a two-sample Wilcoxon test to check whether the difference between pairs is significant.

Comparison results

Here, we compare RRotSF with five popular survival models. The first two methods are 
random survival forest (RSF) with different splitting rules, namely RSF-Logrank (RSFl) 
and RSF-Logrankscore (RSFs); the third and forth methods are regularized Cox propor-
tional hazard models, i.e. Cox-Lasso and Cox-Ridge; the fifth method is fast cocktail Cox 
method (CockTail). For the ease of notation, RRotSF, RSFl, RSFs, Cox-Lasso, Cox-Ridge 
and CockTail are denoted by A, B, C, D, E and F respectively when necessary. Compari-
sons with five models are conducted with corresponding “glmnet” (Simon et al. 2011), 
“randomForestSRC” (Ishwaran et al. 2008), and “fastcox” (Yang and Zou 2012) packages 

Table 1  Summary of five benchmark datasets used

Gene features Clinical covariates Samples

UPP 44,928 21 251

MAINZ 22,283 21 200

TransBig 22,283 21 198

VDX 22,283 21 344

TCGA 19,420 5 3096
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in R. Default settings are adopted for all models. For ensemble methods, i.e. RRotSF, 
RSFl and RSFs, 500 trees are built.

The corresponding experiment results are listed in the following Table 2. In this table, 
the numerics in each entry are the average of CI values on fivefold to twofold cross-
validation. The best performance in each column (on each dataset) is highlighted by the 
italic font.

According to Table 2, the proposed RRotSF takes the first place once, takes the second 
place three times and also takes a fourth place. Though RSFl takes the first place twice, 
its performance on other tree datasets are rather poor: it takes one fourth, one fifth and 
one last place respectively. From Table 2, whether RRotSF beats RSFl is not clear at this 
time but we can safely say that RRotSF outperforms other models, namely RSFls, Cox-
Lasso, Cox-Ridge and CockTail in most cases in terms of averaged CI.

To further evaluate the performance of all compared models, we have ranked each 
model on every run on these benchmark datasets. This allows us to compare perfor-
mance of all models in a consistent and nonparametric way. Figure 1 presents the box-
plot of ranks of six models in all runs of the experiments.

From the above, we can observe that RRotSF excels, followed by Cox-Ridge and RSFl 
models. The worst performer on these datasets is CockTail. In spite of the ranks, we also 
want to contrast these statements with some statistical tests.

Table 2  Performance in terms of averaged CI

UPP MAINZ TransBig VDX TCGA

RRotSF 0.6210 0.6997 0.5540 0.6248 0.6287

RSFl 0.6461 0.7069 0.5177 0.5630 0.5740

RSFls 0.5813 0.6234 0.5375 0.5950 0.6569

Cox-Lasso 0.5763 0.6375 0.5482 0.5327 0.7032

Cox-Ridge 0.6149 0.6802  0.5702 0.6234 0.5516

CockTail 0.5906 0.6298 0.5383 0.5227 0.7051

RRotSF RSFl RSFs Cox−Lasso Cox−Ridge CockTail

1
2

3
4

5
6

R
an

k

Fig. 1  Ranks of performance in terms of CI
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The Friedman rank sum test outputs a p-value of 0.0001136 which reject the null 
hypothesis that there is no significant difference among these models and a post-hoc 
Nemenyi test is applied. Using RRotSF (A) as the control, we obtain the p-values of Neme-
nyi test for different pairs: pBA = 0.35512, pCA = 0.04505, pDA = 0.00184, pEA = 0.61393 
and pFA = 0.00022. It can be seen that there exist significant differences between RRotSF 
and RSFs, Cox-Lasso or CockTail.

The differences between RRotSF and RSFl or Cox-Ridge are not significantly differ-
ent according to the Nemenyi test. However, a pairwise comparison using the Wil-
coxon test rejects the hypothesis of equivalence with low p-values (pBA = 0.02189 and 
pEA = 0.02129). This also indicates RRotSF is also superior to RSFl and Cox-Ridge on 
these benchmark datasets.

Therefore, in terms of C-index metric, RRotSF outperforms state-of-the-art survival 
models such as Random Survival Forest, regularized Cox proportional hazard models on 
these benchmark datasets. It is clear that other methods (ensembles and not) are avail-
able but the goal here is to illustrate some key features of RRotSF and not to provide an 
exhaustive comparison across methods.

Parameter sensitivity analysis

In addition to the above experiments, we also want to examine the sensitivity of RRotSF 
to the choice of parameters in the underlying survival models.

First, we want to test the performance of RRotSF with different subspace values (the 
number of variable with each variable subset) r. In view of the fact that r < √

p/5 may 
result in a less accurate base survival tree and r > 5

√
p may cause RRotSF cease to work 

due to memory overflow problems as all the datasets here are high-dimensional ones, we 
only test RRotSF with r values ranging from √p/5 and 5√p in the experiments.

Figure 2 shows the performance of RRotSF with different values of r on all five bench-
mark datasets. Performance of the default value( r =

⌈√
p
⌉

 ) of r on each datasets is indi-
cated by a purple circle.

From Fig.  2, one may observe that except for the values at the very beginning on 
TransBig and TCGA datasets, RRotSF seems insensitive to changes of r values. This is 
very encouraging result, as it demonstrates that RRotSF is robust with respect to r, even 
if non-default values are chosen.
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Fig. 2  Performance with different values of r
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Next, we want to test the performance of RRotSF with number of variable with a sub-
set M. If M = 1, then any projection reduces to rescaling of the variable axes. If M = p , 
there is only one variable set, i.e. all the variables are used for PCA transformation. In 
both cases, the ensemble diversity are degraded and prediction errors are larger than 
those with values in between (Kuncheva and Rodríguez 2007). To see how the choice of 
M may influence RRotSF’s performance, we test M with values between 2 and 100. Fig-
ure 3 shows the performance of RRotSF with different values of M on all five benchmark 
datasets.

The results shown in Fig. 3 agree with the results obtained for RotF in the classification 
context (Kuncheva and Rodríguez 2007), i.e., there is no consistent pattern or regularity 
for M with small values.

We also consider the time efficiency of RRotSF for different values of M. From Algo-
rithm 1, one may observe that the major time complexity lies with PCA operations in 
transforming k group of variable subsets. If M is small, each PCA operations will be 
faster but as the number of variable subsets could be greater, we have to do more PCA 
transformations. If M is large, each PCA operation will take a longer time but the the 
number of variable subsets and hence the number of PCA operations could be less. Fig-
ure 4 shows the running times (in seconds) of RRotSF on benchmark datasets with dif-
ferent combinations of M and k.

From Fig. 4, we notice a sharp decrease in RRotSF’s running time when M increases if 
2 ≤ M ≤ 5, and a very slow decrease when M increases if 5 < M ≤ 20. When M > 20, 
the values of M have no direct influence on RRotSF’s time efficiency as RRotSF’s running 
time remain almost steady on all five benchmark datasets. If we focus only on RRotSF’s 
time efficiency, we should choose a larger M (M < 20). However, to make RRotSF also 
work for some low-dimensional datasets, M should be set to a small value to ensure 
that there is enough diversity among the survival ensemble. Hence, to make a tradeoff 
between time efficiency and prediction accuracy, the M value can be set to 2 or 3 for 
simplicity, though it is not a optimal value in most cases.

From the above, both the choices r = √
p and M = 2 in the default setting for RRotSF 

are not the best choice in terms of C-index and are just serendipitous guesses in this 
study. As we have shown in the above comparison results, RRotSF has outperformed 
other popular survival models for these rather unfavourable values, we may conclude 
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Fig. 3  Performance with different values of M
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that RRotSF is not sensitive to the choice of r and M. As both values work well in the 
experiments, we propose to use these values as default values in the future. Of course, 
one can use cross-validation techniques to tune these parameters on some particular 
cases for a better performance.

Conclusion
In this study, we have developed a new ensemble learning algorithm, random rotation 
survival forest, for high-dimensional survival analysis. By studying the famous bench-
mark datasets, we have found that the proposed method generally outperforms state-
of-the-art survival models such as random survival forest, regularized Cox proportional 
hazard models in terms of C-Index metric. As a non-parametric approach, RRotSF does 
not impose parametric assumptions on hazard functions, and it extends the well-known 
rotation forest methodology to high-dimensional data analysis.

The R code and and the supplementary material are available at url: https://github.
com/whcsu/RRotSF and we are working hard to provide an R package for the proposed 
RRotSF algorithm as soon as possible.

Authors’ contributions
The work presented here was carried out in collaboration between all authors. LFZ,HW and QSX defined the research 
theme; HW and QSX designed the algorithm; HW carried out the experiments and analyzed the data; LFZ and HW inter-
preted the results and wrote the paper. All authors read and approved the final manuscript.

Acknowlegements
This work was supported in part by Social Science Foundation for Young Scholars of Ministry of Education of China 
Under Grant No. 15YJCZH166. The authors want to thank all reviewers and the editor for their valuable and constructive 
comments, which greatly improves the quality of this paper.

Competing interests
The authors declare that they have no competing interests.

Received: 11 June 2016   Accepted: 19 August 2016

References
Binder H, Schumacher M (2008) Allowing for mandatory covariates in boosting estimation of sparse high-dimensional 

survival models. BMC Bioinform 9(1):14
Binder H, Allignol A, Schumacher M, Beyersmann J (2009) Boosting for high-dimensional time-to-event data with com-

peting risks. Bioinformatics 25(7):890–896. doi:10.1093/bioinformatics/btp088
Bou-Hamad I, Larocque D, Ben-Ameur H (2011) A review of survival trees. Stat Surv 5:44–71
Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Cox DR, Oakes D (1984) Analysis of survival data, vol 21. CRC Press, Boca Raton
David CR (1972) Regression models and life tables (with discussion). J R Stat Soc 34:187–220
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

0 20 40 60 80 100 120 140

10
0

30
0

50
0

70
0

M 

T
im

e

Trset
UPP
MAINZ
TransBig
VDX
TCGA

Fig. 4  Time complexity with different values of M

https://github.com/whcsu/RRotSF
https://github.com/whcsu/RRotSF
http://dx.doi.org/10.1093/bioinformatics/btp088


Page 10 of 10Zhou et al. SpringerPlus  (2016) 5:1425 

Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d’Assignies MS et al (2007) 
Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the trans-
big multicenter independent validation series. Clin Cancer Res 13(11):3207–3214

Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural 
Comput 10(7):1895–1923

Fan J, Li R (2002) Variable selection for cox proportional hazards model and frailty model. Ann Stat 30(1):74–99. 
doi:10.2307/2700003

Fang H, Gough J (2014) The ’dnet’ approach promotes emerging research on cancer patient survival. Genome Med 6:64. 
doi:10.1186/s13073-014-0064-8

Faraggi D, Simon R (1995) A neural network model for survival data. Stat Med 14(1):73–82
Harrell FE, Lee KL, Mark DB (1996) Tutorial in biostatistics multivariable prognostic models: issues in developing models, 

evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387
Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 

20(8):832–844
Hothorn T, Bühlmann P (2006) Model-based boosting in high dimensions. Bioinformatics 22(22):2828–2829. doi:10.1093/

bioinformatics/btl462
Hothorn T, Lausen B, Benner A (2004) Bagging survival trees. Stat Med 23(1):77–91
Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ (2006) Survival ensembles. Biostatistics 7(3):355–373
Huang J, Ma S, Xie H (2006) Regularized estimation in the accelerated failure time model with high-dimensional covari-

ates. Biometrics 62(3):813–820
Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival forests. Ann Appl Stat 2(3):841–860
Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS (2010) High-dimensional variable selection for survival data. J 

Am Stat Assoc 105(489):205–217
Ishwaran H, Kogalur UB, Chen X, Minn AJ (2011) Random survival forests for high-dimensional data. Stat Anal Data Min 

4(1):115–132. doi:10.1002/sam.10103
Kuncheva LI, Rodríguez JJ (2007) An experimental study on rotation forest ensembles. In: Haindl M, Kittler J, Roli F (eds) 

Multiple classifier systems. Springer, New York, pp 459–468
LeBlanc M, Crowley J (1995) A review of tree-based prognostic models. In: Thall PF (ed) Recent advances in clinical trial 

design and analysis. Springer, New York, pp 113–124
Li L, Li H (2004) Dimension reduction methods for microarrays with application to censored survival data. Bioinformatics 

20(18):3406–3412
Li H, Luan Y (2005) Boosting proportional hazards models using smoothing splines, with applications to high-dimen-

sional microarray data. Bioinformatics 21(10):2403–2409. doi:10.1093/bioinformatics/bti324
Ma S, Huang J (2007) Clustering threshold gradient descent regularization: with applications to microarray studies. 

Bioinformatics 23(4):466–472
Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET et al (2005) An expression sig-

nature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. 
Proc Natl Acad Sci USA 102(38):13550–13555

Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181
Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal 

Mach Intell 28(10):1619–1630
Schmidt M, Böhm D, von Törne C, Steiner E, Puhl A, Pilch H, Lehr H-A, Hengstler JG, Kölbl H, Gehrmann M (2008) The 

humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405–5413
Simon N, Friedman JH, Hastie T, Tibshirani R (2011) Regularization paths for Cox’s proportional hazards model via coordi-

nate descent. J Stat Softw 39(5):1–13
Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, van Meijer-Gelder ME, Yu J et al 

(2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 
365(9460):671–679

Wang Z, Wang C (2010) Buckley-James boosting for survival analysis with high-dimensional biomarker data. Stat Appl 
Genet Mol Biol 9(1):24

Yang Y, Zou H (2012) A cocktail algorithm for solving the elastic net penalized Cox’s regression in high dimensions. Stat 
Interface 6(2):167–173

Zhou L, Xu Q, Wang H (2015) Rotation survival forest for right censored data. PeerJ 3:1009

http://dx.doi.org/10.2307/2700003
http://dx.doi.org/10.1186/s13073-014-0064-8
http://dx.doi.org/10.1093/bioinformatics/btl462
http://dx.doi.org/10.1093/bioinformatics/btl462
http://dx.doi.org/10.1002/sam.10103
http://dx.doi.org/10.1093/bioinformatics/bti324

	Random rotation survival forest for high dimensional censored data
	Abstract 
	Background
	Methods
	Results and discussion
	Datasets
	UPP dataset
	MAINZ dataset
	TransBig dataset
	VDX dataset
	TCGA dataset

	Performance metrics and statistical tests
	Comparison results
	Parameter sensitivity analysis

	Conclusion
	Authors’ contributions
	References




